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A Coding Theorem for the Discrete 
Memoryless Broadcast Channel 

KATALIN MARTON 

Abstmct-A coding theorem for the discrete memoryleas broadcast 
channel is proved for tbe case where no common message is to be 
transmitted. The theorem is a generalization of the results of Cover and 
van der Meulen on this problem. Tbe result is tight for broadcast channels 
having one deterministic component 

I. INTRODUCTION 

A DISCRETE memoryless broadcast channel 
(DMBC) as defined by Cover [ 1] is determined by a 

pair of discrete memoryless channels with common input 
alphabet ‘3. We denote by F and G the transition proba- 
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bility matrices of these channels: 
F={F(xly):yE?4,xE%}, G={G(zly):y~%,z~%}. 
Here !X and 2E are the output alphabets, with cardinali- 
ties 11% IL IIWI~ ll~ll < co. The DMBC corresponding to 
the matrices F, G will be denoted by (F, G). 

We assume that the conditional probabilities of receiv- 
ing the sequences x” E 5%” and z” E 2FT at the outputs of 
the channels F and G, respectively, are given by 

F”(x”lYn)= laI F(x;lY;), G”(z”l~“)= iI!, G(z;lYi) 

wherey”=y,y,***y,,. 
In connection with the DMBC (F, G), we consider the 

following coding problem. A sender has to transmit two 
independent messages over the channels F and G: one 
message for receiver I observing the output of the channel 
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F, and another for receiver II observing the output of the 
channel G. The messages take their values in the sets 
{1,2,.'. ,J} and {1,2;.. , K}. The sender uses a block 
code of block length n. Given that the first message has 
value j and the second message has value k, the sender 
transmits a sequence yjz E %“. The question is at which 
rate pairs (n-i log J, n -’ log K) can this be done so that 
both receivers can with high probability decode their 
respective messages correctly. The asymptotic values of 
these rate pairs consititute the capacity region of the 
broadcast channel. 

No computable formulas are known for the capacity 
region of the DMBC, except for three special cases: 1) if 
one of the component channels is “more capable” in the 
sense of [2] than the other one: 2) if the DMBC (F, G) is 
the product of the DMBC’s (F,, G,) and (F2, G2) (i.e., 
‘%=‘%IX~2, %=%IX%& %=55,X& F(x,,xz(y,,yz)= 
F,(~,ly,F’,(x,l~,)~ ‘3 w~IY~,Y~)= Wz11~,)W21~,)~ for 
(Y~,Y~)E~, (xl,xJ~f% (.q,z2)~% G, is a degraded 
version of F,, and F2 is a degraded version of G,; and 3) 
if the DMBC is deterministic, i.e., F and G are (4 l)- 
matrices. Case 1) has been solved recently in [3], generaliz- 
ing earlier results of [ 131, [4], [5], and [2]. (See also [6] for a 
related problem.) Case 2) is settled in [ 151. 

Although case 3) now seems almost trivial, it had been 
an open problem for a long time. (The Blackwell channel 
is a deterministic DMBC.) It was settled independently by 
Pinsker [7] and the author [9]. (See also [8] for a particular 
case; [9] contains only a heuristic proof.) 

In the general case only an inner bound to the capacity 
region is known. This can be obtained from the results of 
van der Meulen [lo] and Cover [l l] (see [12]). The aim of 
the present paper is to prove a better inner bound (Theo- 
rem 2) to the capacity region of the DMBC. This bound is 
proved by a random coding method which is a combina- 
tion of the coding techniques of Bergmans [ 131 and Cover 
and van der Meulen [lo], [l I], with the random coding 
technique used to prove source coding theorems in rate 
distortion theory. 

Theorem 3 is an easy consequence of Theorem 2 and 
describes the capacity region of the deterministic DMBC. 
It is generalized by Theorem 4 to DMBC’s with one 
deterministic component. Theorem 4 has also been proved 
independently by Gelfand and Pinsker [17]. The converse 
part of Theorem 4 is a special case of an outer bound for 
the general DMBC (Theorem 5), due to Korner and the 
author [ 161. 

Theorems 3 and 4 show that Theorem 2 is more than a 
formal generalization of Theorem 1. As a matter of fact, 
we shall show in Appendix II that Theorem 1 is not tight 
for the Blackwell channel. 

is an (n,e)-code (e > 0) for the DMBC (F, G) if there exist 
two disjoint families of decoding sets 

{@+ l<jCJ}, {S3,: l<k<K} 

(t$cfX”, ?PJ~C%~, 6$n~~=CBknCB~=0, for ahj#j’, 
k#k’) such that 

The pair of numbers (n - ’ log J, n - ’ log K) is the rate pair 
of the code. A pair of numbers is called achievable if, for 
any fixed e > 0, it can be approximated by rate pairs of 
(n,r)-codes. The capacity region of the channel is the set 
of all achievable pairs. 

We shall use the following notation. All random vari- 
ables (r.v.‘s) in the paper are supposed to have finite 
ranges. The symbols IV, U, and V will always denote r.v.‘s 
and Y, X, and Z will denote r.v.‘s with ranges 9, %, and 
2, respectively. We write (Y, X, Z) E 9 (F, G) if the condi- 
tional distributions of X and Z given Y are defined by the 
matrices F and G, respectively. (U, Y, X, Z) E ‘?? (F, G) will 
mean that 1) (Y,X, Z) E 9 (F, G), and 2) both triples 
(U, Y, X) and (U, Y, Z) are Markov chains. 

We recall the following inner bound for the capacity 
region of the DMBC. 

ThEorem 1 (Cover-van der Meulen-Hajek-Pursley): 
Let % denote the convex closure of the set 

{(Rx,Rz): &, R, Z 0, Rx <I( WU/\X>, R, <I( WV 
AZ>, R,+R,<fin {I(WAX), I(WA 
Z)}+I(U/\XIW)+I(V/\ZIW) for 
some ((U, V, W), Y, X, Z) E C? (F, G) 
such that U, V, and W are 
independent}. 

Then any rate pair (Rx, R,)E% is achievable for the 
DMBC (F, G). 

Our goal is to prove the following generalization of this 
theorem. 

Theorem 2: Let 
%={(R,,R,): R,,R,>~, ~,<z(wu~x), 

‘R, <I( WV//Z), Rx+ R, 
<rnin {Z(WAX),I(WAZ)}+Z(UAXIW) 

+z(V/jZlW)-z(U//vlw) 
forsome((U,V,W),Y,X,Z)EC?(F,G)}. 

Then any rate pair (Rx, R,)E % is achievlbl5 for t8e 
DMBC (F, G). 

II. DEFINITIONS AND RESULTS Remarks: 1) It is easy to see that ‘?i?, is convex. 2) In the 
Definition: For n = 1,2,. - . a set of codewordrs of length definition of ?R, no condition on the independence of the 

?I r.v.‘s W, U, V is imposed. The set 3 consists of those rate 

(Yjk: I <j<J, I <k<K}C%” 
pairs in $R that correspond to independent r.v.‘s U, V, W. 
3) Consider for a moment the subset $Jl+ C ?IL consisting of 
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rate pairs corresponding to W = const.: 

%,={(R,,R,): R,,R,>Q, 
Rx <Z(Ur\X),R,<Z(Vr\Z), 
R,+R,<Z(UAX)+Z(V/jZ)-Z(U/yV) 
forsome((U,V),Y,X,Z)E??(F,G)}. 

We believe that the novelty of Theorem 2 is essentially in 
establishing that any rate pair in 9& is achievable, Let us 
give a heuristic reason why the rate pairs in 9+, should be 
achievable. Let (U”, Y”, Zn) denote the length n output of 
the discrete memoryless correlated source with generic 
variable (U, Y, Z). It can be shown by the method used in 
[ 141 that, for some sequence of positive numbers {S,} with 
&-a 

lim n-i n-+oo max {Z( V*AZ”): V* is an r.v. such 

that n-‘Z(V*AU”)<& and (V*,Y”,Z”) is a 
Markov chain} = max { Z( V/\ Z) - Z( U/j V): 
( V, Y, Z) is a Markov chain}. 

It is easy to see from this that, for (U, Y,X, Z) E ‘?? (F, G) 
and large enough n, we can construct an r.v. VT such that 
((U”, V,*), Y”,X”,Z”) EC?(F”, G”), 

,Ii%n-‘Z(V:jjZn)=max {Z(Vr\Z)-Z(U/\V): 

((u,V),Y,X,Z)E~(F,G)} 
and 

piIn-‘z(v;AU”)=o (2) 

i.e., Vj is asymptotically independent of U”. We also have 
n-'Z(U"AX")=Z(UAX) for all n. Therefore, if we had 
Z( V,* /j Un) = 0 for all n, instead of (2) the achievability of 
the pair R, = Z( U/\X), R, = max J Z( V/\ Z) - Z( U/\ V)] 
(and hence of 9,,) would follow from the Cover-van der 
Meulen theorem. 

Theorem 3 (Pinsker-Marton): If (F, G) is a determinis- 
tic broadcast channel, i.e., if F and G are (0,l) matrices, 
then the capacity region of (F, G) is 

%={(R,,R,): R,,R,>O, R,<H(X), R,<H(Z), 
R, + R, < H(XZ) for some (Y, X, Z) E 
~‘EG)}. 

The direct part of this theorem follows from Theorem 2 
by defining W= const, U=X, V= Z. The converse is 
trivial. Pinsker extended this theorem to the case of multi- 
component broadcast channels, all components of which 
are deterministic. 

Theorem 4 (Gelfand-Pinsker-Marton): If (F, G) is a 
DMBC for which F is a (0,l) matrix then the capacity 
region of (F, G) is 

%={(R,,R,): ~GR,GH(X), OGR,GZ(VAZ), 
R, +R, <H(XIV)+Z(V/r\Z) for some 
(K Y,XZ)@V’,G)}. 

Moreover, this region remains unchanged if V is allowed 
to take at most 11% ]I +2 values. 

The direct part of Theorem 4 follows from Theorem 2 
with W = const, U= X. The converse is a special case of 

the following outer bound for the capacity region of a 
DMBC [16]. 

Theorem 5 (Korner-Marton): The capacity region ?R 
of the DMBC (F, G) satisfies 

%rt{(R,.,R,): O<R,<Z(Y/\X), O<R,<Z(V/\ 
Z), Rx +R, <Z(Yr\XjV)+Z(V/\Z) for (3) 
some (V,Y,X,Z)E??(F,G)}. 

Moreover V can be assumed to take at most 11% I] +2 
values. 

Remarks: 1) A similar outer bound can be obtained for 
the rate region of codes all codewords of which have the 
same composition, say Q. Combining the bound for fixed 
Q with that obtained by reversing the roles of F and G, 
and than letting Q vary over the distributions on %, the 
bound (3) can be improved. 2) Theorem 5 can be proved 
either by the method of “images of a set via two chan- 
nels” used in [6], or by using only a single-letter technique 
for information quantities as in [ 181. (Such a technique is 
also implicitly contained in the first method.) Here we 
give a proof of the second type, since it is simpler. 
However, the method used in [6] would give a stronger 
result: namely, that (1) holds also with q(e) (the region of 
the so-called e-achievable rates) instead of 9,. This means 
that Theorem 4 holds with a strong converse. 

Theorem 5 is proved in Appendix I. 
In the proof of Theorem 2 we use the following nota- 

tion: 

px distribution of the r.v. X; 
P VW conditional distribution of the r.v. U 

given the r.v. W; 
P; and PGlw denote the nth memoryless extensions of 

these distributions; 

forafinitesetw,aEw,n=1,2..’ andw”=w,w,...w,, 
EW, n(a]w”) k {i: wi= a}lj; for an r.v. W with range 
‘%‘, q>O andn=1,2;.., 

tTw(q) P { w”E%P: In-‘n(uI w”)- P,(a)l<q, 
all aEw}; 

for a pair of r.v.‘s (W,X) with range % X xx, for n, >O, 
for a sequence wn E yw(n,) and for q2 >ni, 

Tx(w”, Q) A {X” E tXn: In-‘n(ublw”x”) - 
P,(ub)l <nz, all (a,b)E % X %; n(ublw”x”)= 
0 for P,(u,6)=0}. 

III. PROOFOFTHEOREM 2 

It suffices to prove that the pair 

Rj Z(WU/\X)=Z(Wr\X)+Z(U//X~W), 

R,~min{Z(W~X),Z(Wy\Z)}+Z(U~XIW) 
+Z(Vr\ZIW)-Z(U/?\V(W)-R, 

=z(v/\zIw)-z(u/jvIw) 
-I~(wA~)-~(wAz)I+ 
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is achievable for (( W, U, V), Y, X, Z) E 9 (F, G). We may over the ensemble of the auxiliary random codes. 
assume R, >O, i.e., We have 

Z(UAVlW)<Z(VAZlW)-lZ(WAX)-Z(WAZ)I+. 
Fix the numbers E, 6, n > 0. For n fixed, define’ 

Z= [ exp tntzt WAX) - a))] (4) 

J=[ev (4Z(UAXIW)-6))] (5) 

L=[exp (n(Z(UAvlW)+6))] (6) 
K=[exp(n(Z(VAZIW)-IZ(WAX)-Z(WAZ)I+ 

-Z(U/\VIW)-2S))]. (7) 

We then have 

where 

KL<exp(n(Z(VAZIW)-6)) 03) 
ZKL < exp (n(Z( WV//Z) - 6)). (9) 

Using a random coding method, we shall define length 
n codewords yiik (1 <i <I, 1 <j.< J, 1 <k <K) and decod- 
ing sets eij c %‘, B3, c %” so that (1) holds with the index 
j replaced by the pair of indices (ij) (and e replaced by 
const e). 

Furthermore, since ajk > aik, and, consequently, 
Ci3,y%1,\u{~,: k’#k} 

we have, as in (11) 

Select the length n sequences wi (1~ i <I) indepen- 
dently of each other and according to the distribution Pb. 
Then, for fixed i, select the length n sequences uii (1 <j < 
J) and vik, (1 < k Q K, 1 <I < L) independently of each 
other and according to the distributions P$ w(. I WJ and 
Ptf, w( * I wi), respectively. The set 

{wi,uij,vi,: 1 <i<Z, 1 <j<J, 1 <k<K, 1 <I<L} 

will be called an auxiliary random code. 
For ij, k fixed, let xjk denote the indicator variable of 

the event that the triple of sequences (wiuijvikr) belongs to 
YwclV(7j/2) for at least one value of I. This value of I will 
be denoted by Z(ijk). From the rule for selecting our 
auxiliary random code, and from (6) it follows that, for 
sufficiently large n, 

Pr {xjk=O} <e. (10) 
If xjk = 1, let the codeword yijk be any sequence in 

~Y(wiuijvik,Cijkj,n) and let yiik be arbitrary for xjk =O. Set 

$i = ETX(WiUi~, 217) 

‘j/cl = TZtwiv&,>27)> 

If xjk = 1, then (wjuiivikr) l Y~,,(n/2) and yijk E 
5r(wiui,~vikr,n) fcr some 1. Therefore, recalling the defini- 
tion of aij and aik,, it easily follows from the law of large 
numbers and from the relation (( W, U, V), Y,X, Z) E 
9 (F, G) that for large enough n, 

and, similarly, 

Furthermore, we have 

+ 2 T(x”,&iy) 
Y#j 

aik = u 8iik,, 
I 

< 2 7(x”&)+ 2 T(X”,&J 
i’#i Y#j 

(15) 

4ik = u @Jikl = u aik. 
i, I i 

We define the decoding sets gij and ‘?Bk by 

Qij = 8Jij\ U { 6&: (i’j’)#(ij)} 

%,=&,\u{&~,: k’#k}. 

For ij, k fixed, we shall estimate the expected value of 
the quantities 

(where 8$ = TX (We, 27)), and 

T(ZT ,‘;‘,4e)=7(zn, u 
i’,k’#k,I’ 

1-Fn(6?ijJyijk) and l-Gn($Bklyiik) 

‘III (4)-(7) [M] denotes the integer part of the number M. 

The rule for selecting the auxiliary code provides an 
estimaJe of the condition+ expectations of the r.v.‘s 
7(X’, &), 7(X”, giY), 7(Z”, ‘%3i’k,,,), and 7(Zn, ‘$ik,l,), given 
the values of the auxiliary codewords Wi, Uij, Vik,, 
T/,& ’ * * , &,. For X” E gij, Z” E aik, sufficiently small 
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(16) 
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9, and large enough n, we have 

E{~(x",~i')IWi,l(ij,vik~,."li)ik~} 

< exp [ - n(Z( WAX) - 6/2)], for i’#i (17) 

E{ 7(x”, &j')lwi,uij>2)ikl,. . * ,vi/d.} 

< exp [ - n(Z( uAX( W) - 6/2)], for j’#j (18) 

E{~(~“,~i’k’r)lWi,~ij,~ikDikl,. ’ * ,vih5} 
<exp [ -4Z(WAZ)-6/2)], for i’#i 

and any k’, I’ (19) 

E{ T(Zn,~i~r)IWi,Uli,Vikl,’ ” ,vikL} 

Gexp [ --n(Z(VAzIW)--~/2)], for k’#k 

and any I’. (20) 
Substituting (13) and (15) into (1 l), taking mathemati- 

cal expectation and using (17) and (18), we get 

E{&jk[ ‘-F”(@ijlyijk)]) 

<e+Zexp [ -n(Z(WAX)-6/2)] (21) 
+Jexp [ -n(Z(U/\XIW)-a/2)]. 

Similarly, from (14), (16), (12), (19), and (20) we get 

E{)(ijk[ l-G”(aklyijk)]} 

<e+ZKL exp [ -n(Z(WVy\Z)-S/2)] (22) 

+KLexp [ -n(Z(Vy\ZIW)-a/2)]. 

Using (4), (5), (8), (9), and (10) it follows from (21) and 
(22) that for all ij, k and for large enough n, 

E{2-F”(~ijIYijk)-Gn(~kIYijk)}<8r. 
This implies the existence of an (n,Se)-code with rate 

pair (Rx -26, R, - 26) for any e,6 > 0. The theorem is 
proved. 
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Proof of Theorem 5 

Let the r.v. Y” be uniformly distributed over the codewords 

APPENDIX 1 

{yjk: 1 <j <J, 1 <k <K} of an (n,c)-code for (F, G), and denote 
by V* the r.v. taking the value k if Y”=y+ By Fano’s lemma 

n-‘logJ=n-‘H(Y”]V*)<n-‘Z(Y”AX”IV*)+const.c, 
n-‘logK=n-‘H(V*)<n-‘Z(V*/\Z”)+const.c; 

where X” and 2” are the n-length outputs of the discrete 
memoryless channels F and G, respectively, corresponding to the 
input Y”. In order to prove (3), it suffices to show that for some 
(V,Y,X,Z)EY(F,G) we have 

n-‘I( Y”AX’l V*) <I( Y/\X) (23) 
n-‘I( V*/\Zn) <I( V//Z) (24) 
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and 
n-‘[Z(Y”/\X”IV*)+Z(V+/\Z”)] 

<Z(YAX(V)+Z(VAZ) (25) 
provided that Y” is any r.v. with values in %“, X” and Z” are 
the length n outputs of channels F and G, respectively, corre- 
sponding to the input Y”, and V*,Y” and (X”,Z”) form a 
Markov chain. 

It is clear that 

n-‘I( Y”AX”l V) <n-‘I( Ynr\X’) 

<n-’ i: Z(yi/\Xi) (25) 
i-1 

n-‘I( V*/\Z”) <n-I i Z( V*Xi-‘Zr/\Zi) 
i=I 

=n -’ 5 Z(&AZi) (26) 
i-l 

where Xi-*&X,Xz..~Xi-,, &“=Zi+,.-*Z,,, ~=V*Xi-‘Z~, 
1 < i < n. Moreover, 

Z( PAZ”)--I( V*/\X”) 
=[Z(v*/\Z”)-Z(V*r\X,Z,“)] 

+ [I( I’*AXIZ;) - Z( V*r\X,X,Z;)] 
‘+..a +[Z(V*AX”-‘Zn)-Z(V*AX”)] (27) 

= $, [I( Pr\ZilXi-‘Z~)-Z( V*/\XilX’-‘ZF)]. 

Applying (27) to Y” instead of I’* yields 

Z( Yn/\Zn) - I( Y”/\P) 

= $, [ Z( Yi/jZilX’-‘Zr)-I( YiAXilX’-‘Z~)]~ (27’) 

which is equivalent to 

We use (27) and (28) to overbound the left-hand side of (24): 

n-‘[Z(Y”AX”IV*)+Z(V*AZ”)] 
=n-‘[Z(Y”r\X”)+Z(V*AZ”)-Z(V*AX”)] 

en-Ii*, [I( YiAXilX-‘Z,“)+Z(Zi”AXiIX’-‘) 

+I( V*r\ZilXi-‘Z/‘) --I( V*r\XilXi-‘Zi”)] 

=n -’ $, [ I( TAXiI vi) + Z(Xi-‘AZilZ~) 

(29) 

+ Z( V*//Z,IX’-‘Z,“)] 

<n-’ i [Z(Y,AX,IVJ+Z(V,r\Z,)]. 
i-l 

The third equality in (29) follows from 

(vi,F,Xi,Zi)E9(F,G), i- 1,2; * * ,n (30) 
which can be easily verified. 

Equations (25), (26), and (29) together with (30) imply (23)- 
(25) if we define 

V=(Z,V,), Y= Y,, x=x,, z=z,, 
where Z is an r.v. uniformly distributed over the set { 1,2; * * ,n} 
and independent of ( V*, Y”,X”, Z”). 

The fact that the region in (1) does not decrease if V is 
allowed to take at most 11% II+2 values can be seen using [5, 
lemma 31. 
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Let (F, G) be the Blackwell channel, i.e., % = {0,1,2}, 5% = 55 
= (0, l}, and 

F=(; p) G=(i p). 

Proposition: 
max {Rx+&: (R,,R,)E&}<log3 

=max {&+I$: (R,,R,)E%}. (31) 

Proof From Theorem 3 it follows that the right-most side 
of (31) equals 

max {H(X,Z): (Y,X,Z)EC?(F,G)}=~~~~ 
and the maximum is achieved if and only if the joint distribution 
of the pair (X,Z) is 

Pr {X- 1, Z- l}=Pr {X= 1, Z=O} 
=Pr {X=O,Z=l}=f. (32) 

Since in [12] size constraints are proved for the cardinality of 
the auxiliary r.v.‘s W, U, V figuring in the definition of 4, it is 
enough to prove that for ((U, V, W), Y,X, Z) E C?(F, G) such that 
W, U, and V are independent, the inequality 

I-h {Z(WAX),Z(WAZ)}+Z(UAXIW) 
+Z(VAZ]W)<log3 (33) 

holds. 
It can be easily seen that 

Z(UAXIW)+Z(VAZIW 
<Z(Ur\XjVW)+Z(Vr\Z 
<Z( UV/\XZj W) <H(XZ 

and it is obvious that 
min { Z( WAX),Z( WAZ)} <I( 1 

‘IV (34) 
‘I W) 

;vr\XZ) 

so the left-hand side of (33) can be upper-bounded by 
Z( WAXZ) + fZ(XZ 1 W) = H(XZ) < log 3. 

(35) 

(36) 
Suppose that in (33) we have equality instead of strict inequal- 

ity. Then the following conditions must be satisfied: 
the pair (X, Z) has distribution (32) (37) 
Z(W/\X)=Z(W//Z)=Z(W/jXZ) (38) 

Z(U/jXlVW)+Z(VAZlW) 
= Z( UVAXZl W) = H(XZI W) (39) 

c.f., (36), (35), and (34). From (37) it follows that the distribution 
of (X,Z) is indecomposable (see [19]). Therefore, (38) implies 
that W is independent of (X,Z) (see [20]). From this it follows 
that we can restrict attention to the case W=const. Then (39) 
implies that 

(X, Z) is a deterministic function of ( U, V) (40) 

Equations (40) and (41) imply that iY(Z]XV) <H(Z] UV)=O, 
which together with (32) means that we also have H(Z] V) =O. 
Similarly H(X I U) = 0 and consequently Z( Uy\ V) > Z(XA Z) > 0, 
which contradicts the assumption that U and V are independent. 
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