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More in our recent paper

N. Raveendran and B. Vasic, “Trapping Sets of Quantum LDPC 
Codes,” Quantum 5, 562, Oct. 2021. also at arXiv:2012.15297 [cs.IT]

2

https://quantum-journal.org/papers/q-2021-10-14-562/
https://arxiv.org/abs/2012.15297


Surface codes and LDPC codes

𝐻𝐻𝑍𝑍 =
0 1 1 1 0 0
1 0 0 1 0 1
0 1 0 0 1 1

𝐻𝐻𝑋𝑋 =
1 0 1 1 0 0
0 1 1 0 1 0
1 0 0 0 1 1

- plaquette checks (𝐻𝐻𝑍𝑍)
- vertex checks (𝐻𝐻𝑋𝑋)



Why quantum LDPC codes?
• Renewed interest in quantum LDPC (QLDPC) codes

– Promises fault tolerant computation with constant overhead [15-17]

• Decoded efficiently using low-complexity iterative
decoding [18]

• Involve stabilizer (parity) checks of bounded and low
weight

[15] D. Gottesman, “Fault-Tolerant Quantum Computation with Constant Overhead,” arXiv:1310.2984,
2014.

[16] A. Kovalev and L. Pryadko, “Improved quantum hypergraph-product LDPC codes,” in 2012 IEEE
ISIT, July 2012, pp. 348–352.

[17] O. Fawzi, A. Grospellier, and A. Leverrier, “Constant overhead quantum fault-tolerance with
quantum expander codes,” arXiv:1808.03821, 2018

[18] O. Fawzi, A. Grospellier, and A. Leverrier, “Efficient decoding of random errors for quantum
expander codes,” arXiv:1711.08351, 2017
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Why quantum LDPC codes?
• Finite (nonzero) asymptotic rate

– Surface codes: As code length 𝑛𝑛 → ∞, surface code rate → 0.

• Minimum distance scaling better than square root of the
code length [19-21] . Better than surface codes.

[19] P. Panteleev and G. Kalachev, “Quantum LDPC codes with almost linear minimum
distance,” arXiv:2012.04068, 2020.

[20] N. P. Breuckmann and J. N. Eberhardt, “Balanced Product Quantum Codes“, arXiv:
2012.09271, 2020.

[21] P. Panteleev and G. Kalachev, “Asymptotically Good Quantum and Locally Testable
Classical LDPC Codes”, arXiv:2111.03654, 2021.
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QLDPC decoding problem is still open
• The existing QLDPC code literature primarily focuses on:

– constructing asymptotically good code families with improved 
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 scaling with the block length 𝑛𝑛 and higher code rates 𝑅𝑅

– designing better iterative decoding algorithms

• QLDPC codes implemented in practical QEC systems 
will be of finite length and their iterative decoders will 
propagate finite-precision messages. 
– Performance degradation due to convergence issues

• The convergence failure manifests itself as an error floor
of the decoding probability of error at low physical error 
rate levels.
– Error floor is observed in all state-of-the-art iterative message-

passing decoders: bit-flipping, belief propagation (BP), min-sum 
algorithm (MSA) and their variants
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Example
• BP performance (logical error rate) on Toric codes with 
𝑘𝑘 = 2 and 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚: 9, 11, 13, 15.

• Major drawback of BP is inability to handle small row 
weight of the parity-check matrix present due to the 
stabilizer commutativity constraint. 

Roffe et al. May 2020. arXiv:2005.07016 [quant-ph] 7



BP with post-processing
• A typical way to deal with error floor is post-processing 

with the Ordered Statistics Decoding (OSD).

Roffe et al. May 2020. arXiv:2005.07016 [quant-ph]
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BP with post-processing
• However, the complexity of OSD is exponential in the 

code dimension 𝑘𝑘. In addition to the BP complexity.

P. Panteleev and G. Kalachev,  arXiv:1904.02703, 2019.
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Our general objective
• Achieve BP-OSD performance but use message-

passing, i.e. only local processing.
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General objectives of our research
• For a given QLDPC code, design a  decoder that will 

guarantee correction of all error patterns up to weight 𝑡𝑡.
• For a given decoder, construct QLDPC code that 

guarantees correction of all error patterns up to weight 𝑡𝑡.
• Understand precisely what causes error floor:

– Degenerate errors: errors with the same non-zero syndrome
– Short cycles: in the Tanner graph: quantum code imposes 

symplectic product/commutativity constraints on Tanner graph

• Other constraints
– Convergence
– Complexity
– Fault tolerance
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Our current projects
• Classical projects:  

– NSF CCF-2100013  Small: Learning To Correct Errors
– NSF ECCS/CCSS-2027844: Neural Network Nonlinear Iterative 

LDPC Decoders with Guaranteed Error Performance and Fast 
Convergence

– NSF-CCSS-2052751: Collaborative Research: Secure and 
Efficient Post-quantum Cryptography: from Coding Theory to 
Hardware Architecture

13
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The problem setting
• A               stabilizer code given by the               binary 

parity check matrix                               , where

• Channel is a depolarizing channel. On each qubit, flips 
occur independently with probability    , resulting in the 
error pattern                     . 

• Syndrome measurement of the quantum state             
results in the syndrome   . 

• Decoder is a quantum syndrome decoder.

Decoder
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Decoders for CSS codes
• The parity check matrix is in the form (the rows are 

linearly independent)

• The errors      and      are independent, thus two 
decoders - one operating on       to correct      and one 
operating on       to correct      can be independently run.

Decoder
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CSS codes with HX=HZ

• The two codes can be chosen to be the same

• The condition                  means that the code    is dual-
containing             . 

• Codewords of    include the rowspace of H but also  
other codewords.

16



Example (Steane Code)

0 0 0 0 0 0 0
1 0 1 0 1 0 1
0 1 1 0 0 1 1
1 1 0 0 1 1 0
0 0 0 1 1 1 1
1 0 1 1 0 1 0
0 1 1 1 1 0 0
1 1 0 1 0 0 1
1 1 1 0 0 0 0
0 1 0 0 1 0 1
1 0 0 0 0 1 1
0 0 1 0 1 1 0
1 1 1 1 1 1 1
0 1 0 1 0 1 0
1 0 0 1 1 0 0
0 0 1 1 0 0 1 

0 0 0 0 0 0 0
1 0 1 0 1 0 1
0 1 1 0 0 1 1
1 1 0 0 1 1 0
0 0 0 1 1 1 1
1 0 1 1 0 1 0
0 1 1 1 1 0 0
1 1 0 1 0 0 1
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Example (Steane Code) – dual code

0 0 0 0 0 0 0
1 0 1 0 1 0 1
0 1 1 0 0 1 1
1 1 0 0 1 1 0
0 0 0 1 1 1 1
1 0 1 1 0 1 0
0 1 1 1 1 0 0
1 1 0 1 0 0 1
1 1 1 0 0 0 0
0 1 0 0 1 0 1
1 0 0 0 0 1 1
0 0 1 0 1 1 0
1 1 1 1 1 1 1
0 1 0 1 0 1 0
1 0 0 1 1 0 0
0 0 1 1 0 0 1 

0 0 0 0 0 0 0
1 0 1 0 1 0 1
0 1 1 0 0 1 1
1 1 0 0 1 1 0
0 0 0 1 1 1 1
1 0 1 1 0 1 0
0 1 1 1 1 0 0
1 1 0 1 0 0 1
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Example (Steane Code) - cosets

0 0 0 0 0 0 0
1 0 1 0 1 0 1
0 1 1 0 0 1 1
1 1 0 0 1 1 0
0 0 0 1 1 1 1
1 0 1 1 0 1 0
0 1 1 1 1 0 0
1 1 0 1 0 0 1
1 1 1 0 0 0 0
0 1 0 0 1 0 1
1 0 0 0 0 1 1
0 0 1 0 1 1 0
1 1 1 1 1 1 1
0 1 0 1 0 1 0
1 0 0 1 1 0 0
0 0 1 1 0 0 1 

0 0 0 0 0 0 0
1 0 1 0 1 0 1
0 1 1 0 0 1 1
1 1 0 0 1 1 0
0 0 0 1 1 1 1
1 0 1 1 0 1 0
0 1 1 1 1 0 0
1 1 0 1 0 0 1

19

logical 1

logical 0



Quantum decoder is a coset decoder
• Let     be a non-zero error vector, resulting in a syndrome  

• As opposed to a classical syndrome decoder that tries to 
find    for a given observed syndrome, a valid output of a 
quantum decoder is any one of the vectors

• When                 , but

then the correction vector          is applied to flip bits in the 
(unobservable) quantum codeword resulting in another 
codeword, and a logical, undetectable, error occurs.
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Checklist of statements to clarify
• What is a depolarizing channel, what the X and Z 

components of an error pattern                     mean?
• Why the parity check matrix has 2n columns?

• Quantum origin of the condition
– Discuss LDPC code constructions that satisfy such 

commutativity condition, construction of CSS codes too.
– Constraints on row weights of H due implementation, dmin

• Why                                               is a valid decoding 
output, why quantum codewords are defined as cosets?

• Misscorrections in the general case



Quantum questions
• How is it possible to obtain a syndrome without 

disturbing the quantum state corresponding to a 
codeword?

• How do we measure a syndrome?
• What are stabilizer codes?
• How do we construct quantum LDPC codes from 

classical ones?



Summary of a problem statement
• Given the generator matrix  

and the syndrome s, find any error pattern such that
and

• H is a parity check matrix of an LDPC code
• Decoding is iterative, message passing decoding



Quantum syndrome decoding
• Whether a decoding algorithm     produces a valid 

correction vector depends on           and         of the 
code, but also on    and on    .

• For codes on graphs (such as QLDPC codes, surface 
codes, etc.), and ability of a given iterative decoder     to 
correct an error pattern is determined by specific 
topologies of subgraphs found in                 , the Tanner 
graph of    .

• We refer to these subgraphs as trapping sets.
• Error floor is attributed to these dense subgraphs 

present in the Tanner graph.

24



Tanner graph of 𝐻𝐻 and syndrome matching
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Typical performance curve of LDPC codes 
under iterative decoding

• Waterfall – Frame error rate drops significantly with decreasing noise

• Error floor - Abrupt degradation of frame error rate at low channel 
noise region - curve tends to floor/flatten.

– Dense sub-graphs in the Tanner graph cause iterative decoder to fail for low-
weight error patterns: trapping sets.

26

Waterfall

Error floor
Projected performance 
without error floor 



Outline of the talk
• Finite message precision iterative decoders

– Gallager B decoder

• Understanding trapping sets in syndrome decoding
• Two types of trapping sets in QLDPC codes

– Classical-like trapping sets
– Trapping sets imbedded in symmetric stabilizers 

• Using trapping sets to design better QLDPC codes and 
better decoders

• Enumeration of trapping sets in some known code 
families: bicycle codes and hypergraph product codes

• An efficient trapping set search algorithm 

27



Gallager B algorithm

28



Gallager B 
variable message update

when there is majority

1
0

29



Gallager B
variable message update

1
0

when there is majority, send the majority value
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Gallager B
variable message update

when there is a tie, send the zero value
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Gallager B
check message update

XOR the incoming messages and the check value

32



Gallager B
check message update

XOR the incoming messages and the check value
- make the number of red colors even
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Gallager B
check message update

XOR the incoming messages and the check value
- make the number of red colors even
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Gallager B
decision

the bit value is decided as 
the majority of all incoming messages 

1
0
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Trapping set illustration

error
no error

1
0
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Trapping set illustration

1
0

iteration 1 – initialization
all variables send zero 
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Trapping set illustration

iteration 1 – the second half
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Trapping set illustration

Iteration 1 - decison
syndrome mismatch
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Trapping set illustration

recall what messages were sent to variable nodes

40



Trapping set illustration

1
0iteration 2 – first half

variables send the majority 
of incoming messages
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Trapping set illustration

iteration 2 – second half
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Trapping set illustration

iteration 2 - decision 
syndrome mismatch
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Trapping set illustration

messages sent to variable nodes in previous iteration

44



Trapping set illustration

1
0iteration 3 – first half

as when we started

45



Quantum trapping sets
• Classical definition: An (𝑎𝑎, 𝑏𝑏) trapping set for an

iterative decoder is a non-empty set not eventually
correct variable nodes in a Tanner graph of size 𝑎𝑎,
inducing a subgraph with 𝑏𝑏 odd degree check
nodes.

• In a syndrome-based iterative decoders, we keep the
(𝑎𝑎, 𝑏𝑏) notation, but the situation is more complex.

(𝑎𝑎, 𝑏𝑏)= (5,3) trapping set

46



Summary of our findings
• QLDPC codes have two classes of trapping sets:
• Classical-looking trapping set due to dense subgraphs

• Inherently-quantum trapping sets due to the symmetry of 
stabilizers

in [[900,36,10]] code

(10,0)

(4,2)                            (5,3)                                                (6,2)

in [[254,28]]  code, 
“A1” code of Panteleev and Kalatchev
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Trapping sets in [[900,36,10]] HP Code

48



Trapping sets due to degeneracy
• Recall: the minimum distance of a code is the minimal 

weight of codewords in                      .
• Code is called degenerate if the minimum distance is 

much greater than the row weight of H. 
– Degenerate errors have weight much smaller than the minimum 

distance. 

• Degenerate errors: Errors 𝒆𝒆 and 𝒇𝒇 that differ by an 
element in the stabilizer group.  

𝒆𝒆 = 𝒇𝒇 + 𝒉𝒉,   𝒉𝒉 ∈ rowspace(𝐻𝐻).
• Impossible to tell them apart using the syndrome.

49



Impacts of degeneracy 
• We typically look for errors of lowest weight.
• 𝐻𝐻 is sparse. If 𝒆𝒆 is a low weight error pattern, then 𝒆𝒆 + 𝒉𝒉, 
𝒉𝒉 ∈ rowspace 𝐻𝐻 may remain low-weight error pattern. 

• Typically, there are many low-weight error patterns giving 
the same syndrome.

• Iterative decoder fails when degeneracy is combined 
with symmetry!

50



An example of a degenerate error
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An example of a degenerate error
• Error patterns 𝒆𝒆 and  𝒇𝒇 induce a subgraph of a 

codeword.
• Iterative decoder attempts to converge to both 𝒆𝒆 and 𝒇𝒇

simultaneously leading to decoder failure.
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Symmetric stabilizer trapping sets are bad
• Symmetric degenerate errors are harmful for all iterative 

decoders, even “strong” decoders.
– The sum and product operations in the sum-product algorithm 

are symmetric functions, thus messages in a symmetric graph 
are all equal, and decoder instead of 𝒆𝒆 or 𝒇𝒇 outputs 𝒆𝒆 + 𝒇𝒇 .
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Harmfulness of symmetric stabilizers
• Different from classical-type TSs
• If an iterative decoder can correct half of the error 

patterns, degeneracy takes care of the rest! 
• How degeneracy can be exploited in decoding!

• Lemma: For an (𝑎𝑎, 0) symmetric stabilizer TS with any iterative
decoder which can correct up to 𝑎𝑎

2
− 1 error patterns in the

symmetric stabilizer, no error pattern on 𝑎𝑎
2

+ 1 nodes or more on the
symmetric stabilizer is a failure configuration. In Trapping
Sets of Quantum LDPC Codes: arxiv:2012.15297
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Topology of Symmetric Stabilizer TSs

= +

• This specific symmetric stabilizer is present in the A1 
code - [[254,28]] code with circulant size ℓ = 127.

• Non-classical behavior!  A decoder fails only for exactly
five errors, higher-weight errors are corrected.

P. Panteleev and G. Kalachev,  arXiv:1904.02703, 2019.
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Many stabilizers are asymmetric
• Asymmetric stabilizer in the [[900,36,10]] HP code

• When a QLDPC code is constructed from classical codes, 
trapping sets in classical codes remain and multiply in the 
Tanner graph of the quantum code. 

• More structure and elegance, more symmetric stabilizers.

Roffe et al. May 2020. arXiv:2005.07016
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Summary
• Iterative decoders on QLDPC codes fail due to presence 

of trapping sets - dense subgraphs of specific structure:
– classical looking (but quite different message dynamic)
– symmetric stabilizers

• We present the methodology to identify and enumerate 
trapping sets.

• In code design, increasing 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 is not sufficient, the 
Tanner graph must be also free of small trapping sets.

• BP has a fundamental flaw and fails on dense graphs, 
but message passing algorithms can be designed using 
the knowledge of trapping sets.
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Implications
• Knowledge of trapping set helps to design better codes 

and better decoders
• Method I: modify stabilizers to make them asymmetric.
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Elimination of small TSs
• Method II: Eliminate small trapping sets in code 

construction.
– Eliminating TS in constituent codes in HP code construction 

automatically eliminates them in global code (picture of a HP 
code here)

• But, which one are more dangerous than the others?
• The answer in the recent Nithin’s paper:

• It is not the size of trapping set that determines 
harmfulness, it is a critical number and strength of a 
trapping set.

N. Raveendran, D. Declercq, and B. Vasić, "A Sub-Graph Expansion-Contraction 
Method for Error Floor Computation," IEEE Transactions on Communications, 2020.
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Harmful syndrome/error patterns: min-sum
• (4,2) TS                     Critical error pattern: (5,3) TS

60



TS-aware code construction

symmetric HP codes constructed using random constituent codes
[20,5,8] and [24,6,10] from Roffe et al. 
HP code constructed using a trapping set aware QC[40,10,12] code

Roffe et al. May 2020. arXiv:2005.07016 [quant-ph]
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Better decoders
• A1 [[254,28]] code decoded by the min-sum algorithm 

(MSA) for two different schedules: 
– The layered schedule corrects all symmetric stabilizer TSs and 

numerous classical-type TSs.
– Large unexplored area with potentially big impact.
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Thank you!

N. Raveendran and B. Vasic, “Trapping Sets of Quantum LDPC 
Codes,” arXiv:2012.15297 [cs.IT]
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Quantum bit, quantum state

• Qubit: 

• Unlike classical bit having ‘state’ either 0 or 1, a 
qubit can be in a linear superposition of states.

• For 𝑁𝑁–qubit state 
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Pauli group and its properties
• Pauli group 

– with Pauli matrices and multiplicative factors ±1, ±𝑖𝑖, closed 
under matrix multiplication-on single qubit.  

– is an n-fold tensor product of     -on n qubits.

• Pauli matrices either commute or anti commute - with 
eigenvalues ±1 - and have self inverse: 

• Eg.



Pauli operators on n qubits



Commuting operators (example)

I = 1 0
0 1 X = 0 1

1 0 Y = 0 −𝑖𝑖
𝑖𝑖 0 Z = 1 0

0 −1



Commuting Operators

⊗ ⊗ ⊗ ⊗ ⊗

⊗ ⊗ ⊗ ⊗ ⊗



Simplectic product 
• Simplectic product



Entanglement as coding resource
• Superposition versus entangled states

superposition

entanglement



Quantum code - illustration

0000000
0001111
0110011
0111100
1010101
1011010
1100110
1101001

0010110
0011001
0100101
0101010
1000011
1001100
1110000
1111111

codeword

another codeword



Stabilizer formalism for quantum codes
• Stabilizer Group    : Subgroup of n-qubit Pauli group    

that leaves a non-trivial code state invariant.
–
–
–
–

• An [[n,k]] stabilizer code (in terms of stabilizers) 
– Vector space       stabilized by subgroup     of       such that 
– is the intersection of the subspaces fixed by each operator in  . 
– Example: S={I, Z1Z2, Z2Z3, Z1Z3}. 
The subspace fixed by Z1Z2 is spanned by |000〉 ,|001〉,|110〉 and |111〉
The subspace fixed by Z1Z3 is spanned by |000〉,|011〉,|101〉 and |111〉
The subspace fixed by Z2Z3 is spanned by |000〉,|011〉,|100〉 and |111〉
Intersection: |000〉 and |111〉



Stabilizer generators
• The code is specified by subspaces stabilized by all 

operators in the subgroup   .
• can be compactly represented by its generators.
• Let                                      , where     are the generators, 

then every element of    can be written as a product of its 
generators.

• Example. The set of generators of the subgroup 
S={I, Z1Z2, Z2Z3, Z1Z3} is 〈Z1Z2, Z2Z3 〉 as      
Z1Z3=(Z1Z2)(Z2Z3), and I=(Z1Z2)2.



Commuting Diagram

commuteand 
anti-commuteand 



Logical Operators and Normalizer

commuteand 
anti-commuteand 

logic operators
any stabilizer 
generator



Syndrome measurement
• Nature prevents us from learning anything about the 

probability amplitudes α and β and 
• Nature only allows us to measure observables.

– Observable is a Hermitian operator 
– Measurement outcome is one of the eigenvalues of the operator 

(real number)
– Quantum state after measurement is eigenvector corresponding 

to that eigenvalue

• Examples of qubit observables: the Pauli operators X, Y, 
and Z.

• Measurement – projection to an eigenvector.
• Idea: choose measurements so that encoded state is an 

eigenvector corresponding to eigenvalue +1.



A Classical Equivalent of Stabilizer Codes
• Recall the definition of a symplectic product     of vectors

• Since the stabilizer generators commute, any two rows                   

of the parity check matrix                               must satisfy       

• This leads the condition



CSS Codes
• The parity check matrix is in this form    

where . 
• The syndrome has two components

where

thus



Quantum channel

• Evolution of a closed quantum system is described by a 
unitary transformation E

• Discretization of errors: 
– We do not have to separately correct a continuum of possible 

errors, but only a discrete, finite set of errors.
– If a code can correct operators in the set {𝐸𝐸𝑘𝑘}, then it can correct 

any linear sum of these operators.



Error correction

• Must be done without learning the state

error estimation

correction



Syndrome measurement
• Nature prevents us from learning anything about the 

probability amplitudes α and β and 
• Nature only allows us to measure observables.

– Observable is a Hermitian operator 
– Measurement outcome is one of the eigenvalues of the operator 

(real number)
– Quantum state after measurement is eigenvector corresponding 

to that eigenvalue

• Examples of qubit observables: the Pauli operators X, Y, 
and Z.

• Measurement – projection to an eigenvector.
• Idea: choose measurements so that encoded state is an 

eigenvector corresponding to eigenvalue +1.



Quantum syndrome decoding
• Let     be a non-zero error vector, resulting in a syndrome  

• As opposed to a classical syndrome decoder that tries to 
find    for a given observed syndrome, a valid output of a 
quantum decoder is any one of the vectors

• When                 , but

then the correction vector          is applied to flip bits in 
the (unobservable) quantum codeword is also a 
codeword, and a logical, undetectable, error occurs.

symplectic product
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Stabilizer generators
• An [[n,k]] stabilizer code (in terms of stabilizers) 

– Vector space       stabilized by subgroup     of       such that                  .
– has n-k independent and commuting generators 
– A codeword is a simultaneous eigenstate of all generators of    

with eigenvalue +1.  

• Let                                       be generated by n-k
independent generators, and            . 
Then there exists             such that 

and                    for all         .
• Since the generators in    must commute, addition of 

each generator cuts the dimension of     by half. 
• Therefore,    is 2k -dimensional. 



CLASSICAL ERROR CORRECTION    QUANTUM ERROR CORRECTION
Linear code                                       Stabilizer code                               

Information bits (𝐾𝐾) - Logical qubits (𝐾𝐾) - 𝜓𝜓 𝐿𝐿∈ ℂ2
𝐾𝐾

Coded bits 𝑁𝑁 - Physical qubits 𝑁𝑁 - 𝝍𝝍 ∈ ℂ2𝑁𝑁

Parity check matrix 𝐻𝐻 Generators of commutative stabilizer group 𝒮𝒮
Fixes physical qubits/code state

𝑆𝑆 𝝍𝝍 = 𝝍𝝍 , ∀𝑆𝑆 ∈ 𝒮𝒮

𝐻𝐻 =
1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1

for [7,4,3] code
for [[7,1,3]]

Bit flip error modelled as a BSC(α)
Bit flip error – X, 
Phase flip error – Z
Bit and phase flip – Y
No error - I

Continuous nature of 
qubit errors 
discretized to 
correcting Pauli X, Y, Z
errors.

𝐻𝐻P =

X I I X I X X
I X I X X X I
I I X I X X X
Z I I Z I Z Z
I Z I Z Z Z I
I I Z I Z Z Z

α α

1−α

1−α
0

1

0

1
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CLASSICAL ERROR CORRECTION   QUANTUM ERROR CORRECTION

Direct access to channel output 𝐫𝐫 Cannot directly access erroneous code state 
but can measure syndrome.

Syndrome for error detection
For 𝐫𝐫 ∉

𝝈𝝈 = 𝜎𝜎1, … ,𝜎𝜎𝑀𝑀 = 

Measure syndrome
Measure the 𝑀𝑀 = 𝑁𝑁 − 𝐾𝐾 stabilizer generators

Eigen value (−1𝜎𝜎𝑖𝑖) → binary syndrome 𝜎𝜎𝑚𝑚
𝝈𝝈 = {𝜎𝜎1, … ,𝜎𝜎𝑀𝑀}

Error detected when 𝝈𝝈 ≠ 𝟎𝟎 Error detected when 𝝈𝝈 ≠ 𝟎𝟎

Decoding
Decoder uses 𝐻𝐻 to recover the correct 

codeword 𝐱𝐱 from channel output 𝐫𝐫.

Syndrome-based Decoding
1. Syndrome matching - Find corresponding error 

that matches the syndrome.
2. Error recovery: Reverse the error to get back 

the codestate 𝜓𝜓

Syndrome
matching 

Recover 
codestate

Measure 
syndrome

Channel
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CLASSICAL ERROR CORRECTION   QUANTUM ERROR CORRECTION

Degenerate error patterns

Errors 𝐄𝐄 and 𝐅𝐅 have
same non-trivial syndrome 𝝈𝝈

if they differ by a stabilizer (check) 
𝐅𝐅 = 𝑆𝑆𝐄𝐄 , where 𝑆𝑆 ∈ 𝒮𝒮

Degeneracy property of QLDPC codes 

allows syndrome based decoders to match the 
syndrome with 𝑬𝑬 or 𝑭𝑭 as degenerate errors

Any error upto a stabilizer 
𝐅𝐅 = 𝑆𝑆𝐄𝐄, where 𝑆𝑆 ∈ 𝒮𝒮

No Classical Analog

• Our quantum trapping set study investigates effect of 
– Degeneracy of QLDPC codes
– Syndrome-based iterative decoding
– QLDPC code constraints from commutativity of stabilizers
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Approach
• We want to find all low weight uncorrectable error 

patterns of a given iterative decoder    .
• If a decoding algorithm is local, such as a bit-flipping or 

message passing decoding, then a computationally 
efficient algorithm for finding all low-weight error patterns 
exists. Induced subgraphs are trapping sets. 

• Consequences:
– on a depolarizing channel with probability α, we can accurately 

compute decoding probability of error for low values of channel 
error rates. 

– The knowledge of trapping sets allows us to design better codes 
and better decoders!  

N. Raveendran, D. Declercq, and B. Vasić, "A Sub-Graph Expansion-Contraction 
Method for Error Floor Computation," IEEE Transactions on Communications, 2020.
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Trapping sets due to degeneracy
• Recall: the minimum distance of a code is the minimal 

weight of operators that commute with all the stabilizers 
but are not in the stabilizer group. Also, the minimal 
weight of logical operators. 

• Code is called degenerate if the minimum distance is 
much greater than the weight of the stabilizers. 
– Degenerate errors have weight much smaller than the minimum 

distance. 

• Degenerate errors: Errors 𝒆𝒆 and 𝒇𝒇 that differ by an 
element in the stabilizer group.  

𝒆𝒆 = 𝒇𝒇 + 𝒉𝒉,   𝒉𝒉 ∈ rowspace(𝐻𝐻).
• Impossible to tell them apart using the syndrome.
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Generalized bicycle codes
• 𝐻𝐻𝑋𝑋 = [𝐴𝐴 𝐵𝐵] and 𝐻𝐻𝑍𝑍 = 𝐵𝐵𝑇𝑇𝐴𝐴𝑇𝑇

– Commuting binary matrices 𝐴𝐴 and 𝐵𝐵, i.e, 𝐴𝐴𝐵𝐵 = 𝐵𝐵𝐴𝐴
– Introduced by Kovalev and Pryadko, called Kronecker Sum-

Product Codes, 
– Generalization of MacKay et. al. Bicycle Codes, where 𝐴𝐴 = 𝐵𝐵

• Stabilizer commutativity satisfied: 𝐻𝐻𝑋𝑋𝐻𝐻𝑍𝑍𝑇𝑇 = 𝐴𝐴𝐵𝐵 + 𝐵𝐵𝐴𝐴 = 𝟎𝟎

• Panteleev and Kalachev use circulant matrices. 
– A1 code - [[254,28]] code with circulant size ℓ = 127
– 𝐴𝐴 ≔ 𝑎𝑎(𝑥𝑥) = 1 + 𝑥𝑥15 + 𝑥𝑥20 + 𝑥𝑥28 + 𝑥𝑥66,
– 𝐵𝐵 ∶= 𝑏𝑏 𝑥𝑥 = 1 + 𝑥𝑥58 + 𝑥𝑥59 + 𝑥𝑥100 + 𝑥𝑥121.

P. Panteleev and G. Kalachev,  arXiv:1904.02703, 2019.

A. A. Kovalev and L. P. Pryadko, Phys. Rev. A 88, 012311, 2013.

D. J. C. MacKay, et al. , IEEE Trans. Inf. Theory, 50, 10, 2315–2330, 2004.
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[[254,28]] generalized bicycle code
• A1 code - [[254,28]],  ℓ = 127

– 𝐴𝐴 ≔ 𝑎𝑎(𝑥𝑥) = 1 + 𝑥𝑥15 + 𝑥𝑥20 + 𝑥𝑥28 + 𝑥𝑥66,
– 𝐵𝐵 ∶= 𝑏𝑏 𝑥𝑥 = 1 + 𝑥𝑥58 + 𝑥𝑥59 + 𝑥𝑥100 + 𝑥𝑥121.

P. Panteleev and G. Kalachev,  arXiv:1904.02703, 2019.

𝐻𝐻𝑋𝑋 = [𝐴𝐴 | 𝐵𝐵] 𝐻𝐻𝑍𝑍 = 𝐵𝐵𝑇𝑇 𝐴𝐴𝑇𝑇]
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(5,5) TS in A1 code

more harmful - in circulant A less harmful - in circulant B
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Neighborhood of (5,5)TS is different
• The blue trapping set is more harmful - both floating 

point min-sum and BP fail on it. 
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Hyper-graph product (HP) codes
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HP code with two classical Hamming codes

𝑛𝑛1 = 7 𝑛𝑛2 = 15

𝑚𝑚2 = 4

𝐻𝐻𝑋𝑋 =

𝐻𝐻1 ⊗ 𝐼𝐼𝑚𝑚2 𝐼𝐼𝑚𝑚1 ⊗ 𝐻𝐻2𝑇𝑇

𝑚𝑚1𝑛𝑛2

𝐻𝐻1 𝐻𝐻2

𝑛𝑛1𝑛𝑛2 𝑚𝑚1𝑚𝑚2

𝐼𝐼𝑚𝑚1 ⊗ 𝐻𝐻2

𝑛𝑛1𝑚𝑚2

𝐻𝐻1𝑇𝑇 ⊗ 𝐼𝐼𝑚𝑚2

𝐻𝐻𝑍𝑍 =

𝑚𝑚1 = 3
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Recent example
• Constant rate (4,7) QLDPC code family from (3,4)-LDPC codes

Roffe et al. May 2020. arXiv:2005.07016 [quant-ph]
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Symmetric HP codes
• When 𝐶𝐶𝐻𝐻1 and 𝐶𝐶𝐻𝐻2 are the same - 𝐶𝐶𝐻𝐻 with parameters 

𝑛𝑛,𝑘𝑘,𝑑𝑑 , the result is a symmetric HP code
– 𝐻𝐻𝑋𝑋 = [ 𝐻𝐻⊗ Ι𝑚𝑚 | Ι𝑚𝑚⊗𝐻𝐻𝑇𝑇]
– 𝐻𝐻𝑍𝑍 = [ Ι𝑚𝑚⊗ 𝐻𝐻 |𝐻𝐻𝑇𝑇 ⊗ Ι𝑚𝑚]
– 𝐻𝐻 is a classical parity check matrix of size 𝑚𝑚 × 𝑛𝑛.

• 𝐻𝐻𝐻𝐻 𝐶𝐶𝐻𝐻 has code parameters: 
– [[𝑛𝑛2 + 𝑚𝑚2 , 𝑘𝑘2 + 𝑘𝑘𝑇𝑇 2, min(𝑑𝑑,𝑑𝑑𝑇𝑇)]]
– 𝑘𝑘𝑇𝑇 and 𝑑𝑑𝑇𝑇 are code parameters of the transpose code 𝐶𝐶𝐻𝐻𝑇𝑇

• Commutativity constraint 𝐻𝐻𝑍𝑍 ・ 𝐻𝐻𝑋𝑋𝑇𝑇 = 0 is satisfied for all 
binary parity check matrices, thus any classical code to 
be converted to a quantum code.

J. Tillich and G. Zemor, IEEE Trans. Inf. Theory, 60, 2, 1193–1202, 2014.
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