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Abstract— The paper provides a proof of the converse
for the capacity region of the Gaussian MIMO broadcast
channel under total average transmit power constraint. The
proof uses several ideas from earlier works on the prob-
lem including the recent converse proof by Weingarten,
Steinberg and Shamai. First the duality between Gaussian
multiple access and broadcast channels is employed to
show that every point on the boundary of the dirty paper
coding region can be represented as the optimal solution
to a convex optimization problem. Using the optimality
conditions for this convex problem, a degraded broadcast
channel is constructed for each point. It is then shown
that the capacity region for this degraded broadcast chan-
nel contains the capacity region of the original channel.
Moreover, the same point lies on the boundary of the dirty
paper coding region for this degraded channel. Finally, the
standard entropy power inequality is used to show that
this point lies on the boundary of the capacity region of
the degraded channel as well and consequently it is on the
boundary of the capacity region of the original channel.

I. I NTRODUCTION

Consider a memoryless Gaussian multiple-input
multiple-output (MIMO) broadcast channel (BC) with
K = 2 receivers. Assume that the transmitter hast
antennas and each receiver hasr antennas.K = 2
receivers and equal number of receive antennas are
chosen for simplicity purposes. The proof can be easily
extended to the case of more than two receivers with
different numbers of antennas. The received symbols of
userk = 1, 2 at transmissioni can be expressed in terms
of the transmitted symbols and channel coefficients as

yk(i) = HT
k x(i) + zk(i), (1)

wherex(i) ∈ R
t is the vector of transmitted symbols and

yk(i) ∈ R
r is the vector of received symbols. The noise

vectorszk(i) for k = 1, 2 and i = 1, 2, . . . are i.i.d.
white Gaussian noise with covaraince matrixIr . The
matricesHT

k ∈ R
r×t, k = 1, 2, represent the channel

gains, where the entryHk(i, j) represents the channel
gain from transmit antennai to receive antennaj of

userk. A total average power constraint is assumed on
transmitted symbols, i.e., for every codeword of length
n, E

(
∑n

i=1 x(i)T x(i)
)

≤ nP. From this point on, we
shall refer to this BC as OBC (for original BC).

In [1], Caire and Shamai used Costa’s “writing on
dirty paper” result to establish an achievable rate region
for the OBC channel, commonly referred to as the “Dirty
Paper Coding” (DPC) region. They conjectured that this
achievable rate region is the capacity. In pioneering
works presented in [2], [3] and [7], the optimality
of the DPC scheme was established for the sum-rate.
Progress toward establishing this conjecture in general
was made in [3] and [4]. By introducing the Degraded
Same Marginal (DSM) outer bound concept, the proof
of the conjecture was reduced to that for the degraded
Gaussian MIMO BC. The conjecture was finally proved
in [6], where the DPC region was proved to be equal
to the capacity region for a class of BCs referred to
as Aligned Degraded MIMO BC (ADBC) channels.
This equality was proved through the definition of the
enhanced ADBC channel and its existence theorem,
which made it possible to employ the entropy power
inequality. The converse was then generalized to the
larger class of Aligned MIMO BC (AMBC) channels.
Using the result for the AMBC channels, the proof
was extended to the OBC channel by showing that the
capacity region of the OBC channel can be expressed as
the limit of the capacity regions of AMBC channels as
some of the eigenvalues of the noise covariance matrices
go to infinity.

In this paper, we give a simpler proof of the aforemen-
tioned conjecture. While our proof employs several ideas
from previous works including the recent converse proof
in [6], there are several key differences. Our converse
proof applies directly to the OBC channel and does not
require the concept of AMBC, ADBC channels or the
use of the limiting argument. Although our proof uses the
concept of enhanced ADBC channel, it is obtained via



duality theory and the optimality conditions for a convex
optimization problem, which is quite different from the
proof of the enhanced channel existence theorem in [6].

In the next section, by means of duality, every bound-
ary point of the DPC region of OBC is represented as
the solution to a convex optimization problem. The proof
of the converse is given in Section III.

A word on notations: We use upper case letters for
matrices and boldface letters for vectors. Theith element
of a vectora is denoted byai. The (i, j) entry of a
matrix A is denoted byA(i, j). AT is the transpose of
A and|A| is its determinant.Ir denotes ar by r identity
matrix. E(.) and tr(.) denote the expectation and trace
operations, respectively. For a symmetric matrixA, A �
0 andA � 0 mean thatA is positive semi-definite and
positive definite, respectively.

II. CHARACTERIZATION OF THE DPC REGION

We first review the characterization of the DPC region
for the OBC channel derived in [1]. Let the OBC channel
input covariance matrix bēS = E(xxT ) and π be a
permutation on{1, 2}. Then for anyπ and any set of
positive semi-definite matrices̄Sk, k = 1, 2, such that
S̄ =

∑

k S̄k and tr(S̄) ≤ P , the ratesR̄k as given below
for k = 1, 2 are achievable using the DPC scheme.

R̄π(k) =
1

2
log

∣

∣

∣
HT

π(k)

(

∑

i≥k S̄π(i)

)

Hπ(k) + Ir

∣

∣

∣

∣

∣

∣
HT

π(k)

(
∑

i>k S̄π(i)

)

Hπ(k) + Ir

∣

∣

∣

. (2)

Recall that the permutationπ specifies the encoding
order. The message of userπ(1) is encoded first while
the message of userπ(2) is encoded second. In the
DPC scheme, users’ codewords are independent and
are added up to form the transmitted codeword. Hence,
S̄ =

∑

k S̄k, where S̄k is the covariance matrix of the
transmitted codeword for userk. Let the setF(π, {S̄k})
be a rectangle inR2

+ defined by

F(π, {S̄k}) = {R ∈ R
2
+ : Rk ≤ R̄k, k = 1, 2},

then the DPC region for OBC denoted byROBC
DPC , is

the convex hull of the union of all such sets over all
permutations and admissible covariance matrices, i.e.,

ROBC
DPC =

⋃

π,{S̄k}:S̄k�0 ∀k,
∑

k
tr(S̄k)≤P

F(π, {S̄k}). (3)

The rate termsR̄k in (2) are not convex functions
of {S̄k} and therefore it is very difficult to directly
characterize the boundary points of the regionROBC

DPC .
This difficulty can be overcome using the duality theory
introduced in [7]. It was shown there that the DPC region
of OBC is equal to the capacity region of a dual multiple

access channel (MAC) under sum power constraint. This
dual MAC is obtained by reversing the roles of the
transmitter and the receivers in OBC. Specifically, the
output of the dual MAC is given by

y =
∑

k

Hkxk + z, (4)

where y ∈ R
t is the received vector,xk ∈ R

r is
the transmitted vector of userk and z is the receiver’s
Gaussian noise with covariance matrixIt. We shall refer
to this dual MAC as OMAC.

The duality result states that the DPC region in (3) is
equal to the capacity region of OMAC under the same
sum power constraintP . Additionally, any rate tuplēR
in ROBC

DPC as given in (2) is achievable in OMAC by
successive decoding and the decoding order is the reverse
of π. In order to describe this region, for a given set of
transmit covariance matrices{Sk} for users of OMAC,
define the set

G({Sk}) =

{

R ∈ R
2
+ :

∑

k∈J

Rk ≤

1

2
log

∣

∣

∣

∣

∣

∑

k∈J

HkSkHT
k + It

∣

∣

∣

∣

∣

∀ J ⊆ {1, 2}

}

. (5)

This set contains all achievable rates for OMAC when
the transmit covariance matrix of userk is Sk. The
capacity region of the OMAC channel under sum power
constraint can be expressed as

COMAC
sum =

⋃

{Sk}:Sk�0 ∀k,
∑

k
tr(Sk)≤P

G({Sk}). (6)

It is not hard to show that this region is closed. Fur-
thermore, based on concavity of thelog |.| function, this
region as given in (6), is convex and no convexification
is required. Therefore, each of its boundary points can
be found by maximizingµ1R1 +µ2R2 overCOMAC

sum for
some weightsµ1, µ2 ≥ 0 [9].

The optimality of the DPC region was established for
the sum-rate point (µ1 = µ2) and the corner points (µ1 =
0 or µ2 = 0) (see [2], [3] and [7]). Thus, it only remains
to show its optimality forµ1 > µ2 > 0 or µ2 > µ1 > 0.
Without loss of generality, assume thatµ1 > µ2 > 0.
The following lemma characterizes the boundary point
R∗ corresponding to givenweight vectorµ = (µ1, µ2).

Lemma 2.1:The boundary pointR∗ maximizing
µ1R1 + µ2R2 over COMAC

sum for µ1 > µ2 > 0 is unique
and is given by

R∗
1 =

1

2
log

∣

∣H1S
∗
1HT

1 + It

∣

∣ , (7)

R∗
2 =

1

2
log

∣

∣H1S
∗
1HT

1 + H2S
∗
2HT

2 + It

∣

∣

∣

∣H1S∗
1HT

1 + It

∣

∣

, (8)



L(S1, S2,Φ1,Φ2, λ) = (µ1 − µ2)
1

2
log

∣

∣H1S1H
T
1 + It

∣

∣ + µ2
1

2
log

∣

∣H1S1H
T
1 + H2S2H

T
2 + It

∣

∣

+ tr(S1Φ1) + tr(S2Φ2) − λ(tr(S1) + tr(S2) − P ). (16)

where S∗
1 and S∗

2 are solutions to the optimization
problem:

Maximize (µ1 − µ2)
1

2
log

∣

∣H1S1H
T
1 + It

∣

∣ (9)

+µ2
1

2
log

∣

∣H1S1H
T
1 + H2S2H

T
2 + It

∣

∣

Subject to tr(S1) + tr(S2) ≤ P, (10)

S1, S2 � 0. (11)

Furthermore, for any optimalS∗
1 , S∗

2 , there existsλ∗ > 0
and positive semi-definite matricesΦ∗

1,Φ
∗
2 such that

tr(S∗
1Φ∗

1) = tr(S∗
2Φ∗

2) = 0 and they jointly satisfy
the following Karush-Kuhn-Tucker (KKT) optimality
conditions,

HT
1 Q1H1 +

1

λ∗
Φ∗

1 − Ir = 0, (12)

HT
2 Q2H2 +

1

λ∗
Φ∗

2 − Ir = 0, (13)

whereQ1 andQ2 are defined as

Q1 =
µ1 − µ2

2λ∗

(

H1S
∗
1HT

1 + It

)−1

+
µ2

2λ∗

(

H1S
∗
1HT

1 + H2S
∗
2HT

2 + It

)−1
(14)

Q2 =
µ2

2λ∗

(

H1S
∗
1HT

1 + H2S
∗
2HT

2 + It

)−1
.(15)

Proof: The proof of the first part is based on the
Polymatroid structure of the setG({Sk}) and follows
directly from [5]. Recall that this point is achievable
by successive decoding with user 2’s message being
decoded before user 1’s.

The feasible region of the optimization problem in
(9) defined by the constraints (10) and (11) is convex,
closed and compact for any norm on the space of sym-
metric matrices. Also the cost function in (9) is concave
and continuous inS1 and S2. Hence, the optimization
problem is convex and there existsS∗

1 , S∗
2 that achieve

the maximum. In addition, the Slater condition holds and
the feasible region has an interior point for anyP > 0.
Thus, any optimal solution of (9) must satisfy the KKT
optimality conditions and vice versa [9]. KKT conditions
are obtained from the Lagrangian of (9) given in (16)
above, whereλ ≥ 0 is the dual variable associated
with the sum power constraint in (10) and the matrices
Φ1,Φ2 � 0 are the dual variables associated with the

positive semi-definite constraints onS1 andS2 given in
(11).

KKT conditions state that, for any optimal solution
S∗

1 , S∗
2 of (9), there exists dual feasible variablesλ∗, Φ∗

1

andΦ∗
2 for which the derivatives of the Lagrangian with

respect toS1 andS2 are zero. In addition, tr(S∗
1Φ∗

1) =
tr(S∗

2Φ∗
2) = 0 andλ∗(tr(S∗

1 ) + tr(S∗
2 ) − P ) = 0 (Com-

plementary Slackness conditions). Furthermore, any set
of feasible primal and dual variables that satisfy these
conditions is optimal.

It is not hard to show that the optimalλ∗ is positive for
this optimization problem. Dividing the derivatives of the
Lagrangian with respect toS1 andS2 by λ∗, yields the
left-hand side terms in (12) and (13), respectively. Also
sinceλ∗ > 0, the complementary slackness conditions
require that tr(S∗

1 ) + tr(S∗
2 ) = P .

Figure 1 sketches the DPC region of the OBC channel
and shows a boundary point(R∗

1, R
∗
2) for someµ1, µ2.

III. PROOF OF THECONVERSE

Theorem 3.1:ROBC
DPC is the capacity region.

The steps of the proof are as follows. First, based
on the optimality conditions given in Lemma 2.1, a
degraded MIMO BC is defined for each pointR∗ on
the boundary ofROBC

DPC that maximizesµ1R1 + µ2R2,
for a givenµ1, µ2. Using duality again, it is shown that
the boundary of the DPC region for this degraded BC is
tangent to the boundary of the DPC region of OBC at
R∗ (see Lemma 3.1). Using the entropy power inequality
and the degradedness property of this BC, we then prove
thatR∗ also lies on the boundary of the capacity region
of this degraded BC (Lemma 3.2). Furthermore, we show
that the capacity region of this degraded BC contains
the capacity region of the OBC channel. SinceR∗ is on
the boundary of the capacity region of the degraded BC
channel, it must also lie on the boundary of the capacity
region of the OBC channel. The same argument can be
used for other boundary points of the DPC region of
OBC to show the DPC region is actually the capacity
region.

We now give the details of the proof. Consider the
boundary pointR∗ of ROBC

DPC corresponding to a given
µ1 > µ2 > 0 as characterized in Lemma 2.1. In the
following we define a degraded BC corresponding the
boundary point ofROBC

DPC under consideration.



Definition 3.1: For a given weight vectorµ and its
corresponding boundary pointR∗ of ROBC

DPC , define the
DBC(µ) channel as

yk = x + zk k = 1, 2, (17)

where x,y1 and y2 ∈ R
t are the channel input and

output vectors, respectively, andz1, z2 are Gaussian
noise vectors with covariance matricesQ1 and Q2 as
defined in (14) and (15). We further assume the same
average total transmit powerP for this channel.
It is not hard to see thatQ1 � Q2 � 0. This choice of
Q1 andQ2 ensures that DBC(µ) is statisticallydegraded,
a property we shall use to establish its capacity region
later.

The following lemma shows thatR∗ is on the bound-
ary of the DPC region of DBC(µ).

Lemma 3.1:The pointR∗ maximizesµ1R1 + µ2R2

over the DPC region of DBC(µ) denoted byRDBC(µ)
DPC .

Proof: Similar to Lemma 2.1, the boundary point
Ro that maximizesµ1R1 + µ2R2 over the DPC region
of DBC(µ) can be characterized. Let DMAC(µ) be the
dual MAC of DBC(µ). This MAC has channel matrices
Q

−1/2
k for user k and white Gaussian noisez with

covariance matrixIt, and is given by

y =
∑

k

Q
−1/2
k xk + z. (18)

Let Γ∗
1 andΓ∗

2 be the optimal input covariance matrices
of user 1 and 2 in DMAC(µ) that achieve the boundary
point Ro. ThenRo is given by the same equations as
in (7) and (8) with Γ∗

k and Q
−1/2
k replacing S∗

k and
Hk, respectively fork = 1, 2. This point is obtained
by successive decoding with user 2’s message being
decoded before user 1’s. Additionally,Γ∗

1 and Γ∗
2 are

optimal solutions to an optimization problem obtained
from (9) by the same replacements. Let the scalarγ
and the matricesΨ1 and Ψ2 be the corresponding
dual variables of this optimization problem. The KKT
conditions are obtained exactly in the same way. Set
γ∗ = λ∗, Ψ∗

1 = Ψ∗
2 = 0 and

Γ∗
1 = Q

1/2
1 H1S

∗
1HT

1 Q
1/2
1 ,

Γ∗
2 = Q

1/2
2 H2S

∗
2HT

2 Q
1/2
2 ,

where S∗
1 , S∗

2 and λ∗ are primal and dual optimal
solutions of problem (9). It is not hard to show that the
given primal and dual variables are feasible and satisfy
the KKT conditions of the optimization problem forRo,
hence, they are optimal. Moreover,Ro = R∗ for this
set of input covariance matrices. Thus,R∗ lies on the
boundary ofRDBC(µ)

DPC .

R1

R2

slope:− µ1/µ2

ROBC
DPC

R
DBC(µ)
DPC

(R∗
1, R

∗
2)

Fig. 1. R
∗ lies on the boundary of DPC regions of OBC and DBC(µ).

Figure 1 shows the DPC regions for both OBC and
the degraded DBC(µ) defined for the pointR∗.

Before proceeding to show thatR∗ also lies on the
boundary of the capacity region of DBC(µ), consider the
transmit covariance matrices for DBC(µ) that achieve
R∗. Denote these matrices bȳΓ∗

1 and Γ̄∗
2. Using the

transformation formulaes given in [7] between each
user’s covariance matrix in the MAC and its dual BC,
one can obtain̄Γ∗

1 and Γ̄∗
2 in terms ofΓ∗

1 and Γ∗
2 and

ultimately in terms ofS∗
1 , S∗

2 andλ∗. After some algebra,
the expressions for these matrices can be simplified to

Γ̄∗
1 =

µ1

2λ∗
It − Q1 − Γ̄∗

2, (19)

Γ̄∗
2 =

µ2

2λ∗
(H1S

∗
1HT

1 + It)
−1 − Q2. (20)

By some matrix manipulation, it can be verified that
Γ̄∗

1, Γ̄
∗
2 � 0. Also Γ̄∗

1+Γ̄∗
2 = Q1H1S

∗
1HT

1 +Q2H2S
∗
2HT

2 ,
hence, from equations (12) and (13),Γ̄∗

1 + Γ̄∗
2 has the

same trace,P , as S∗
1 + S∗

2 . Furthermore, they achieve
R∗ in DBC(µ) by DPC scheme. Recall that to achieve
R∗ in DMAC(µ), user 2’s message is decoded before
user 1’s, thus, for DBC(µ), user 1’s message is encoded
before user 2’s.

Lemma 3.2:The pointR∗, which was shown to be on
the boundary of the DPC region of DBC(µ) is also on
the boundary of its capacity region denoted byCDBC(µ).

Proof: Consider C(enR1 , enR2 , n), an arbitrary
sequence of codes each with block lengthn and rates
(R1, R2) for DBC(µ) such that the average probability
of decoding error,P (n)

e , vanishes asn → ∞ . One way
to verify that(R∗

1, R
∗
2) lies on the boundary ofCDBC(µ)

is to show that for any such sequence of codes with
R2 = R∗

2, R1 cannot take values greater thanR∗
1.

Note thatQ1 � Q2, therefore DBC(µ) is a degraded
BC and its capacity region is equal to the capacity region
of a physicallydegraded BC given by

y2 = x + z2,

y1 = y2 + z′1,



where z2 and z′1 are independent Gaussian noises
with covariance matrices equal toQ2 and Q1 − Q2,
respectively. The capacity region of the degraded BC
is well known [8]. For the sequence of codes under
consideration, assumeR2 = R∗

2. By Fano’s inequality
we have,

nR1 ≤ I(W1;y
n
1 ) + nε1n, (21)

nR∗
2 ≤ I(W2;y

n
2 |W1) + nε2n, (22)

where W1, W2 are intended messages for user 1 and
user 2, respectively andε1n, ε2n go to zero asn → ∞.
After expanding the mutual information term in (22)
as I(W2;y

n
2 |W1) = h(yn

2 |W1) − h(yn
2 |W1,W2) and

from the equalitiesh(yn
2 |W1,W2) = nh(z2) andR∗

2 =
1
2 log

∣

∣Γ̄∗
2 + Q2

∣

∣− 1
2 log |Q2|, the following lower bound

on h(yn
2 |W1) is obtained

h(yn
2 |W1) + nε2n ≥

n

2
log(2πe)t

∣

∣Γ̄∗
2 + Q2

∣

∣ . (23)

Now since z′
n
1 is independent of(W1,W2, z

n
2 ), and

conditioned onW1, yn
1 = yn

2 + z′
n
1 and yn

2 have
densities, the entropy power inequality [8] can be applied
to obtain

e
2

nt
h(yn

1
|W1) ≥ e

2

nt
h(yn

2
|W1) + e

2

nt
h(z′n

1
). (24)

From the inequalities in (23), (24) and the expression for
h(z′1), one can obtain

e
2

nt
h(yn

1
|W1) ≥ 2πe

(

∣

∣Γ̄∗
2 + Q2

∣

∣

1

t + |Q1 − Q2|
1

t

)

− δn,

whereδn goes to zero asn → ∞. However, the expres-
sion for Γ̄∗

2 in (20) reveals that two matrix expressions
on the right-hand side,(Γ̄∗

2 + Q2) and (Q1 − Q2), are
scaled versions of each other. Consequently,

∣

∣Γ̄∗
2 + Q2

∣

∣

1

t + |Q1 − Q2|
1

t =
∣

∣Γ̄∗
2 + Q1

∣

∣

1

t ,

which yields a lower bound onh(yn
1 |W1) as given below

h(yn
1 |W1) ≥

n

2
log(2πe)t

∣

∣Γ̄∗
2 + Q1

∣

∣ − nδ′n,

where δ′n goes to zero asn → ∞. This inequality
together with (21) enables us to obtain an upper bound
on R1 as

R1 ≤
1

n
h(yn

1 ) −
1

n
h(yn

1 |W1) + ε1n

≤ h(y1) −
1

2
log(2πe)t

∣

∣Γ̄∗
2 + Q1

∣

∣ + δ′n + ε1n.

However,y1 = x + z2 + z′1 is the transmitted vector
corrupted by additive Gaussian noise with covariance
matrix Q1 and there is an average power constraint on
x, E(xT x) ≤ P . Consequently,h(y1) is maximized by
a Gaussianx with zero mean and covariance matrix that

has the same eigenvectors as the noise covariance matrix
Q1 and its eigenvalues water-fill the eigenvalues ofQ1

[8]. From (19), it can be seen thatΓ̄∗
1+Γ̄∗

2+Q1 = µ1

2λ∗
It,

which states that the transmit covariance matrixΓ̄∗
1 +Γ̄∗

2

satisfies the water-filling conditions. Henceh(y1) ≤
1
2 log(2πe)t

∣

∣Γ̄∗
1 + Γ̄∗

2 + Q1

∣

∣, that yields

R1 ≤
1

2
log

∣

∣Γ̄∗
1 + Γ̄∗

2 + Q1

∣

∣

∣

∣Γ̄∗
2 + Q1

∣

∣

+ δ′n + ε1n = R∗
1 + δ′n + ε1n.

as n → ∞, δ′n and ε1n go to zero andR1 could be at
mostR∗

1.
To complete the proof and show thatR∗ is on the

boundary of the capacity region of OBC, it remains to
show that the capacity region of DBC(µ) contains the
capacity region of OBC. SinceR∗ is on the boundary
of the capacity region of DBC(µ) that contains the
capacity region of OBC, it must be on the boundary of
the capacity region of OBC as well. Equalities given
in (12) and (13) guarantee thatHT

k QkHk � Ir for
k = 1, 2. Therefore, the capacity region of DBC(µ)
cannot be smaller than the capacity region of OBC. This
is based on the observation that receiverk of DBC(µ)
can successfully decode any code originally designed for
OBC after multiplying its output byHT

k and adding
an independent Gaussian noise with covariance matrix
Ir −HT

k QkHk to it. This completes the converse proof.
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