
Hardware Accelerated List Decoding and
Simulation

Thesis by

Joshua Mathew

In Partial Fulfillment of the Requirements

for the Degree of

Bachelors of Science

in

Electrical Engineering

University California, Los Angeles

Los Angeles, California, USA

2023

ii

© 2023

Joshua Mathew

All Rights Reserved

iii

Acknowledgments

I would like to dedicate this section of the thesis to acknowledging the contributions of my
supervisors, predecessors, and peers that made this work possible. I thank Professor RichardWesel
for introducing me to and supporting me through the list decoding and noise generation projects.
He has also been an amazing source of mentorship providing me with technical understanding of
coding theorywhere I lacked it and a rolemodel for leading, collaboratingwith, and communicating
with a diverse team. Furthermore, I would like to thank Caleb Terril and Chester Hulse for being
amazing mentors in this lab. Their work has been the foundation for which the work presented in
this paper adds to. Lastly I would like to thank my peers Aadhirahvi Ravikumar, Daniel Chen, and
the rest of the CSL undergraduates that have contributed to this project and its adjacent ones.

iv

Abstract

Efficient, lossless data transmission has proven integral to the functioning of modern society.
Short block length codes, more specifically convolutional codes, have provided ultra reliable low
latency performance in applications such as cellular and satellite communications. Furthermore,
CRC-aided, tail-biting convolutional codes have shown to approach the RCU bound with a large
number of states. Serial List Viterbi Decoding (SLVD) and Parallel List Viterbi Decoding (PLVD)
are methods of decoding these codes that approximate Maximum-Likelihood (ML) as the list size
increases. This thesis will overview an implementation of PLVD on a field-programmable gate ar-
ray (FPGA) board as well as justify the algorithmic advantages of PLVD for hardware acceleration.
This design has been heavily inspired by the work of Chester Hulse, former member of CSL, and
this paper will illustrate that the modifications result in a more resource efficient implementation
of his work. These changes have made room for more hardware accelerated modules such as an
additive white gaussian noise (AWGN) generator on board. This thesis will also briefly introduce
an implementation of this in hardware.

v

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1

2 Background 2
2.1 Convolutional Encoding . 2

2.1.1 Generator Polynomial and Convolution 2
2.1.2 State Diagram Representation . 3
2.1.3 Trellis Diagram Representation . 4

2.2 CRC & Tail Biting Conditions . 5
2.3 Parallel List Viterbi Decoding (PLVD) . 6

2.3.1 Effect of TB and CRC . 6

3 Decoder HW Architecture 7
3.1 Introduction . 7
3.2 Hardware Optimizations . 7

3.2.1 Metric Computation . 7
3.2.2 Merge Sort . 8

3.3 Hardware Architecture . 8
3.3.1 Path Object . 10
3.3.2 LVA Module . 10

3.3.2.1 Overview of Changes . 10
3.3.2.2 Memory and Memory Buses 13
3.3.2.3 State Module . 17
3.3.2.4 Edge Module . 17

3.3.3 Projected Performance and Future Work 18

vi

4 Noise Generation 19
4.1 Introduction . 19
4.2 Background . 19

4.2.1 Box-Muller Method . 19
4.2.2 HW Challenges . 20

4.3 HW Design . 20
4.3.1 Stage I . 21
4.3.2 Stage II . 21
4.3.3 Stage III . 23
4.3.4 Stage IV . 23

4.4 Results and Future Work . 24

5 Conclusion 26

Bibliography 27

vii

List of Figures

2.1 Implementation of a convolutional encoder with a given generator polynomial . . . 3
2.2 State diagram interpretation of a convolutional code 3
2.3 Trellis diagram interpretation of a convolutional code 4
2.4 Visualization of CRC and Tail Biting Conditions 5

3.1 Diagram detailing the merge sort sorting and storage of lists 9
3.2 Chester Hulse’s design of FPGA PLVD . 9
3.3 Diagram detailing the merge sort sorting and storage of lists 10
3.4 Chester Hulse’s design of FPGA LVA . 11
3.5 Chester Hulse’s design of FPGA LVA hardware utilization 11
3.6 Example of FIFO flushing . 12
3.7 Proposed new hardware architecture . 12
3.8 Example of an arbitrary fixed memory structure 14
3.9 Example of an arbitrary execution ordering of states 14
3.10 Example of new fixed memory structure . 16

4.1 Hardware architecture of an AWGN generator . 20
4.2 Non-uniform segmentation of f(u) . 21
4.3 8-bit example segment address calculator for non-uniform segmentation 22
4.4 Illustration of the symmetry of g1 and g2 . 22
4.5 Non-uniform segmentation of Region 0 of g . 23
4.6 Absolute error between hardware approximations and true value of f , g1, and g2 . . 24
4.7 Uniform random samples generated in hardware using a Tausworthe generator . . . 24
4.8 Normal random samples generated in hardware Box-Muller method implementation 24

viii

List of Tables

2.1 Background chapter symbols and definitions . 2

3.1 Decoder HW chapter parameters . 13

1

CHAPTER 1

Introduction

Information communication has become an integral part of the fabric of our society, influencing
how we connect, learn, work, and interact with one another. Advancements in data transmission
and standardized communications protocols have transformed the way we communicate and ex-
change information. They enable us to bridge geographical boundaries, maintaining relationships
and forming new connections across the globe. Furthermore, they play a pivotal role in business
and commerce, enabling seamless collaboration, efficient transactions, and global market access.
And lastly, communication systems facilitate civic engagement, empowering individuals to voice
their opinions, participate in political processes, and advocate for social change.

An important application of information communication is the data sent for control and usage
of sensors, peripheral devices, and processing nodes. Communication protocols for these purposes
often involve the use of short length messages and a convolutional coding scheme aided by a Cyclic
Redundancy Check (CRC). This coding scheme is used in modern cell phone standards [1] and
even space communication systems [2]. Furthermore, adding a tail biting condition (TB) for frame
synchronization has shown to approach the RCU bound with a large number of states [3].

This project aims to implement a scalable list decoder on an FPGA that can provide a maximum
likelihood decoding of CRC aided tail biting convolutional codes (TBCC). We also introduce a
hardware implementation of a additive white gaussian noise (AWGN) generator for accelerating
end to end simulation of code performance.

2

CHAPTER 2

Background

2.1 Convolutional Encoding

Convolutional Codes are a type of error correcting code (ECC) that use memory storing ele-
ments and convolution of a message with a generator polynomial to encode each transmitted bit.
In this chapter we use the notion described in Table 3.1.

2.1.1 Generator Polynomial and Convolution

At a basic level, Convolutional Codes encode a message by performing a discrete time convo-
lution on a stream of message bits. This is done by storing the N previous bits streamed and then
performing a series of XORs operations with them and the next bit to result in an encoding. The
series of XORs (1-bit XOR is equivalent to addition) performed defines the generator polynomial
that we are convolving with the pre-encoded message. An example of this is shown in Figure 2.1.

Here (un) is the sequence of bits being streamed and c1,i and c2,i correspond to the (in this
example) two bit encoding of ui. Furthermore, each memory storing element D is cascaded and
will store and output the last value that was at its input. Thus, based on the above architecture, each
ui is encoded to [c1,i c2,i] where

[c1,i c2,i] = [ui + ui−1 + ui−3 ui + ui+1 + ui+2 + ui]

In other words, the sequence c = [(c1, n) (c2, n)] is a discrete convolution of (un) with the
sequence (gn) = [[1101] [1111]]. In the polynomial representation, c(D) = u(D)G(D), the

TABLE 2.1 Background chapter symbols and definitions

Symbol Definition

N number of memory storing elements (number of bits in a state)
T length of pre-encoded message in bits
k rate of the encoder (1/k); we use a rate 1/5 (k=5) encoder in our simulations

3

FIGURE 2.1 Implementation of a convolutional encoder with a given generator polynomial

FIGURE 2.2 State diagram interpretation of a convolutional code

generator polynomial that then represents this specific encoding would be

G(D) = [1 + D + D3 1 + D + D2 + D3]

It is worth noting that the output of the encoder will output the sequence c in the following
format

c = (c1,0, c2,0, c1,1, c2,1, . . . , c1,i, c2,i, . . . , c1,T , c2,T)

2.1.2 State Diagram Representation

A useful interpretation of the encoding process is as transitions in a state diagram as shown in
Figure 2.2.

Each state in this diagram represents the previous N message bits, i.e every possibility the
values stored in the N memory elements can take. Each state transition then represents updating
the cascaded memory elements after a new message bit has been encoded. In this paper we will
use the convention where the MSB of the state is the oldest encoded message bit.

4

FIGURE 2.3 Trellis diagram interpretation of a convolutional code

With this formulation, each directed edge of the state diagram (s, s′) is a transition with
a corresponding bit-encoding pair (u, c = (c1, . . . , ck)) such that s′ = (s2, . . . , sN , u) and
c(D) = u(D)G(D) where u(D) is the polynomial of the sequence (u, s1, s2, . . . , sN) **.

Putting everything together, given a starting state and a sequence of message bits
u = (u1, . . . , uT), there exists a unique sequence of directed edges (a graph walk) on the state
diagram and the sequence of corresponding bit-encoding pairs give the encoding c of u. Shown
above is an example of a state diagram where each edge is labeled by its bit-encoding pair.

2.1.3 Trellis Diagram Representation

A trellis representation (Figure 2.3) is identical in nature to the state diagram, except now each
state has a unique node for different time points. Mathematically, each directed edge of the trellis
(s, s′) for s, s′ ∈ S = (st

1, . . . , st
N)|st

i ∈ {0, 1} and 0 ≤ t ≤ T . All other statements of ** still
apply, and thus we see a walk (now a path) in the trellis graph again corresponds to a uniquemessage
u and encoding c.

One important thing to note is that the structure of every N state trellis is the same, and for two
N state convolution encodes, the only differences lie in the bit-encoding pair given by G(D).

Henceforth we will denote space between the ith and i+1th column of the trellis as time points
t = i. This is because each edge between columns represents the bit-encoding pairs, so if we split
the encoded message into T sections of length k we can examine bit t and its encodings in the trellis
at time point t.

5

FIGURE 2.4 Visualization of CRC and Tail Biting Conditions. On the left is a picture of what a path in the
trellis looks like when it passes the tail biting condition. On the right is an overview of how CRC is used to
protect messages; the CRC portion is used to further provide error detection and correction in the original
message.

2.2 CRC & Tail Biting Conditions

Beyond the codes of interest being convolutional, we are particularly interested in CRC-aided
Tail-Biting Convolutional Codes (TBCC). CRC and Tail-Biting conditions are both modifications
to messages sent before encoding that streamline the transmission process. In this section we ex-
plain these modifications and the motivations behind using them.

Explanation Cyclic Redundancy Check (CRC) is an additional form of protecting a transmitted
message that appends a message with a string of bits that provides verification for the receiver that
the message was received and decoded correctly. Typically, a system that includes a CRC aspect
will have an agreed upon system of sending the transmitter a signal that acknowledges a successful
transmission (ACK) and a signal for a failure (NACK); these are called Automatic Repeat Requests
(ARQ). We call a code that has a CRC included in its encoding and decoding scheme a CRC-aided
code.

Another condition that we place on our convolutional codes is a tail biting (TB) condition.
Typically, it is impractical to transmit one long continuous transmit message because it introduces
complications in decoding. Instead messages are often split up and sent to the receiver in frames.
In order for the decoder to decode a set of frames successfully, there must be a convention in place
for the decoder to synchronize the decoding to start at the beginning of the frame.

The tail biting condition is a method of frame synchronization where every frame of a sent
message starts and terminates at the same state in encoding. Upon successful decoding and iden-
tification of a single frame, it then becomes easy for the decoder to identify all proceeding frames
because frame length is predetermined. See [4] for more details.

6

2.3 Parallel List Viterbi Decoding (PLVD)

Viterbi Decoding is a maximum likelihood (ML) approach to decoding a convolutional code
using the Viterbi Algorithm (VA) to find the lowest metric path in the trellis with respect to the
received message. We measure distance between to bit sequences with respect to a chosen metric;
in this paper we choose something similar to the L2 norm, i.e the Euclidean distance between the
two sequences.

As detailed in [5], both Serial List Viterbi Decoding (SLVD) and Parallel List Viterbi Decoding
provide (PLVD) provide improved performance compared to VA, however we establish in the next
section that PLVD has many algorithmic advantages that lend itself to hardware acceleration.

The PLVD algorithm conventionally goes as follows. We iterate through time points starting at
t = 0. For each time point t, states will store a list of the L paths of length t with the lowest metric
that end at that state s. For a path to have these properties, it is necessary that the path pass through
the incoming edges of s and thereby pass through the two states, at t − 1 that share an edge with
the s. WLOG let those states be st−1

1 and st−1
2 and let their respective stored lists be l1 and l2. To

create the list of L best paths at state s we simply need to choose the L paths with the best metric
from l1 ∪ l2 while taking into consideration the metric added along the incoming edges.

Formally we execute the following:

1) Since t = 0 has no incoming edges, initialize and store a path starting at each state of length
0 and with some initial metric (typically 0).

2) For 1 ≤ t ≤ T do the following

a) For each state st
i, Let e1 = (st−1

1 , st
i) and e2 = (st−1

2) be the incident edges on st
i and l1

and l2 be the list of paths for st−1
1 and st−1

2 .
b) For c being the received message from t − 1 to t, choose the L best paths from the set

{l1 +dist(e1, c)}∪{l2 +dist(e2, c)} where the addition signifies adding the associated
distance metric to all paths in li.

c) Store the chosen L paths for each state.

3) At t = T , we have a list of the L lowest metric paths of length T . Out of all of these paths,
choose the path with the lowest metric as our ML decoding of the received codeword.

2.3.1 Effect of TB and CRC

In terms of execution of PLVD, the only thing that considerations for tail biting and CRC-aided
codes change is our chosen path at the final t = T state. Now, instead of simply choosing a path
with the best metric, we must choose the path with the best metric that is tail biting and passes the
CRC check. It is important to note that passing being tail biting and passing CRC are both strong
conditions that drastically filter the list of valid paths at the final state.

7

CHAPTER 3

Decoder HW Architecture

3.1 Introduction

This section is an overview of the design for the hardware accelerated PLVD programming
logic (PL) and explanations behind the optimizations implemented. The design is heavily based on
Chester Hulse’s initial design [6] who similarly details many of the following optimizations. This
section will expand on Section IV of his paper and detail the specific improvements made to the
original design.

3.2 Hardware Optimizations

3.2.1 Metric Computation

In PLVD, the computation of edge metrics is heavily repeated and constitutes a large portion
of the computational complexity of the algorithm. The following simplifications can be made to
metric computations, drastically reducing the complexity of the algorithm.

As described in the PLVD algorithm, at each time point t, we compare the k bits of received
message at time point t with the encodings given by every edge in the trellis at that t. For
R = (Ri, . . . , Rk) and C = (C1, . . . , Ck) with R representing the log likelihoods of the received
bits X = (X1, . . . , Xk) (for BPSK Ri = log(P (Ui=0|Xi)

P (Ui=1|Xi))) at some time point and C being the
correct encoding corresponding to that edge, we deem the ML code word to be one that minimizes
the following

min
C

∑
i

(Ri − Ci)2

This is akin to measuring the Euclidean distance, but wemake the following simplifications that
make themetric calculationmuchmore realizable in hardware. The square terms can be disregarded
ed since they are constant for each given time point. So we have the following

min
C

∑
i

−2RiCi

8

Finally we can drop the -2 and maximize instead of minimize

max
C

∑
i

RiCi

This simplifies updating the edgemetrics associated with a path at a time point to just adding the
bit LLRs whose corresponding encoding bit is a 0 and subtracting the LLRs who’s bit corresponds
to a 1. An example is shown below

Ex. in a rate 1
5 code we update path metric m at time point t with respect to received LLRs

R = (R0R1R2R3R4) and edge weight (encoding) 11010.

m = m − R0 − R1 + R2 − R3 + R4

Furthermore, in this type of code, two edges that leave the same node necessarily have inverse
encodings. Thus in the previous example, the other edge will have weight 00101 and path metrics
can be updated as

m = m + R0 − R1 − R2 + R3 − R4

3.2.2 Merge Sort

Another expensive and repeated operation in PLVD is the storage and filtering of the list of best
paths at each iteration. In particular, choosing the L best paths from two unsorted lists of size L is
very difficult on a hardware level. To remedy this, our implementation stores the L paths sorted by
their metrics. The task is now simplified to choosing the L best paths from two sorted lists of size
L and we proceed as follows:

Let l1, l2 be the two sorted lists of L paths to be filtered. Repeat the following a total of L times
to obtain a sorted list l′ of the L best paths.

1) Compare the top elements of l1 and l2, and select the path p with the better metric
2) In l′, place p directly after the most recently added element
3) Remove p from future consideration from l1 or l2 respectively

Note: from a data structures perspective, using a FIFO makes a lot of sense here, however, as
we’ll see later, this actually ends up being more restrictive than we’d like.

3.3 Hardware Architecture

The overall architecture of the PLVD accelerator can be seen in Figure 3.2. In this section we
will discuss each module in detail. Aside from the LVA module, most others underwent minimal
change from Hulse’s implementation [6], regardless, we explain for clarity.

9

FIGURE 3.1 Diagram detailing the merge sort sorting and storage of lists. Here l1 and l2 are shown with list
lizes L = 5. The numbers stored represent the path metrics (in reality there is more data stored in memeory)
and the top values of the memory elements are always compared. Next to each entry is the iterations of the
algorithm in which that value was examined for comparison.

FIGURE 3.2 Chester Hulse’s design of FPGA PLVD. Figure taken from [6]

10

FIGURE 3.3 Diagram detailing the merge sort sorting and storage of lists. Here l1 and l2 are shown with list
lizes L = 5. The numbers stored represent the path metrics (in reality there is more data stored in memeory)
and the top values of the memory elements are always compared. Next to each entry is the iterations of the
algorithm in which that value was examined for comparison.

The AMBA-AXI Stream interface is used to connect all modules where the data payloads are
path objects as described below. AXI-Lite is used to handle fixed address memory access. Input
LLRs which represent the received code are stored in memory and serve as inputs for the LVA
module. The LVA module runs PLVD as described above and outputs the L best paths through
the trellis for each end state. The tail biting funnel module takes in parallel streams of paths and
outputs a stream of paths that satisfy the TB condition. This stream is then passed through the CRC
module that outputs the decodings that pass the CRC check. The decoding with the best metric is
then chosen as the decoding of choice.

3.3.1 Path Object

This is the data structure used throughout the design that represents stores information about
a path in the trellis. This is the data that is being written to memory and passed between modules
via AXI. It holds 72 bits worth of data designed to maximize the width offered by BRAMs on a
Xilinx ZCU106 board. Since we are investigating an 8 state, code with 43 transmitted bits, the data
is structured as seen in Figure 3.3.

The “initial state” and “decision bits” elements give information on which path we are keeping
track of while the “metric” element is the value that keeps track of the metric distance of the path
with the received message. The size of the first two are fixed given the parameters of the convolu-
tional code being transmitted, however, the number of bits used to calculate the metric was set to
maximize the 72 bit structure of the BRAMs and can be changed as desired.

3.3.2 LVA Module

This module is the computational core of the decoder architecture which performs the PLVD
algorithm.

3.3.2.1 Overview of Changes

Hulse’s original design of the LVA core is in Figure 3.4. Here, each state and edge in the state
diagram has its own module; meaning at every time point, computations in steps 2a,b,c of the

11

FIGURE 3.4 Chester Hulse’s design of FPGA LVA. Figure taken from [6]

FIGURE 3.5 Chester Hulse’s design of FPGA LVA hardware utilization. Figure taken from [6]

PLVD algorithm are done in parallel for every state; the design’s execution time depends only on
the list size L and the length of the code T . Furthermore, each state module uses two FIFOmemory
elements to store the incoming L edge paths in order to implement the storage optimizations men-
tioned earlier. To implement these FIFO memory elements we ideally want to utilize high speed
Programming Logic (PL) side Block Ram (BRAM).

While this design attempts to optimize the parallelism in the decoder, as Hulse mentions, for
high state codes it draws too many resources. For example, in theN = 8 (S = 256 =⇒ E = 512)
case, the FPGA will attempt to synthesize 512 memory blocks which is more than most consumer
FPGAs would contain. To synthesize this design on the ZCU106 Evaluation Board (which has
312 BRAM blocks) Distributed RAM was used to fill in the remaining 200 memory elements
(see Figure 3.5). Since Distributed RAM uses FPGA LUTs, this introduces routing and timing
complications, forcing a lower clock speed, and takes too much space on the board to be reasonable.

12

FIGURE 3.6 Example of FIFO flushing.

FIGURE 3.7 Proposed new hardware architecture.

Additionally, implementing the list storage as a FIFOmemory element introduces wasted cycles
necessary to “flush” out old unused paths (see Figure 3.6). In a best case scenario, after the L best
paths are chosen from the two lists of size L, there are still L

2 old paths that need to be flushed out
of each FIFO before the decoder can move on to the next time point; at worst L paths would need
to be flushed.

To address these shortcomings Hulse proposes a change in his original design. Namely, intro-
ducing serialism to execution of PLVD per time point instead of attempting to do all state computa-
tions in parallel. The amount of parallelism in the implementation can be controlled by the number
of BRAMs the user wants the decoder to utilize. In order to still decode high state codes and keep
track of the same number of edge paths in the decoding process, each BRAM will have to store
more than one edge list. This redesign also allows us to shift to a fixed memory structure instead
of FIFO for better performance. The Figure 3.7 overviews the redesigned LVA architecture.

Henceforth we will use the parameters in to discuss the new design: K = number of BRAMs
allocated for decoder S = number of states in the code E = number of corresponding edges (2*S)

Since we are no longer doing all state computations in parallel, we must have a system to

13

TABLE 3.1 Chapter parameters

Parameter Definition

K number of BRAMs allocated for decoder
S number of states in the code
E number of corresponding edges (2*S)

determine which states we are processing and when. Since we have K BRAMs we are limited
to processing K edges at any given moment, implying we can process K

2 states in parallel. If
we denote a “state iteration” to be completing the computations for these K

2 states, then in order
to complete all the computations for a given time point we would need 2 ∗ S/K = E/K state
iterations. The new design keeps track of the state iteration using a counter which is utilized by
the K

2 state and edge modules (1 edge module actually keeps track of 2 edges) as described below.
Additionally, since we are using fixed memory, there are now bus modules that handle the flow of
data in and out of the BRAMs that serve as K multiplexers.

3.3.2.2 Memory and Memory Buses

One benefit of the FIFO memory mechanism was that doing reads and writes at the same time
would require half as much memory space compared to reading and writing from fixed memory.
To implement this with fixed memory, the address space of each BRAM needs to be split into two
sections. The first section contains the paths that were updated last time point which the decoder
reads from. Those paths are used to calculate the metrics for paths in the current time point which
are then stored in the second section. Once computations are finished and we move to the next time
point, these sections in memory switch roles and the read section becomes the write section and
vice versa.

The true bottleneck in the first design was over usage of BRAM blocks without utilizing their
depth. This is why despite these changes increasing overall BRAM usage (by a factor of two), the
flexibility of the design allows us to more fully utilize memory on board and process high order
states.

However, in this design we encounter an interesting problem. Since each edge has a list of size
L paths associated with it at every time point, we must distribute the edges (i.e. the list of paths
associated with each edge) such that each BRAM has E

K
edges associated with it. Furthermore,

these edges need to be distributed in such a way that during execution there is always exactly one
read and one write per cycle so that we maximize the utilization of the BRAMs available.

To accomplish this, there are two relevant axes of control,

1) The choice of states we are processing in parallel
2) The choice of which edges go into which BRAM

14

FIGURE 3.8 Example of an arbitrary fixed memory structure.

FIGURE 3.9 Example of an arbitrary execution ordering of states. The execution ordering according to the
naive solution would be red =⇒ purple =⇒ yellow =⇒ green

To illustrate this challenge we consider a naive attempt at a solution. If for state s in [0, S − 1],
e in [0, E − 1], and BRAM in [0, K − 1].

1) We process states {0, 1, . . . , K/2 − 1}, {K/2, K/2 + 1, . . . , 2K/2 − 1}, . . . and
{S − K/2, S − K/2 + 1, . . . , S − 1} in parallel.

2) And we let edge e be in in BRAM e%K(modK)

Using this method to distribute edges, consider a case where S = 8, E = 16, and K = 4. We
will have the following memory layout (Figure 3.8) and execution order (Figure 3.9).

In the first “state iteration” of executing the algorithm, we see that since s0 and s1 are being
processed, that means that the decoder must read e0, e1, e8, and e9 from memory. However, based
on the above memory layout, we must read from BRAM0 and BRAM1 twice and BRAM2 and
BRAM3 are left unread. Thus we will inevitably waste cycles by waiting to do two reads, and are
letting resources run idle.

Our solution fixes (1) to be the same as in the naive solution, but finds an adequate (2) that
allows us to read and write with every BRAM every cycle.

15

The solution, interestingly enough, was inspired from the very basics of encoding theory. If
we consider each BRAM to have a particular ID represented in binary, then each of the K BRAMs
would have a log2(K) = k (different k than rate 1/k) long bit sequence ID. Using this formulation,
the problem is redefined as associating each edge with a k bit sequence such that if edges have the
same bit sequence they don’t share the same read/write state iteration. This association of edges to
bits is effectively equivalent to finding a convolutional encoding, and thus we simply need to find
a generator polynomial that satisfies the condition. With this realization, testing different strategies
to determine a valid (2) became much simpler, and eventually we narrowed down the following
encoding to be successful.

G(D) = [
n∑

n+1−k

Di Dk−2 · · · D 1]

To prove its validity we simply need to show that for any state iteration, the edges read from
memory all come from a unique BRAM and likewise for the edges written to memory. To proceed
we will utilize the following 3 lemmas derived from (1) in our solution and general trellis structure
observations

LEMMA 3.1 Due to (1) for arbitrary state iteration i, there are K
2 states being processed and specif-

ically they are {i ∗ K/2, i ∗ K/2 + 1, . . . , (i + 1)K/2 − 1}. Representing s as a bit sequence
s = (s1, s2, . . . , sN), this implies that every state processed in state iteration i has the same bits
s1, . . . , sN−k+1 (i.e upper N − k + 1 bits) but unique bit sequence (sN−k+2, . . . , sN) (lower k − 1
bits).

LEMMA 3.2 the edges that are incoming into s are e0 = (0, s1, s2, . . . , sN) and
e1 = (1, s1, s2, . . . , sN).

LEMMA 3.3 For any state s in the trellis with bit sequence (s1, s2, . . . , sN), the outgoing edges are
e0 = (s1, s2, . . . , sN , 0) and e1 = (s1, s2, . . . , sN , 1)

PROPOSITION 3.4 The combination of (1) and (2) successfully label read edges and write edges
such that every state iteration, there is exactly one read and one write from every BRAM.

Proof of Proposition
State Iteration Reads: To prove our encoding successfully labels edges read at the same time

differently, we split the set edges read from memory in an arbitrary state iteration into two cases:
If two edges in set enter the same state and if they enter different states.

In the case where two edges being read frommemory are incoming to two on different states by
Lemma 3.2 ei = (ei

1, si
1, si

2, . . . , si
N) and ej = (ej

1, sj
1, sj

2, . . . , sj
N). (2) necessarily gives the edges

different encodings (BRAM IDs) since Lemma 3.1 tells us the lower k − 1 bits of s are distinct. In
the other case, Lemma 3.2 suggests that if two edges being read enter the same state s then they
must be of the form ei = (0, s1, . . . , sN) and ej = (1, s1, . . . , sN). Thus, the bottom k − 1 bits of
their encodings will be equivalent (properly), however, the evaluation of (2) to obtain the encoding

16

FIGURE 3.10 Example of new fixed memory structure.

MSB will be different since (ei
1) ̸= ej

1 while (ei
2, . . . , ei

N − k + 2) = (ej
2, . . . , ej

N − k + 2). In every
case, the encoding procedure (2) produces different BRAM IDs.

State Iteration Writes: We take a similar approach to proving the encoding successfully labels
write edges and split cases into edges exiting the different nodes and exiting the same node.

Lemma 3.3 implies two edges exiting the same node are of the form ei = (s1, . . . , sN , 0) and
ej = (s1, . . . , sN , 1). Applying (2) to these edges, we immediately get different encodings since
the LSB of the edges are different. For two edges exiting different states, Lemma 3.3 implies
ei = (si

1, . . . , si
N , ei

N) and ej = (sj
1, . . . , sj

N , ej
N). If si

N−k+2 = sj
N−k+2 then Lemma 3.1 implies

that the middle k − 2 bits of ei and ej’s encoding are different. If si
N−k+2 ̸= sj

N−k + 2 then the
MSB of ei and ej’s encoding are different since Lemma 3.1 states that upper N − k + 1 bits in
the expressions (sum) and (sum) are the same. In every case, the encoding procedure (2) produces
different BRAM IDs.

We have proven the solution (1) & (2) solves the issue of BRAM to edge allocation, however,
how about the location of edges within a particular BRAM? An interesting corollary to Lemma 3.1
is that if two states si and sj are processed in different state iterations, then their first N − k + 1 bit
sequences will be unique, i.e. (si

1, . . . , si
N − k + 1) ̸= (si

1, . . . , si
N−k+1). Thus we choose to start

the list of arbitrary edges e = (e1, . . . , eN + 1) at address (e1, . . . , eN − k + 1, 0, . . . , 0) where the
number of inserted 0s is dependent on the maximum list size desired. This way, any edge processed
in a different state iteration that shares a BRAMwith e will necessarily have a different address for
its list. Furthermore, edges within e’s state iteration might have the same address, but will be in
different BRAMs. Figure 3.10 is an example of using this storage method for the K=4, S=8 case.

Since we are using multiple addressable BRAMs to implement this design, a bus is necessary
to serve as a multiplexor of BRAMs and handle the flow of data from memory to computation
modules. Together, the memory and bus modules enable the decoder to efficiently read and write
K data streams as long as it’s provided with the proper BRAM IDs and addresses associated with
the data being streamed.

We’ve established memory allocation for the list of paths in the decoder, this alteration some-

17

what forces changes in the state and edge modules from Hulse’s design.

3.3.2.3 State Module

Instead of instantiating S state modules, LVA now instantiates K
2 modules each with a unique

parameter STATE_NUMBER that ranges from 0 to K/2-1. This parameter represents which “rel-
ative” state the module is processing each state iteration. As an input to the module are two AXI-
LITE streams that correspond to the state’s two incoming edges. The iteration counter is also fed as
an input (ITERATION) to the module and is used in conjunction with STATE_NUMBER to calcu-
late the base addresses of the two incoming lists. Using notation from the last section, Lemma 3.1
implies that the states processed at ITERATION are s = (ITERATION, STATE_NUMBER) where
STATE_NUMBER and ITERATION are respectively k − 1 and N − k + 1 bit sequences.

Thus, for the state module with parameter STATE_NUMBER in ITERATION, Lemma 3.2 and
our methods for computing an edge’s BRAM ID and address give us simple hardware implemen-
tations that determine the base addresses of the lists required.

• Top incoming edge:

– BRAM: G(0, ITERATION, STATE_NUMBER)
– address: (0, ITERATION»1)«log2(Lmax)

• Bottom incoming edge:

– BRAM: G(1, ITERATION, STATE_NUMBER)
– address: (1, ITERATION»1)«log2(Lmax)

Note that G(D) is very efficient to do in hardware, only requiring N − k + 1 XORs.
To execute the function of filtering the two incoming lists, each cycle the state module simply

needs to read the data at the two computed base addresses, compare the two metrics, output the
path with the better metric, and then increment the address that had that path by 1. This is repeated
until either all valid paths have been read or Lmax paths were outputted.

3.3.2.4 Edge Module

The changes to the edge modules are similar to the state module. Each of the L
2 edge modules

use their unique STATE_NUMBER and input ITERATION to calculate the base address of which
two edges it is writing to. Its input is a stream of paths from its corresponding state module, and
it outputs two AXI-LITE streams with updated path objects with metrics representing the state’s
output edges. Furthermore, it inputs the LLRs associated with the received codeword for that time
point.

The computations for an edge modules write locations are

• Top incoming edge:

18

– BRAM: G(ITERATION, STATE_NUMBER, 0)
– address: (ITERATION)«log2(Lmax)

• Bottom incoming edge:

– BRAM: G(ITERATION, STATE_NUMBER, 1)
– address: (ITERATION)«log2(Lmax)

The edge module performs the metric calculations as detailed earlier by using STATE_NUM-
BER and ITERATION to find the correct “mask” for one of the outgoing edges and using it to
calculate the metric update X . The output path object for one of the edges will be the input path
object with X added to the metric, and the other output will subtract X from the input path metric.
These outputs will be AXI-LITE streams that write to the base addresses above in memory where
every cycle the address increments by one.

3.3.3 Projected Performance and Future Work

Currently we are still in the process of implementing these changes to the design and running
simulation/verification tests on the updated modules. Once complete, we aim to ensure these de-
signs are synthesizable on board and compare resource utilization to the previous design and what
is expected.

Since BRAMs used for memory is a user configurable parameter in our design (K), we expect
BRAMs used to be K. Thus, Distributed RAM instantiation should be 0 since they won’t have
to be used as BRAM substitutes anymore. Overall we also expect less arithmetic/logic since they
correlate to the number of instantiated state and edge modules which scale with K.

In terms of compute time, we expect the trellis propagation portion changing from finishing in
O(L ∗ T) cycles to finishing in O(2 ∗ S ∗ L ∗ T/K) cycles.

Once implemented and tested, this accelerated PLVD can be used as a computational core for
simulating and implementingmodifications to PLVD such as the work done by Jacob King [7]. Fur-
thermore, accelerating PLVD allows us to compare its performance as a decoding scheme against
other decoders such as SVLD and any future decoding algorithms.

19

CHAPTER 4

Noise Generation

4.1 Introduction

So far in this paper we have discussed an implementation of decoding CRC-aided TBCC on
hardware that makes execution much faster than if done in software. However, suppose we wanted
to simulate the performance of this code. This involves emulating an entire pipeline of encoding
a message, distorting the transmission based on channel characteristics, and decoding. To retrieve
bit and frame error rates of high SNR regimes, this emulation process must be repeated on the order
of 1015 or more times. Despite the decoding portion of this process being accelerated, if the earlier
steps in the simulation pipeline are done in software they will likely be a bottleneck for execution
time. Thus we are motivated to hardware accelerate each step in this emulation process, of which,
a hardware implementation of an additive white gaussian noise (AWGN) channel is critical.

Below we detail a hardware module that generates an AWGN sample once per clock cycle.
The implementation mimics the techniques detailed in [8] which we summarize in the following
section.

4.2 Background

Here we introduce the mathematical principles that allow this implementation to work as well
as describe the challenges of implementing such principles in hardware.

4.2.1 Box-Muller Method

The Box-Muller transform is a transformation that generates two i.i.d normally distributed ran-
dom variables using two i.i.d uniformly distributed random variables.

For u1, u2 ∼ U(0, 1) and
f(u1) =

√
(− ln(u1))

g1(u2) =
√

2 sin(2πu2)

g2(u2) =
√

2 cos(2πu2)

20

FIGURE 4.1 Hardware architecture of an AWGN generator. Image taken from [8]

We see that RVs x1, x2 ∼ N(0, 1) where

x1 = f(u1)g1(u2)

x2 = f(u1)g2(u2)

4.2.2 HW Challenges

The functions f , g1, g2 are all non-linear functions (f has particularly nonlinear regions around 0
and 1). Evaluation of these functions are critical to the accuracy of the generated distribution, thus,
when designing hardware to implement these functions we aim to generate accurate approximations
while minimizing the hardware footprint and complexity. A look-up table implementation is great
for low precision applications, however, becomes spatially inefficient beyond a few bits since the
table size will grow exponentially with input bits. Dividing the domain into uniform segments and
approximating each segment with polynomial coefficients is another popular scheme, however, for
highly non-linear functions is inaccurate. This approach segments the domain of the respective
function non-uniformly, concentrating segments in areas with high non-linearity. To perform this
in a way with simple hardware circuitry we utilize the binary nature of an address space and employ
segments whose lengths vary by powers of two.

4.3 HW Design

The overall hardware architecture can be divided into four stages (see Figure 4.1). Henceforth
we discuss an implementation using 32 bits for precision. The only inputs driving this design are a

21

FIGURE 4.2 Non-uniform segmentation of f(u). Image taken from [8]

clock, and the output is a 32 bit fixed point (4 integer bits and 28 fraction bits) representation of a
normally distributed sample.

4.3.1 Stage I

This stage generates the uniform random variables that get transformed using the approximated
Box Muller method. This is implemented using Tausworthe generators [8] which implement high
periodicity uniform random samples using linear shift registers. These generators will output two
32 bit sequences that are interpreted as a fixed point float (all 32 bits fraction).

4.3.2 Stage II

In this stage, the Box Muller transform is applied to the two input RVs. The functions involved
are segmented and approximated linearly. The output of these functions are then multiplied, gen-
erating two normally distributed samples.

The function f is segmented by placing segment boundaries at 0, 2−n for 0 < n < 32, 1−2−n for
1 < n < 32, and 1 resulting in the domain being split into 62 segments. (Figure 4.2)) is a graphical
representation of this segmentation. Linear coefficients of these segments are stored in read only
memory (ROM) addressed 0 to 61. To efficiently calculate an input’s segment and corresponding
address in the ROM we employ a chain of OR and AND gates on the bits of the input as shown in
an 8 bit example in Figure 4.3). Each entry of the ROM has four values of interest: two base values
and two scaling values for the first and zero-th order coefficients. Putting it all together, given an
input u, f(u) is evaluated by

1) Passing u through the segment address calculator
2) Reading the ROM at the address to obtain the linear coefficients of the corresponding seg-

ment: cs1, c1, cs0, c0 (calculated and flashed onto the board).
3) Outputting the linear approximation f(u) = 2(cs1)(c1 ∗ u) + 2(cs0)(c0)

22

FIGURE 4.3 8-bit example segment address calculator for non-uniform segmentation. Image taken from [8]

FIGURE 4.4 Illustration of the symmetry of g1 and g2. Image taken from [8]

23

FIGURE 4.5 Non-uniform segmentation of Region 0 of g. Image taken from [8]

Due to symmetry of sin and cosine (Figure 4.4)), functions g1 and g2 can both be evaluated just
by performing approximations on the first 1

4 of the domain of g2. Below is a graphical representa-
tion of how this domain is segmented. Here we first uniformly segment the domain into 4 intervals
and within each interval employ the same segmentation architecture described for f . For the first
three intervals we segment into 6, and for the last segment we only segment into three (in architec-
ture this corresponds to disconnecting certain branches from the adder). Aside from segmenting,
everything pertaining to function evaluation is identical to f except that the appropriate symmetry
transformations are done to the linear approximation in order to obtain g1(u) and g2(u). We also
drop the

√
2 multiplier in front of both functions due to the implementation of stage 3.

After having obtained approximated evaluations of f(u1), g1(u2), and g2(u2) we simply mul-
tiply the values together to obtain x1 and x2.

4.3.3 Stage III

In this stage we implement a small-scale application of the central limit theorem (CLT) and
add successive outputs of the previous stage together. This is done in hardware using a size 2
accumulator for the x1 outputs and another one for the x2 outputs. These will output the sum of the
last two x1 and x2 samples generated which allows us to slightly employ CLT to introduce more
normality in the samples while at the same time getting rid of need for the

√
2 multiplication in

g1 and g2. Note that the output of this stage now generates two valid AWGN samples every other
cycle; we fix this in stage 4.

4.3.4 Stage IV

This stage functions to alternate the outputs of stage 3 such that a sample is generated every
cycle. This is done by simply buffering one output and then using a multiplexor to switch between
the buffered output and the non-buffered output every cycle.

24

FIGURE 4.6 Absolute error between hardware approximations and true value of f , g1, and g2

FIGURE 4.7 Uniform random samples generated in hardware using a Tausworthe generator.

4.4 Results and Future Work

Running simulations of performance using this architecture, we see that it produces highly
accurate AWGN samples. In our implementation, the approximations of the functions f , g1, and
g2 have worst case absolute errors of 0.016, 0.0012, and 0.0012 respectively (see Figure 4.6).

Furthermore, we are able to perform the Box-Muller method with high accuracy. Figure 4.7
shows samples of a uniform distribution generated by the Tausworthe generators in stage 1 that get
transformed into normally distributed samples at the output of stage 4 (Figure 4.8). These samples
fit a normal distribution very well having only a 0.03 deviation from unit variance.

Going forward we would like to examine the performance of this architecture at the tails of the
distribution, an area that is quintessentially difficult to reproduce very well. Furthermore, there is

FIGURE 4.8 Normal random samples generated in hardware Box-Muller method implementation

25

room for improvement in terms of accuracy of the function evaluators. [8] is able to reduce the
absolute errors shown here by half and utilize less space on hardware, an effort that with more time
can be accomplished with slight changes to the coefficient storage and calculation.

26

CHAPTER 5

Conclusion

This thesis summarizes techniques to reduce the computational complexity of CRC-aided de-
coding of TBCCs on an FPGA as well as introduce optimizations to existing implementations of
the PLVD decoding scheme.

We first explain the motivation behind usage of CRC-aided TBCC and introduce techniques for
interpreting encoding and decoding using the PLVD.We then introduce an existing implementation
of PLVD and discuss the drawbacks of the design. We make modifications to this implementation
that introduce parameterized resource usage and serialized execution. To do this we design an
algorithm that manages memory allocation of edge lists in a way that is hardware synthesizable
and efficient. In the final section, we showcase a hardware implementation of a AWGN generator
that utilizes the Box-Muller transformation and efficient function segmentation to produce highly
accurate AWGN samples. This hardware module can be utilized for simulating all kinds of codes
on an FPGA as it is designed to be resource efficient.

With the accomplishments detailed in this paper, we are one step closer to realizing an end
to end hardware implementation CRC-aided TBCC code transmission. We aim to finalize these
implementations, execute simulations of performance, and compare results with other TBCC de-
coding schemes and theoretical performance bounds.

Work on this design is ongoing, and this thesis is intended to be a resource for those interested
in the practical implementation of PLVD of CRC-aided TBCC on an FPGA as well as AWGN
generation.

27

Bibliography

[1] ETSI, “3gpp ts 25.212 version 11.4.0 release 11,” in Sophia Antipolis Cedex, France, 2013.

[2] R. Schiavone, R. Garello, and G. Liva, “Application of list viterbi algorithms to improve the
performance in spacemissions using convolutional codes,” in 2022 9th InternationalWorkshop
on Tracking, Telemetry and Command Systems for Space Applications (TTC), 2022, pp. 1–8.

[3] M. C. Coskun, G. Durisi, T. Jerkovits, G. Liva, W. E. Ryan, B. Stein, and F. Steiner, “Efficient
error-correcting codes in the short blocklength regime,” CoRR, vol. abs/1812.08562, 2018.
[Online]. Available: http://arxiv.org/abs/1812.08562

[4] H. Ma and J. Wolf, “On tail biting convolutional codes,” IEEE Transactions on Communica-
tions, vol. 34, no. 2, pp. 104–111, 1986.

[5] N. Seshadri and C.-E. Sundberg, “List viterbi decoding algorithms with applications,” IEEE
Transactions on Communications, vol. 42, no. 234, pp. 313–323, 1994.

[6] H. C., “Fpga implementation of decoders for crc-aided tail-biting convolutional codes,” IEEE
Transactions on Communications, 2022.

[7] J. King, H. Yao, W. Ryan, and R. D.Wesel, “Design, performance, and complexity of crc-aided
list decoding of convolutional and polar codes for short messages,” 2023.

[8] D.-U. Lee, W. Luk, J. Villasenor, and P. Cheung, “A gaussian noise generator for hardware-
based simulations,” IEEE Transactions on Computers, vol. 53, no. 12, pp. 1523–1534, 2004.

http://arxiv.org/abs/1812.08562

	Acknowledgments
	Abstract
	1 Introduction
	2 Background
	2.1 Convolutional Encoding
	2.1.1 Generator Polynomial and Convolution
	2.1.2 State Diagram Representation
	2.1.3 Trellis Diagram Representation

	2.2 CRC & Tail Biting Conditions
	2.3 Parallel List Viterbi Decoding (PLVD)
	2.3.1 Effect of TB and CRC

	3 Decoder HW Architecture
	3.1 Introduction
	3.2 Hardware Optimizations
	3.2.1 Metric Computation
	3.2.2 Merge Sort

	3.3 Hardware Architecture
	3.3.1 Path Object
	3.3.2 LVA Module
	3.3.2.1 Overview of Changes
	3.3.2.2 Memory and Memory Buses
	3.3.2.3 State Module
	3.3.2.4 Edge Module

	3.3.3 Projected Performance and Future Work

	4 Noise Generation
	4.1 Introduction
	4.2 Background
	4.2.1 Box-Muller Method
	4.2.2 HW Challenges

	4.3 HW Design
	4.3.1 Stage I
	4.3.2 Stage II
	4.3.3 Stage III
	4.3.4 Stage IV

	4.4 Results and Future Work

	5 Conclusion
	Bibliography

