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Abstract— The paper provides a proof of the converse userk. A total average power constraint is assumed on
for the capacity region of the Gaussian MIMO broadcast transmitted symbols, i.e., for every codeword of length
channel under total average transmit power constraint. The n, E (Z?:l X(Z->TX(Z-)) < nP. From this point on, we

proof uses several ideas from earlier works on the prob- . -
lem including the recent converse proof by Weingarten, shall refer to this BC as OBC (for original BC).

Steinberg and Shamai. First the duality between Gaussian [N [1], Caire and Shamai used Costa’s “writing on

multiple access and broadcast channels is employed todirty paper” result to establish an achievable rate region
show that every point on the boundary of the dirty paper for the OBC channel, commonly referred to as the “Dirty
coding region can be represented as the optimal solution Paper Coding” (DPC) region. They conjectured that this

to a convex optimization problem. Using the optimality hievabl t ; is th ity | . .
conditions for this convex problem, a degraded broadcast achievable rate region IS the capacity. In pioneering

channel is constructed for each point. It is then shown Works presented in [2], [3] and [7], the optimality
that the capacity region for this degraded broadcast chan- of the DPC scheme was established for the sum-rate.
nel contains the capacity region of the original channel. Progress toward establishing this conjecture in general
Moreover, _the same point_lies on the boundary of_ the dirty was made in [3] and [4]. By introducing the Degraded
paper coding region for th!s degradeq channel. Finally, the Same Marginal (DSM) outer bound concept, the proof
standard entropy power inequality is used to show that ; ’
this point lies on the boundary of the capacity region of Of the conjecture was reduced to that for the degraded
the degraded channel as well and consequently it is on the Gaussian MIMO BC. The conjecture was finally proved
boundary of the capacity region of the original channel.  jp [6], where the DPC region was proved to be equal
to the capacity region for a class of BCs referred to
as Aligned Degraded MIMO BC (ADBC) channels.
Consider a memoryless Gaussian multiple-inpythis equality was proved through the definition of the
multiple-output (MIMO) broadcast channel (BC) withenhanced ADBC channel and its existence theorem,
K = 2 receivers. Assume that the transmitter has Wh|Ch made |t possib|e to emp'oy the entropy power
antennas and each receiver hasantennas.K' = 2 inequality. The converse was then generalized to the
receivers and equal number of receive antennas #fyer class of Aligned MIMO BC (AMBC) channels.
chosen for simplicity purposes. The proof can be easilysing the result for the AMBC channels, the proof
extended to the case of more than two receivers wiillas extended to the OBC channel by showing that the
different numbers of antennas. The received Symb0|3 é&pacny region of the OBC channel can be expressed as
userk = 1,2 at transmissiori can be expressed in termsthe |imit of the capacity regions of AMBC channels as
of the transmitted symbols and channel coefficients agome of the eigenvalues of the noise covariance matrices
N T , go to infinity.
yi(i) = Hy, x (i) + (i), @) In this paper, we give a simpler proof of the aforemen-
wherex(i) € R is the vector of transmitted symbols andioned conjecture. While our proof employs several ideas
vi(i) € R" is the vector of received symbols. The noisérom previous works including the recent converse proof
vectorsz (i) for k = 1,2 andi = 1,2,... are i.i.d. in [6], there are several key differences. Our converse
white Gaussian noise with covaraince matfix. The proof applies directly to the OBC channel and does not
matricesH! € R™*%, k = 1,2, represent the channelrequire the concept of AMBC, ADBC channels or the
gains, where the entrfd, (7, j) represents the channeluse of the limiting argument. Although our proof uses the
gain from transmit antenna to receive antenng of concept of enhanced ADBC channel, it is obtained via

I. INTRODUCTION



duality theory and the optimality conditions for a convexaccess channel (MAC) under sum power constraint. This
optimization problem, which is quite different from thedual MAC is obtained by reversing the roles of the
proof of the enhanced channel existence theorem in [&jlansmitter and the receivers in OBC. Specifically, the
In the next section, by means of duality, every bounasutput of the dual MAC is given by
ary point of the DPC region of OBC is represented as
the solution to a convex optimization problem. The proof y= Z Hixy, + 2, )
of the converse is given in Section lIl. . i _ _
A word on notations: We use upper case letters f§fherey € R’ is the received vectorx, € R” is
matrices and boldface letters for vectors. Ttieelement the transmitted vector of usérandz is the receiver's
of a vectora is denoted bya;. The (i,j) entry of a Gau§3|an noise with covariance matfix We shall refer
matrix A is denoted byA(i, j). AT is the transpose of t0 this dual MAC as OMAC. o _
A and|A| is its determinant!, denotes a by r identity The duality resuIF state§ that the DPC region in (3) is
matrix. E(.) and t(.) denote the expectation and trac&dual to the capacity region of OMAC under the same
operations, respectively. For a symmetric matix4 > SUm power constrainP. Additionally, any rate tuplR

0 and A > 0 mean thatd is positive semi-definite and I RHPE as given in (2) is achievable in OMAC by
positive definite, respectively. successive decoding and the decoding order is the reverse
of 7. In order to describe this region, for a given set of
II. CHARACTERIZATION OF THEDPC REGION transmit covariance matricgsSy} for users of OMAC,

We first review the characterization of the DPC regiof€fine the set
for the OBC channel derived in [1]. Let the OBC channel . 2
input covariance matrix b& = E(xx”) and 7 be a G{Skh) = {R €RL:) Ri<
permutation on{1,2}. Then for anyr and any set of red
positive semi-definite matriceS;, £ = 1,2, such that
S =3, Sk and t(S) < P, the ratesk), as given below
for k = 1,2 are achievable using the DPC scheme.

1 \Hik) (ZiZk 5%@)) Hyy + I

1

5 log Z HySpHY + I
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This set contains all achievable rates for OMAC when

the transmit covariance matrix of uséris S;. The

V.JC {1,2}}. (5)

Rﬁ(k) = —log - . (2) capacity region of the OMAC channel under sum power
2 ‘Hf(k) (X iok Sa(iy) Hegry + I constraint can be expressed as
Recall that the permutation specifies the encoding Com = U G({Sk}). (6)
order. The message of use(l) is encoded first while {Sk}:5k20 Yk, 3, t(Sp)<P

the message of user(2) is encoded second. In thejt js not hard to show that this region is closed. Fur-
DPC scheme, users’ codewords are independent af@rmore, based on concavity of the |.| function, this
are added up to form the transmitted codeword. Hengggion as given in (6), is convex and no convexification
S =)k Sk, WhereS}, is the covariance matrix of the s required. Therefore, each of its boundary points can
transmitted codeword for usét Let the setF(w, {Sx}) be found by maximizing, Ry + 15 Ry overCOMAC for
be a rectangle ifR?2 defined by some weightsuy, 2 > 0 [9].
1) 2, = _ The optimality of the DPC region was established for
Flr S} ={R € Ryt By < Ry, k=1,2}, the sum-rate point(; = 2) and the corner pointg:,{ =
then the DPC region for OBC denoted W/JEE, is 0 or uy = 0) (see [2], [3] and [7]). Thus, it only remains
the convex hull of the union of all such sets over alio show its optimality foru; > po > 0 or ug > g > 0.
permutations and admissible covariance matrices, i.e.Without loss of generality, assume that > ps > 0.
oBC - The following lemma characterizes the boundary point
Rbpc = U F(m, {Sk}). (3) R* corresponding to givemeight vectorp = (u1, i)
7,{5k}:8, =0 VE, 3, tr(Sp)<P Lemma 2.1:The boundary pointR* maximizing
w1 Ry + o Ry over COMAC for 1y > s > 0 is unique
and is given by

The rate termsR;, in (2) are not convex functions
of {Sx} and therefore it is very difficult to directly

i i c 1
chgragtgnze the boundary points _of the regi@_ Ba. R} = -log |H15>1kH1T + It|7 @)
This difficulty can be overcome using the duality theory . .
introduced in [7]. It was shown there that the DPC region . llog |H1S;HT + HyS;HY + I ®)
2 - )

of OBC is equal to the capacity region of a dual multiple 2 ]Hlsi*HlT + It\



1 1
L(S1,82,P1,P2,A) = (11— ,u2)§ log ’H151H1T + It‘ + Hog log ’H1S1H1T + HySoHY + It‘
+ tr(Slcl)l) + tr(Sg(Dg) — /\(tr(Sl) + tr(SQ) — P) (16)

where ST and S5 are solutions to the optimization positive semi-definite constraints ¢y and.S, given in
problem: (11).
1 KKT conditions state that, for any optimal solution
Maximize (1 — M2)§ log |HiS1 H{ + I (9) S, 83 of (9), there exists dual feasible variables ®*
1 and @} for which the derivatives of the Lagrangian with
thz; log |H\ S\ HY + HaS2Hy + 1| respect toS; and S, are zero. In addition, (5;d7%) =
Subjectto  tSy) +tr(Sy) < P, (10) tr(S5®5) = 0 and A" (tr(S7) + tr(S5) — P) = 0 (Com-
S S =0 (11) plementary Slackness conditions). Furthermore, any set
Loz = of feasible primal and dual variables that satisfy these
Furthermore, for any optima;, S, there exists\* > 0  conditions is optimal.
and positive semi-definite matrice}, ®; such that  Itis not hard to show that the optimat is positive for
tr(S;®;) = tr(S;®3) = 0 and they jointly satisfy this optimization problem. Dividing the derivatives of the
the following Karush-Kuhn-Tucker (KKT) optimality Lagrangian with respect t5; andS; by \*, yields the

conditions, left-hand side terms in (12) and (13), respectively. Also
1 since \* > 0, the complementary slackness conditions
HQ H, + - 1=0 (12) require that tS;) +tr(S;) = P. |
- 1 19) Figure 1 sketches the DPC region of the OBC channel
Hy QaHz + 7% — I, =0, 13) and shows a boundary poitR}, R;) for someyy, jis.
where@; and Q- are defined as I1l. PROOF OF THECONVERSE
P — pe2 B -1 Theorem 3.1:RYEY, is the capacity region.
@ = 20+ (HWSTHY +1) The steps of the proof are as follows. First, based
+ “_2* (HleHlT+HgS§H2T+It)_1 (14) on the optimality conditions given in Lemma 2.1, a
2:\ . degraded MIMO BC is defined for each poiRt* on
Q, = ﬁ (HiS{H! + HyS3H; + 1) .(15) the boundary ofR3ES that maximizesu; Ry + p2Ra,

for a givenpu, uo. Using duality again, it is shown that
Proof: The proof of the first part is based on th¢he boundary of the DPC region for this degraded BC is
Polymatroid structure of the sef({S:}) and follows fangent to the boundary of the DPC region of OBC at
directly from [5]. Recall that this point is achievableR" (see Lemma 3.1). Using the entropy power inequality
by successive decoding with user 2's message beifid the degradedness property of this BC, we then prove
decoded before user 1's. that R* also lies on the boundary of the capacity region
The feasible region of the optimization problem irPf this degraded BC (Lemma 3.2). Furthermore, we show
(9) defined by the constraints (10) and (11) is convelfat the capacity region of this degraded BC contains
closed and compact for any norm on the space of syffie capacity region of the OBC channel. Sirike is on
metric matrices. Also the cost function in (9) is concavi'e boundary of the capacity region of the degraded BC
and continuous inS; and S». Hence, the optimization channel, it must also lie on the boundary of the capacity
problem is convex and there exis§, S; that achieve region of the OBC channel. The same argument can be
the maximum. In addition, the Slater condition holds angsed for other boundary points of the DPC region of
the feasible region has an interior point for aRy> 0. OBC to show the DPC region is actually the capacity
Thus, any optimal solution of (9) must satisfy the KKT€gion.
optimality conditions and vice versa [9]. KKT conditions We now give the details of the proof. Consider the
are obtained from the Lagrangian of (9) given in (1eyoundary poiniR* of RZZZ corresponding to a given
above, wherex > 0 is the dual variable associated#1 > u2 > 0 as characterized in Lemma 2.1. In the
with the sum power constraint in (10) and the matricd§llowing we define a degraded BC corresponding the
®,,®, + 0 are the dual variables associated with thBoundary point ofR2% under consideration.



Definition 3.1: For a given weight vectop and its Ry RZ?S(‘”

corresponding boundary poilt* of RZES, define the . slope:— u1 /2
DBC(u) channel as

1

vh=x+z k=12, 17 RPPE

wherex,y; andy, € R! are the channel input and (R, R2)

output vectors, respectively, angh,z, are Gaussian
noise vectors with covariance matric€s and Q5 as
defined in (14) and (15). We further assume the same _ _
average total transmit powe? for this channel. Fig. 1. R* lies on the boundary of DPC regions of OBC and DE(
It is not hard to see thap; = @2 = 0. This choice of

(1 and@2 ensures that DBG() is statisticallydegraded,

a property we shall use to establish its capacity regio . .
Iatrér pery pactly reg tHe degraded DBG() defined for the poinR*.

The following lemma shows th&* is on the bound- Before proceeding t_o sho_vv th&” also Iies_ on the
ary of the DPC region of DBG() boundary of the capacity region of DB), consider the
Lemma 3.1:The pointR* maximizesy Ry + i Ro transmit covariance matrices for DB that achieve

over the DPC region of DBG:) denoted bnggg(”). R*. Denotg these matrices ay; gnd I'5. Using the
o ._transformation formulaes given in [7] between each
Proof: Similar to Lemma 2.1, the boundary point

- .~ user's covariance matrix in the MAC and its dual BC,
R? that maximizegu, Ry + 2R, over the DPC region o o ohtairf and T in terms of [ and T and
of DBC(u) can be characterized. Let DMAgGY be the ! 2 ! 2

. .~ _ultimately in terms ofS}, S5 and\*. After some algebra,
d“,al'/Q"AC of DBC(y). This .MAC has .channelzl mat-rlcesthe expressions for these matrices can be simplified to
Q, '~ for user k and white Gaussian noisg with

Ry

Figure 1 shows the DPC regions for both OBC and

I i i i % 1% ok
covariance matrix., and1|/32g|ven by s = 2—/\1*It —Q, T3, (19)
y=2_ Q. "xite (18) = 2"7{(1{15;1{{ +I) = Q. (20)
k

Let I'* andT; be the optimal input covariance matriceY Some matrix manipulation, it can be verified that
of user 1 and 2 in DMAGK) that achieve the boundaryl'T:I's = 0. AlSOT{+T3 = Q1 HiSTH{ +Q2H2S3HY
point R°. Then R is given by the same equations a§i€nce, from equations (12) and (13); + I'; has the
in (7) and (8) withT"; and lel/2 replacing S; and Same traceP, as ST + S;. Furthermore, they achle_ve
Hy, respectively fork = 1,2. This point is obtained R in DBC(n) by DPC scheme. Recall that to achieve
by successive decoding with user 2's message beig N DMAC(u), user 2's message is decoded before
decoded before user 1's. Additionally; and I'; are USer 1's, thus, for DBGY), user 1's message is encoded
optimal solutions to an optimization problem obtaine§€fore user 2's.

from (9) by the same replacements. Let the scalar Lemma 3.2:The pointR*, which was shown to be on
and the matrices?; and ¥, be the corresponding the boundary of the DPC region of DBZ) is also on
dual variables of this optimization problem. The KkTthe boundary of its capacity region denoted®y?“(#).
conditions are obtained exactly in the same way. Set Proof: Consider C(e"", e, n), an arbitrary

v = \*, UF = T3 =0 and sequence of codes each with block lengtrand rates
(R1, Ry) for DBC(u) such that the average probability
« _ ~1/2 « 17T ~1/2 . (n) .
M =Qy " HiSTH; Q/", of decoding errorpP.™, vanishes as — oo . One way
T3 = QY2 HySs HI QY2 to verify that(R?, R3) lies on the boundary afPZ¢(H)

is to show that for any such sequence of codes with
where S}, S5 and A* are primal and dual optimal R, = R%, Ry cannot take values greater th&j.
solutions of problem (9). It is not hard to show that the Note thatQ; = Q-, therefore DBCu) is a degraded
given primal and dual variables are feasible and satiSBC and its capacity region is equal to the capacity region
the KKT conditions of the optimization problem f&®°, of a physicallydegraded BC given by
hence, they are optimal. MoreovaR® = R* for this
set of input covariance matrices. ThiR; lies on the Yo = X+2g,

DBC
boundary ofRSEE ), m yi = y2+2,



where z; and z’; are independent Gaussian noiseBas the same eigenvectors as the noise covariance matrix
with covariance matrices equal Q- and @; — @2, @ and its eigenvalues water-fill the eigenvaluestif
respectively. The capacity region of the degraded B[8]. From (19), it can be seen thBf +I'5+Q; = HE1,
is well known [8]. For the sequence of codes undewhich states that the transmit covariance malix+ I';

consideration, assumB, = Rj5. By Fano’s inequality satisfies the water-filling conditions. Hendgy;) <

we have, 3 log(2me)t |t 4 I + Q1], that yields
Ry < I(Wipy® e 21 1 [t +T5+
" i s IWiyD) +ne (21) ng—log—| 17* 2 Q1|+5;+61n:R’1‘+5;l+61n.
nRy < I(Wa;yy |[Wh) + nean, (22) 2 IT5 + Q|
where Wy, W, are intended messages for user 1 argbn — 00, d;, andei, go to zero andR, could be at
user 2, respectively andl,,, €2, go to zero asy — co. MOStR]. u

After expanding the mutual information term in (22) To complete the proof and show thR&* is on the
as I(Wo; y3|Wh) = h(yZ|Wy) — h(y% Wi, Ws) and boundary of the capacity region of OBC, it remains to
from the equalitiesh(y%|Wy, Ws) = nh(zs) and R = show that the capacity region of DBf) contains the
%10g |f§ + Q2| _ % log |Q2], the following lower bound capacity region of OBC. SincR* is on the boundary
on h(y%|W) is obtained of the capacity region of DBG() that contains the
n ~ capacity region of OBC, it must be on the boundary of
h(y3|W1) + negn > §1Og(2776)t T3+ Q2|.  (23) the capacity region of OBC as well. Equalities given
) o in (12) and (13) guarantee thd{/ Q,H;, < I, for
Now since z; is independent Of(thW?’ZS)’ and ;. — 1 9. Therefore, the capacity region of DBEY
condiioned onWy, yi = y3 + 2y and y3 have cannot be smaller than the capacity region of OBC. This
densities, the entropy power inequality [8] can be appligd pased on the observation that receiiteof DBC(k)
to obtain can successfully decode any code originally designed for
enthOTIW1) > o 75h(yzIW1) 4 grzh(2')) (24) ©OBC after multiplying its output byH/ and adding
an independent Gaussian noise with covariance matrix

From the inequalities in (23), (24) and the expression fqr. — 'Q, H;, to it. This completes the converse proof.
h(z'1), one can obtain
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