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Proof (Part ii): Since f(t) is a  nondecreasing function of t, 
(1) and (2) yield 

E[d(X%)] 2  f(n) ” Y E”%l (1 - 6(X,&) 
n ( t=o 1 

> f(n) E[l - 6(X,&] - 
n  

= P,f (n)/n. (5) 

For equally probable source vectors, Theorem l-ii lower- 
bounds P, and thus 

E [d,,(X,&] 1  f* exp [- n[E,,(R - ol(n)) +  o,(n)]]. (6) 
n  

Part ii easily follows from (6). 

Proof (Part i): Since [l - +Q)12 = [l - 6(x,5)]], apply- 
ing the Schwartz inequality to (1) yields 

E [4(X,& I 
II-1 n-1 112 I n--l tgo [f(t +  412 n-‘tzo(l - W t,~,)) . 

(7) 

Since [n-’ C::i (1 - &x,,Z,))] 5  [l - 6(x,5)], Theorem l-i 
and (7) yields 

n-1 l/2 
E [d,(X,%)] 5  n-l tgo [f(t +  d12 (exp [ - nE,(R)])“‘. 

Part i easily follows from (8) and Theorem l-iii. 

Thus, f(t) can grow exponentially (but not too fast) and still 
have E[d,(X,%)] -+ 0. In the following theorem it is interesting 
to see that a  similar property does not hold for C < H(X). 

Theorem 3: Assume that the source letters are independent 
and identically distributed and that 

n-1 

d”(X,i) 2 n-l tgo f(tMx&) (9) 

where p(x,$ is nonnegative and f (t) is a  nondecreasing function 
oft such that limt+co f(t) =  co. Let R,(D) be the rate distortion 
function with respect to p(x,Z). If the channel capacity C < 
R,(O) P lim,.+, p  R (D), then for every sequence of block length 
n  codes 

lim E[d,(X,g)] =  co. (10) 
n+m 

Note: Usually R,,(O) = H(X). Thus this theorem shows that 
for any channel of capacity C < H(X), infinite block length codes 
perform very poorly no matter how slowly f(t) +  co. 

Proof: Let 

R,(D) = min (11) 
CD,:n-‘x:~;&=Dl 

[n-l lzi R’(4)] 

where R’(D,) =  R,(D,/f(t)). R,(D) may be thought of as the 
rate-distortion function for the product of IZ sources with sum 
distortion measure where the tth source has distortion measure. 
For equally probable source vectors, Theorem l-ii lower- 
f(t)p(x,x). (See Berger [4, sect. 2.81.) Therefore, if C < R/(D), 
then E [d/(X,%)] > D, for all block length n  codes. Since f(t) is 

nondecreasing and R!(D) is convex upward and nonincreasing, 
it follows that for any N 

n-1 

R,(D) 2 min 
CD,:“-‘Z;:;D,=Dl 

n-l & R,WfWN 1 
= qRo [(ET) (7&J]- (12) 

Therefore, lim,, m  R,(D) 1  R,(D/f(N)). Since N is an arbi- 
trarily large number and f(t) + co, we have lim,,, R,(D) = 
RJO). The theorem is proven since for any D > 0 and sufficiently 
large n, we have R,(D) > C. 
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A Simple Converse for Broadcast Channels with Additive 
White Gaussian Noise 

PATRICK P. BERGMANS 

A&raei-Sets of achievable rates for the additive white Gaussian 
noise broadcast  channel  have  been  found by  Cover [l] for channels with 
two outputs and  general ized by  Bergmans [2] to channels with any  
number  of outputs. In this correspondence,  we establish a  simple con- 
verse showing the optimality of these sets of achievable rates. The  proof 
is made  simple by  use  of special propert ies of the Gaussian channel.  

The set of achievable rates for discrete-time additive white 
Gaussian noise (AWGN) broadcast channels with noise powers 
Nl < N2-.. NN in the different links and average input power S 
is given by [l], [2] 

Ri I i In 1 + UiS 
Nt + C ajS ’ 

i L  1;..,N (1) 
jci 

withal 2  O,Ca, = 1. 
In this correspondence, we shall use the equivalent notation 

& 5  .dW + BiS) - AN, + 8t-19, 
with 

and 
g(S) A 3 In (2neS) 

0 = /!?. 5  j?l i /I2 I ... I 

We  shall need the following lemmas. 

i =  l,=..,N (2) 

(3) 

& = 1. (4) 

Lemma I: Let X be a random n-tuple such that XE R”, 
H(X) 2 nv, and let Y = X + Z  where Z  is a Gaussian noise 
vector independent of X with independent zero-mean com- 
ponents of variance N. Then 

H(Y) 2  ng(N + g-‘(v)). (5) 
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Lemma ZZ: Consider the ensemble (X, Y, W), such that X E R”, 
w E Zl x I, x . . . x Zk (a product of index sets), H(X ] W) 1 
nv, and let Y = X + 2, with 2 as in Lemma I. Then 

H(Y 1 w) 2 ng(N + g--l(v)). (6) 

Lemma I is a straightforward consequence of an inequality of 
Shannon on the entropy power of the sum of two ensembles 
[3, p. 6361, [4]. It is the counterpart for the Gaussian case of 
the results obtained by Wyner and Ziv for the binary case [5]. 
Lemma II is just the conditional version of Lemma I, and can be 
established easily using Lemma I, the convexity of g(N + g-‘(v)) 
in v and Jensen’s inequality. 

We now state the converse to the coding theorem. 

Theorem: No point (RI . . . RN) such that 

4 1 dNi + BiS) - .dX + Bi-lsh i = l,.**,N 

Rj = g(Nj + BjS) - g(Nj + Bj-1s) + 6, somej, 6 > 0 
(7) 

is achievable, where the /Ij are as in (4). 

Proof (by Contradiction): We suppose that the rates of (7) 
are achievable. We refer to Fig. 1 for the meaning of the various 
quantities. The outputs of the sources are independent and 
equiprobable. 

If the rates of (7) are achievable, the probability of decoding 
error for each receiver can be upper bounded by an arbitrarily 
small 1 (for sufficiently large n) 

Pr[@# ll$lYi]<l, i = l,...,N. (8) 

This implies (Fano’s inequality) 

H(W, 1 Yi) i h(A) + 1 log (Mi - l), i = l,...,N. (9) 

Using standard information-theoretic arguments and the in- 
dependence of the @, we find, from (9) 

log Mi 22 Z( Yi ; Wi I Wi+ 1 . ’ . WN) + &i(l) 

= ff(Yi 1 W*+ 1 . . . WN) ’ H(Y 1 Wi f * * W,) + .&I) 

(10) 
where ei(l) + 0 as Iz + 0. 

From (7) 

where q,(a) + 0 as 1 + 0, and where nS should be added to the 
right side of (12), for i 2 j (where j was detined in the statement 
of the theorem). It follows from (12), with i = N 2 j, that 

zwd 2 ngw, + s) - qN(a) + ns. (13) 

Since 1, and hence UN(a), can be made arbitrarily small, we may 
conclude that, for sufficiently large n, H( YN) 2 ng(NN + S) + n& 
This, however, is impossible, since var (Y,) I NN + S and, 
therefore, H(Y,) I ng(N, + S). The desired contradiction 
has been obtained, so the theorem is proved. 

APPENDIX 

Proof of Equation (12) 

Letting i = 1 in (10) and (ll), we fmd 

H(Y, 1 w,-** 6) - wyl I 6 -- w + 44 

2 WWI + BIS) - w(Nd 
or 

H(Y, 1 w, * * * WN) 1 w(N, + BIS) - vl(4 (14) 
since 

H(Y, 1 w, * . - Wiv) = ff(Y, I Xl = wWd. 

The rest of the proof is by recursion. We assume that (12) is 
true. Writing (10) and (11) for i + 1, we find 

ff(Y,+l I wi+z * * * 6) 2 WC&+1 + Bi+lS> - W(Ni+l + BP% 
+ fWi+l I K+l **. WV) - &,+,w. 

(15) 
From (12) 

H(Y, I &+I .‘. W,) 2 n 
[ 

g(N, + /IS) - ‘a I . (16) 
n 1 

Since &,, is obtained by adding Gaussian noise of variance 
N,+l - Ni to yi, we have, using Lemma II 

fwi+1 I &+1 *** 5) 

2 ng (Ni+, - Ni) + g-l g(Ni + &S) - ‘fi I 
n )I 

= ng (N,,, - Ni) + g-‘g(Ni + j&S) - ‘fl 
n 1 = wW+l + B&Q - Cd4 (17) * 

where &a), &(a) + 0 as 1 + 0. Substitution of (17) in (15) yields 

H(Y,+l I W+Z ... w,) 2 w(N+1 + B~+IS) - rli+l(4 (18) 
with li+i(lz) = si+i(l) + &(a) + 0 as L + 0. Equation (18) 
establishes the recursion. Finally, for i 2 j, n6 should be added 
to the right side of (18) because of the presence of 6 in (7) for 
i = j, and, hence, of n6 in (11). 
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