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Non-binary LDPC codes can outperform binary LDPC codes using sum-

product algorithm with higher computation complexity. Non-binary LDPC 

codes based on protographs have the advantage of simple hardware 

architecture. In the first part of this thesis, we will use EXIT chart analysis 

to compute the thresholds of different protographs over GF(q). Based on 

threshold computation, some non-binary protograph-based LDPC codes are 

designed and their frame error rates are compared with binary LDPC codes. 

For maximum-likelihood decoder, weight enumerator can predict frame 

error rate of an LDPC code. In the second part of this thesis, we calculate 

weight enumerators of protograph-based non-binary LDPC code ensembles 

both for finite length case and asymptotic case. In addition, the trapping set 

and stopping set enumerators are presented.  
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Chapter 1

Introduction

1.1 Background

In 1948, Claude Shannon published his celebrated paper A mathematical theory of com-

munication on reliable communication over noisy channels [1]. This work founded

the fields of channel coding, source coding and information theory. Shannon’s central

theme was that we can communicate reliably with error probability tending to 0 over a

noisy channel provided that the information rate for a given code did not exceed the ca-

pacity of the channel. However, in the proof of the theorem, Shannon assumed random

generated codes and that the block lengths of codes must tend to infinity to achieve near

zero error probability. The encoding and decoding algorithms for such codes have high

complexity and are not practical in real world applications.

After Shannon’s publication, researchers devised a large number of effective cod-

ing schemes over the following decades. Examples include Hamming codes [2], BCH

codes [3], Reed-Solomon codes [4] and convolutional codes [5]. However, none of

these codes can approach Shannon’s theoretical limit in a practical channel. The break-

through came in 1993 with the discovery of turbo codes [7]. Turbo codes applied the it-

erative decoding scheme and were the first class of codes shown to approach Shannon’s

capacity limit. The second breakthrough was the rediscovery of low-density parity-

check(LDPC) codes [9, 10] which can also approach capacity in practical use.
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1.2 LDPC codes

LDPC codes are a class of linear block codes invented by Gallager in his 1960 PhD the-

sis [8]. Gallager noticed the benefit of expressing a linear block code with low-density

parity-check matrix. Gallager also invented the decoding algorithm which worked lo-

cally on graphical models. This algorithm is known as sum product algorithm. This

algorithm was reinvented and generalized by Judea Pearl [11] in 1982 as a belief prop-

agation algorithm and is widely used in Bayesian networks and Markov random fields.

However, initially LDPC codes didn’t attract much attention and were largely forgot-

ten in the following thirty years. The reason is the hardware capabilities in the 1960s

couldn’t match the implementation needs of the sum-product algorithm. After their

rediscovery in mid 1990s, LDPC codes attracted intense attention.

1.2.1 Matrix representation

Definition 1. Assume Fq is the finite space with q elements and F n
q is the vector space

with of all the n-tuples over Fq. A block codeC of length n with 2k codewords is a linear

block code if and only if all the codewords form a subspace Bc of F n
q with dimension

k. It is called a q-ary (n, k) linear block code. When q = 2, the code becomes a binary

code. All vectors in C are called codewords.

In particular, for an (n, k) linear block code C over finite field Fq, all the codewords

can be represented be the combination of vectors in the subspace Bc. We can express a

basis of the subspace Bc in a matrix G, called the generator matrix, such that

∀c ∈ C, ∃u ∈ F k
q , s.t. c = uG. (1.1)

Note for the subspace Bc, there are many possible bases, so the generator matrix is not
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unique. Equation (1.2) is the generator matrix of (7, 4) Hamming code.

G =



1 0 0 0 1 1 0

0 1 0 0 1 0 1

0 0 1 0 0 1 1

0 0 0 1 1 1 1


. (1.2)

From linear algebra, the null space of Bc is a n− k dimension subspace of F n
q . We can

express a basis of the null space of Bc as a matrix H , called the parity-check matrix,

such that

∀c ∈ C, cHT = 0. (1.3)

Note for the null space of Bc, there are many possible bases, so the parity-check matrix

is not unique. Equation (1.4) is the parity-check matrix of (7, 4) Hamming code.

H =


1 1 0 1 1 0 0

1 0 1 1 0 1 0

0 1 1 1 0 0 1

 . (1.4)

As a linear block code, LDPC code can be represented as the null space of a parity-

check matrix. The density of non-zeros elements in the parity-check matrixH is sparse,

i.e., most elements in H are zero. A regular LDPC code is a linear block code whose

parity-check matrix H contains dv non-zero elements in each column and dc non-zero

elements in each row. Assuming that the dimension of H is m× n, we can get

dv = dc
m

n
. (1.5)

If the number of non-zero elements in each row or column is not constant, then the code

is an irregular LDPC code.
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Figure 1.1: Tanner graph of Hamming (7,4) code.

1.2.2 Graphical representation

Tanner [10] invented the graphical representation of LDPC codes, now called Tanner

graph. This bipartite graph representation is equivalent to the parity-check matrix rep-

resentation. A bipartite graph is a graph whose vertices can be divided into two dis-

joint sets check nodes and variable nodes such that every edge connects a check node

and a variable node. With the parity-check matrix, the associated Tanner graph can

be obtained easily. Each row of the parity-check matrix H corresponds to a check

node and each column of the parity-check matrix H corresponds to a variable node.

Check node i is connected to variable node j whenever element Hij in H is non-zero.

For binary LDPC codes, the weight of each edge is always one and not indicated ex-

plicitly. For non-binary LDPC codes over GF(q), the weight of each edge is equal to

Hij ∈ GF (q)\0.

Figure 1.1 shows the associated Tanner graph of a Hamming (7, 4) code with the

parity-check matrix shown in (1.4).

The degree of a check node is equal to the number of non-zero elements in the

corresponding row of H and the degree of a variable node is equal to the number of
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non-zero elements in the corresponding column of H . Thus, for regular LDPC codes,

we still use dc to denote check node degree and use dv to denote variable node degree.

For irregular LDPC codes, the degrees are not constant and are usually specified by

variable node and check node degree distribution polynomials, denoted by λ(x) and

ρ(x) respectively. In the polynomial

λ(x) =
rmax∑
i=1

λix
i−1, (1.6)

λi denotes the fraction of all edges connected to degree-i variable nodes and rmax de-

notes the maximum variable node degree. Similarly, in the polynomial

ρ(x) =
cmax∑
i=1

ρix
i−1, (1.7)

ρi denotes the fraction of all edges connected to a degree-i check nodes and cmax de-

notes the maximum check node degree.

1.3 Protograph-based LDPC codes

A protograph G = (V,C,E) [12] is a relatively small bipartite graph that consists of the

set V = {v1,v2,. . . ,vnv} of variable nodes, the set C = {c1,c2,. . . ,cnc} of check nodes

and the set E =
{
e1,e2,. . . ,e|E|

}
of edges connecting variable nodes and check nodes.

In Figure 1.2, a regular-(2, 4) protograph is presented. In this protograph, there are 4

variable nodes each of degree 2 and 2 check nodes each of degree 4.

A protograph-based LDPC code is obtained from the protograph by a copy-permute-

and-scale procedure. First, the protograph G is copied N times to get a large graph

GN = (V N , CN , EN). In this procedure, each variable node vi ∈ V (check node

ci ∈ C) in protograph G is copied N times to yield the set Vi = {vi,1, vi,2, . . . , vi,N} of

variable nodes (the set Ci = {ci,1, ci,2, . . . , ci,N} of check nodes) in the large graph GN .

Likewise, each edge ei ∈ E in protograph G produces the set Ei of edges in the graph

GN where Ei = {ei,1, . . . , ei,N}, and the edge ei,j for 1 ≤ j ≤ N connects the variable
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Figure 1.2: Regular-(2,4) protograph

node vk,j and the check node cl,j if the edge ei connects the variable node vk and the

check node cl in G. Thus, GN contains N copies of G.

Second, in each set Ei = {ei,1, . . . , ei,N}, the N edges are permuted by a N × N

permutation matrix {πi}. In this procedure, individual protographs in GN are intercon-

nected while local structure is preserved.

Third, each edge is given a non-zero element in the field GF (q), called the edge

weight. If the protograph code is over GF (2), the edge weight can only be 1 and this

step is omitted.

1.4 Thesis overview

In Chapter 2, we introduce the extrinsic information transfer (EXIT) chart for protograph-

based non-binary LDPC codes. With this method, we calculate the thresholds of dif-

ferent protographs over GF (q). Using protographs with low threshold, we then design

some non-binary protograph-based LDPC codes and compare their performance with

their binary counterparts.

Chapter 3 gives the weight enumerator of protograph-based non-binary LDPC codes

both for random edge weights and edge weights with some constraints. In addition to

the weight enumerator, we also give the enumerator of stopping sets and trapping sets.

Finally, Chapter 4 gives the conclusion of this work.
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Chapter 2

EXIT chart analysis and design of

protograph-based non-binary LDPC

codes

2.1 Introduction

LDPC codes are shown to approach Shannon capacity over noisy channels with sum-

product algorithm. The effectiveness of sum-product algorithm depends on the structure

of the Tanner graph and degree distribution of check nodes and variable nodes, i.e. dv

and dc for regular codes and λ(x) and ρ(x) for irregular codes.

In order to choose good degree distributions, Richardson and Urbanke developed

density evolution [14] to predict thresholds of LDPC codes. Another method is extrinsic

information transfer (EXIT) chart [13] invented by S. Brink. Both method assume the

length of codewords tends to infinity and no cycles in the Tanner graph, thus the input

messages of each node are independent. The difference is that density evolution keeps

track of the probability distribution of messages over edges and EXIT chart instead uses

the mutual information (MI) between an edge message and the associated transmitted

bit to dramatically simplify the threshold computation. In EXIT chart, the iterative

decoding procedure becomes the evolution of MI. If the MI goes to 1, then the decoding
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is successful.

In this chapter, the sum-product algorithm and Brink’s original EXIT chart are

first introduced. We then apply protograph EXIT(PEXIT) chart [16] to non-binary

protograph-based LDPC codes.

2.2 Log-likelihood sum-product decoder

Consider the AWGN channel with power spectral density N0 and noise variance σ2
n =

N0

2
using BPSK modulation. The normalized signal-to-noise ratio (SNR) is defined as

Eb
N0

=
1

2Rσ2
n

, (2.1)

where Eb is the energy used per information bit and R is the rate of the code. Consider

the log-domain sum-product algorithm as the decoding algorithm. Assume X is the

transmitted bit and Y is the output of the channel. Then Y = X+N andN ∼ N (0, σ2
n).

The log-likelihood ratio (LLR) of the channel output becomes

Lch(y) = log
P (X = +1|y)

P (X = −1|y)
=

2

σ2
n

y. (2.2)

From this equation, we know that Lch(y) is a Gaussian random variable subject to

N (± 2

σ2
n

,
4

σ2
n

).

At the variable node side, for a degree dv variable node connected to check nodes

(1, 2, . . . , dv), assume Lvj,in is the input of this variable node from check node j. Then

the output message from this variable node to the check node i is

Lvi,out = Lch +
∑

j∈(1,2,...,dv),j 6=i

Lvj,in. (2.3)

At the check node side, the calculation is more complex. For a degree dc check node

connected to variable nodes (1, 2, . . . , dc), assume Lcj,in is the input of this check node

from variable node j. Then the output message from this check node to the variable
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node i is

Lci,out =
∑
j 6=i

�Lcj,in. (2.4)

The boxplus � is defined as

L1 � L2 = log(
1 + eL1+L2

eL1 + eL2
). (2.5)

2.3 EXIT chart for regular and irregular binary LDPC

codes

The original EXIT chart [13] is used to calculate the thresholds of regular and irregular

binary LDPC codes.

2.3.1 Mutual information and EXIT chart

With equation (2.2), we can compute the MI between the LLR of channel output and

the transmitted bit, i.e. I(X,Lch(Y )). We use J(σch) to denote it, where σ2
ch =

4

σ2
n

.

J(σch) = H(X)−H(X|Lch(Y )) = 1−
∫ ∞
−∞

e−(t−σ
2
ch/2)

2/2σ2
ch√

2πσ2
ch

log2(1 + e−t) dt. (2.6)

The function J(σ) can be treated as the MI between a binary random variable P ∈

{σ
2

2
,−σ

2

2
} and Q = P + N , where N is a zero mean Gaussian random variable with

variance σ2.

With equations (2.3) and (2.4), we can iteratively track the evolution of MI. In order

to simplify the calculations, the probability distributions of Lvj,in and Lcj,in are approxi-

mated as the LLRs of the output of an AWGN channel with BPSK modulation. Then,

for regular LDPC codes with variable node degree dv and rate R, the extrinsic MI be-

comes

IEv(IAv, dv,
Eb
N0

, R) = J(
√

(dv − 1)[J−1(IAv)]2 + σ2
ch), (2.7)
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where IAv denotes the a priori MI between the input message to the variable node

and the transmitted bit. IEv denotes the extrinsic MI between the output message of a

variable node and the transmitted bit.

On the check node side, for regular LDPC codes with check node degree dc, we use

an approximation from [13],

IEc(IAc, dc) ≈ 1− J(
√
dc − 1J−1(1− IAc)), (2.8)

where IAc denotes the a priori MI between the input message of a check node and the

transmitted bit. IEc denotes the extrinsic MI between the output message of a check

node and the transmitted bit.

For irregular LDPC codes with edge degree distributions λ(x) and ρ(x), the EXIT

functions are given by [13],

IEv =
rmax∑
i=1

λiIEv(IAv, i,
Eb
N0

, R), (2.9)

and

IEc =
cmax∑
i=1

ρiIEc(IAc, i), (2.10)

where λi denotes the fraction of all edges connected to degree-i variable nodes and rmax

denotes the maximum variable node degree. Here, ρi denotes the fraction of all edges

connected to a degree-i check nodes and cmax denotes the maximum check node degree.

These definitions are the same as equations (1.6) and (1.7).

At the beginning of the decoding, I(0)Ev = Ich and I(0)Ec = 0, where the numbers in

brackets denotes the iteration index. Since the output message of a variable node is the

input message of a check node and vice versa, the MI can be computed iteratively using

equations (2.3) and (2.4). It will either converge to 1 or stop at some value less than 1.

The evolution of MI of a successful decoding is shown in Figure 2.1.
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Figure 2.1: The evolution of mutual information in EXIT chart.

2.4 Exit chart analysis for protograph-based LDPC codes

2.4.1 Protograph-based binary LDPC codes

Unlike general regular or irregular LDPC codes, protograph codes have fixed structures

which makes the original EXIT chart calculation less accurate. For example, different

protograph codes with the same degree distribution may have different thresholds [16],

but the original EXIT chart can not distinguish among them. For this reason, Liva

[16] developed protograph EXIT (PEXIT) chart for binary protograph codes. In PEXIT

chart, we compute the MI between messages over each edge in the protograph and

the associate transmitted bit iteratively. If the a posteriori MI of each variable node

converges to 1, the decoding is successful.

2.4.2 Probability distribution of messages for non-binary LDPC

codes

For a non-binary LDPC code over GF(q), messages passed in each edge are LLR vec-

tors of dimension q − 1. Bennatan et al. [15] proved that check-to-variable messages

transmitting across an edge can be well approximated by a Gaussian distribution with

the message symmetry and permutation invariance properties. These properties can be

achieved by two assumptions. First, all the edge weights are uniformly distributed over
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(1, q − 1). Second, before transmitting through the channel, a random coset vector is

added to the codeword. After receiving, the coset vector is subtracted. Then, the mean

and variance of a check-to-variable message is can be represented by equations (2.11)

and (2.12). We can see that this Gaussian distribution is determined only by one variable

σ,

µ =



σ2/2

σ2/2

...

σ2/2


(q−1)×1

, (2.11)

and

Σ =



σ2 σ2/2

σ2

. . .

σ2/2 σ2


(q−1)×(q−1)

. (2.12)

For the variable-to-check message, we can get the probability distribution from

equation (2.3), in which Lvj,in is the LLR of a Gaussian random vector with mean µ

and covariance matrix Σ specified by equations (2.11) and (2.12) and Lch depends on

the channel and modulation.

2.4.3 EXIT chart for protograph-based non-binary LDPC codes

With the probability distribution of messages for non-binary LDPC codes, Chang et al.

[21] extended the binary PEXIT chart to the non-binary case. Assume that B is the

base matrix of a protograph and that bij is the (i, j)-entry of the matrix B. This entry

denotes the number of edges connecting the check node i and the variable node j in

the protograph. The mutual information between the message from variable node j to

check node i and the transmitted symbol vj is formulated as [21]:

IEv(ij) =

 J(σv−to−c) if node j is punctured,

JR(σv−to−c) otherwise.
(2.13)
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Here

J(σv−to−c) = I(S;W = X), (2.14)

JR(σv−to−c) = I(S;W = X + Y ), (2.15)

and

σ2
v−to−c =

∑
s∈N(j),s 6=i

bsj[J
−1(IAv(s, j))]

2+

+(bij − 1)[J−1(IAv(i, j))]
2, (2.16)

where X is a Gaussian random vector with parameter σv−to−c, Y is the random vector

of the initial messages, S is the transmitted symbol and IEv(i, j) = 0 if bij = 0.

The MI between the message from the check node i to the variable node j and the

transmitted symbol vj is formulated as a Gaussian random vector with the parameter

σc−to−v:

IEc(ij) = 1− J(σc−to−v), (2.17)

with

σ2
c−to−v =

∑
s∈N(i),s 6=j

bis[J
−1(1− IAc(i, s))]2+

(bij − 1)[J−1(1− IAc(i, j))]2. (2.18)

The a posteriori MI of variable node j and the transmitted bit can be calculated by,

IAP (j) =

 J(σAP ) if node j is punctured,

JR(σAP ) otherwise,
(2.19)

with

σ2
AP =

∑
s∈N(j)

bsj[J
−1(IAv(s, j))]

2. (2.20)

The evaluation process ends when either IAP (j) = 1 for all variable nodes which

means that the decoding is successful or when the maximum number of iterations is

reached which means that the decoding fails.

With the non-binary PEXIT chart, we can calculate the thresholds of protographs
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Regular-(2,4) code Punctured-(2,4) code

Rate-½ RA code Punctured-(2,4) code variant

Rate-½ AR3A code Rate-½ AR3A code variant

Figure 2.2: The structures of the protographs, the filled nodes are punctured.

in Figure 2.2 for different q. The thresholds of the binary image of the protographs

with BPSK modulation over AWGN channel is shown in Figure 2.3. Note for q ≤ 32,

the results were already derived in [21]. In Figure 2.3, we can observe that protographs

with small average variable node degree(≤ 2.5) tends to have higher threshold for small

q and lower thresholds for large q. This observation can help us to choose protograph

when we want to design a protograph code over GF (q).

Similar to the analysis for the binary image of non-binary protograph codes over

AWGN channel, we apply the Monte Carlo method to approximate J(σ) and JR(σ)

for PAM and PSK modulations over AWGN channel. For PAM we apply a technique

in [27], which suggests a non-uniform constellation for PAM. Figure 2.4 illustrates

the average bit SNR thresholds over PAM for some protographs in figure 2.2. Figure

2.5 illustrates the results with QPSK modulation over AWGN for some protographs in

Figure 2.2. Similar to the BPSK modulation over AWGN channel, regular-(2,4) code

has higher threshold when q is small and lower threshold when q is large.
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2.4.4 Design examples

In this part, we try to design non-binary prootgraph code with large q. In Figure 2.3,

the regular-(2, 4) code is shown to have the lowest threshold for q = 256 and we use

this protograph to design LDPC codes over GF (256). It is known that short cycles in

the Tanner graph will deteriorate the performance of LDPC codes. We use progres-

sive edge-growth (PEG) [17] algorithm to generate Tanner graphs with large girth and

fewer short cycles. Table 2.1 shows the number of different length cycles of the three

designed codes. The edges weights are assigned by two rules. First, similar to [24]

[25], the edge weights are chosen to maximize the minimum distance of a check node.

Second, for dv = 2, each cycle can be represented by a square matrix. If the square

matrix is not full rank, there will be codewords associated with this cycle, which is not

desirable. We try to choose edge weights to minimize the number of cycles associated

with codewords. In Table 2.1, the numbers in brackets are the number of not full rank

cycles. For comparison, we also generate a regular-(2, 4) protograph code with random

permutations and edge weights. The number of cycles is shown in Table 2.2.

When N = 4, 8, 16, the transmitted bits of corresponding codes are 128, 256 and

512. The simulation results of (128,64), (256,128) and (512,256) non-binary LDPC

codes are shown in Figure 2.6. For comparison, performance of binary LDPC codes
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n(bits) N / cycle size 8 12 16
128 4 36(0) 96(0) 72(0)
256 8 20(0) 160(0) 634(4)
512 16 0 208(2) 788(0)

Table 2.1: Number of cycles for different designed codes.

n(bits) N / cycle size 4 8 12 16
128 4 3(0) 21(0) 71(0) 66(0)
256 8 4(0) 25(0) 76(0) 316(1)
512 16 11(0) 30(0) 49(0) 340(2)

Table 2.2: Number of cycles for different random protograph codes.

and random regular non-binary LDPC codes over GF (256) are presented. As we can

see, our designed codes perform better than random codes and binary LDPC codes.
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Figure 2.6: Frame error rates of rate 1/2 LDPC codes.

By puncturing the regular−(2, 4) protograph, we can get a rate 2/3 protograph

shown in Figure 2.7. In Figure 2.8, the NB-PEXIT analysis shows that the rate 2/3

protograph has the lowest threshold when q = 256 (1.15dB), only 0.1dB higher than the

channel capacity of 1.059dB. Using the same Tanner graphs and labels with the three

regular-(2, 4) codes, we construct non-binary LDPC codes with rate 2/3 and block-

lengths 96, 192 and 384 in bits by taking the binary image of constructed non-binary

protograph codes over GF(256). Performance simulations of these codes are shown in

Fig. 2.9. For comparison, we plot simulation results of binary LDPC codes with rate
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Figure 2.7: Punctured regular-(2,4) code protograph.

2/3 and length 192 bits in [28]. Our non-binary code over GF(256) outperforms the

binary code by 1.0dB. We also compare our 384 bits code with binary rate compatible

code in [29] with lower rate R = 0.6 and more than doubled in length. Our code shows

similar performance in terms of bit error rate at only half the code length.
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Chapter 3

Weight enumerators of

protograph-based non-binary LDPC

code ensembles

3.1 Introduction

Protograph-based LDPC codes have the advantages of a simple design procedure and

highly structured encoders and decoders. In order to choose good protographs to design

codes, we can use the method in Chapter 2 to calculate the threshold. In this chapter,

we calculate weight enumerators (WEs) of protograph codes.

For a given linear code, the codeword WE is a polynomial that specifies the number

of codewords of each possible weight. Codeword WEs can be used to estimate the code

error rate with maximum likelihood (ML) decoding. For belief propagation decoding,

because the existence of structures like trapping sets and stopping sets, the code error

rate cannot be determined by the WEs, but it is still important to avoid low weight

codewords. However, it is generally very difficult to calculate the WE of a specific

code. Given this, the average WEs for code ensembles is often calculated.

WEs for ensemble of protograph-based binary LDPC codes and generalized LDPC

codes are derived in [19] for finite and asymptotic case. In the paper, the authors also
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gave the method to enumerate non-codeword objects that can cause decoding failure in-

cluding trapping sets, stopping sets. In [22] [23], Divsalar et al. extended the derivation

to non-binary case. In this chapter, we follow the methods used in [22] [23] to get WE

for non-binary protograph codes.

3.2 Symbol weight enumerator for ensemble of protograph-

based non-binary LDPC code

3.2.1 Definitions

Following the protograph-based non-binary (NB PB) LDPC codes definition in Chapter

1, we define the protograph-based code ensemble and its WE.

Definition 2 (Protograph-based code ensemble). Given a protograph G = (V,C,E),

we repeat it N times to get a large graph GN = (V N , CN , EN). The (G,N, q)

protograph-based code ensemble is the collection of codes with all possible permu-

tations of Ei = {ei,1, . . . , ei,N} for every ei ∈ E and all possible edge weights assign-

ments.

Definition 3 (Protograph-based code ensemble WE). For a (G,N, q) protograph-based

code ensemble, the WE is the average number of codewords with each Hamming weight

for all codes in the ensemble.

3.2.2 Symbol weight enumerator for finite length ensemble

The symbol weight enumerator for finite length protograph code ensemble is derived

in [22]. First, for the simplest case, consider a protograph with a single check node c

and m variable nodes connected to it by single edge. This protograph can be treated as

a (m,m − 1) linear block code C over GF (q). For this code, there exists K = qm−1

codewords. Then we place all the K codewords in a K ×m matrix M , such that each

row of M is a different codeword of C.
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From M , we can get a binary K × m matrix Mb which is obtained by converting

all non-zero elements of M to 1. Note some rows of Mb will be the same. Define a

Kr ×m binary matrix Mb,r as the submatrix of Mb that consists of all distinct rows of

Mb. For a (m,m− 1) linear block code over GF (q), the weight of non-zero codeword

are between 2 andm. Then, the number of rows ofMb,r is equal toKr = 1+
∑m

i=2

(
m
i

)
.

When the check node is repeated N times, we get a Tanner graph with N check

nodes and mN variable nodes. It can be treated as an (mN, (m − 1)N) linear block

code CN over GF (q). These long codewords can be treated as the concatenation of

N codewords ∈ C. We can use nk to denote the number of occurrences of the kth

codeword among these N short codewords. Then collect them in a 1 × K vector n,

where n = [n1, n2, . . . , nK ]. It is convenient to use a vector w = [w1, w2, . . . , wm]

to denote the weight vector of a codeword in CN , where wi denotes the number of

non-zero elements of variable nodes {vi,1, vi,2, . . . , vi,N}.

Let us use ACN
(w) to denote the average number of codewords with weight-vector

w of the (C,N, q) ensemble. The calculation of ACN
(w) is given in [22].

Theorem 1. The weight-vector enumerator AC
N

(w) of (C,N, q) ensemble is given by,

AC
N

(w) =
∑
{n}

C (N ;n1, n2, . . . , nKr) e
n·fTq , (3.1)

where C (N ;n1, n2, . . . , nKr) is the multinomial coefficient

C (N ;n1, n2, . . . , nKr) =
N !

n1!n2! . . . nKr !
, (3.2)

and {n} is the set of integer-vector solutions to w = n ·MC
b,r, with n1, n2, . . . , nKr ≥ 0,

and
∑Kr

k=1 nk = N . The vector fq = [fq,1, fq,2 . . . , fq,Kr ] has entries fq,k = ln g(q, |xk|),

where xk is the k-th row ofMC
b,r, |xk| is the weight of xk, and g(q, i) = q−1

q
[(q−1)i−1+

(−1)i].

We follow the combinatorial calculation of [19] to calculate the symbol WE of an

ensemble. For binary LDPC codes, a length-L uniform interleaver is a probabilistic

device that map each Hamming weight-w interleaver input into the
(
L
w

)
distinct permu-
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tations of it with equal probability. A non-binary uniform interleaver over GF (q) is

similar to the binary case, except for each edge there are (q− 1) possible edge weights.

For symbol weight-w input, the interleaver gives (q − 1)w
(
L
w

)
possible outputs with

equal probability. With the uniform interleaver of non-binary code, we have [22]

Lemma 1. Consider two serially concatenated linear block codes C1 and C2, connected

by a length N non-binary uniform interleaver. Then, the average number of codewords

over all possible interleavers with symbol weight-d inputs and symbol weight-f outputs

is given by

ASCCf,d =
∑
w

AC1f,wA
C2
w,d

(q − 1)w
(
K2

w

) , (3.3)

where AC1f,w is the number of codewords in C1 of Hamming weight w corresponding to

C1-encoder inputs of Hamming weight f , and AC2w,d is the number of codewords in C2 of

Hamming weight d corresponding to C2-encoder inputs of Hamming weight w.

Similar to the binary protograph ensemble in [19], the weight enumerator of non-

binary protograph ensemble can be computed use the serial concatenated code scheme.

In this case, each variable node vi(check node ci) in the protograph G is repeated

to get a group of N variable nodes Vi = {vi,1, vi,2, . . . , vi,N} (check nodes Ci =

{ci,1, ci,2, . . . , ci,N}). The group ofN variable nodes Vi is considered to be a constituent

repetition code with a weight-di input of lengthN . Further, the group ofN check nodes

Ci is considered to be a constituent code with a fictitious output of weight zero. In this

way, a protograph code is treated as a serial concatenated code. Now, we can apply

lemma 1 to get the average number of codewords with weight-vector w of an ensemble

[22].

Theorem 2. The weight-vector enumerator of a ensemble of protograph-based non-

binary LDPC code is

A(d) =

∏nc

j=1A
CNj (dj)∏nv

i=1 (q − 1)di(ti−1)
(
N
di

)ti−1 , (3.4)
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whereAC
N
j (dj) is the weight-vector enumerator of the code CNj induced by theN copies

of the constraint node cj . The elements of dj comprise a subset of the elements of

d = [d1, d2, ..., dnv ].

Theorem 3. For a PB NB LDPC code ensemble, let us represent the average number

of codewords with symbol weight d by Ad. This quantity is equal to the sum of A(d)

over all d such that
nv∑
i=1

di = d. Then Ad =
∑
A(d).

Example 1. In this example we calculate the average symbol weight enumerator for

regular-(2, 4) code, punctured-(2, 4) code and punctured-(2, 4) code variant in Figure

2.2. Note that the last two protographs are obtained by adding a different accumulator

on regular-(2, 4) code.

The three protographs are first repeated 16 times, 8 times and 8 times respectively to

get ensembles. In this way, each ensemble contains 32 transmitted variable nodes, i.e.

32 transmitted symbols (96 bits). The symbol WEs for the three ensembles are shown in

Figure 3.1 for codeword symbol weights less than 10.

To further illustrate the enumeration technique, we plot the symbol WEs for the three

protographs with code length 80 symbols (240 bits), i.e. N = 40 for first code and N =

20 for the second and third codes. The results are shown in Figure 3.2, for the symbol

weights less than 10. We note that, relative to the regular-(2, 4) code, the punctured

code and its variant both have on average fewer low symbol weight codewords, and

that the variant has the best distribution of the three codes for small codeword weights.

This relative ordering of codes is consistent with the threshold calculations in Figures

2.3, 2.4, and 2.5 for AWGN channel with different modulations.

Example 2. Continuing on with the baseline regular-(2, 4) protograph repeated N =

20 times (40 symbols), in Figure 3.3 we plot the average number of codewords Ad as a

function of the field order q. As expected, the average number of codewords increases

with q.
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Figure 3.1: WEs of 32-symbol ensembles over GF(8) with random edge weights.
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Figure 3.2: WEs of 80-symbol ensembles over GF(8) with random edge weights.
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Figure 3.3: WEs for regular-(2, 4) ensembles with different q.

3.2.3 Asymptotic weight enumerator

Given that the formulas in the previous subsection involve the number of copies N , the

normalized logarithmic asymptotic weight is defined in [22]

r(δ) = lim sup
N→∞

lnAd
N

, (3.5)

where δ = d/N . Note that n = nv · N , so the asymptotic weight enumerator in terms

of n can be expressed as

r̃(δ̃) = lim sup
n→∞

lnAd
n

, (3.6)

where r̃(δ̃) = 1
nv
r(δ̃nv). Assume ti is the variable node degree of variable node i. In

[22], the authors give an approximation to calculate r(δ),

r(δ) = max
{δl:vl∈V }

{
nc∑
j=1

acj(ωj)−
nv∑
i=1

(ti − 1)[Hq(δi)]

}
, (3.7)

where δi = di/N ,
∑
{δi:vi∈V } δi = δ and Hq(δi) , δi ln(q − 1) + H(δi). H(δi) =

−(1− δi)ln(1− δi)− δilnδi.

In (3.7), acj(ωj) is the asymptotic weight-vector enumerator of the constraint node

cj , it can be calculated as
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Figure 3.4: Asymptotic symbol weight enumerator with random edge weights.

ac(ω) = max
{Pω}

{
H(Pω) + Pω · fTq

}
, (3.8)

under the constraint that {Pω} is the set of solutions to ω = Pω·MC
b,r, with p1, p2, . . . , pKr ≥

0 and
∑Kr

k=1 pk = 1.

For the calculation of asymptotic ensemble weight enumerators, notice in equation

(3.8), that H(Pω) is a concave function and Pω · fTq is a linear function. The constraints,

p1, p2, . . . , pKr ≥ 0 and
∑Kr

k=1 pk = 1 are also linear. Then, the search for ac(ω)

becomes a convex optimization problem and can be solved very quickly. In the calcu-

lation of equation (3.7), first, we use Monte Carlo method to generate random vectors

(δ1, δ2, · · · , δnv). We then calculate each acj(ωj) using a convex optimization method

to get the value of
∑nc

j=1 a
cj(ωj)−

∑nv

i=1(ti − 1)[Hq(δi)]. The largest value of all these

samples is r(δ).

Note that the ensemble of all rate-R, q-ary (“random”) linear codes (whose parity-

check matrix entries are i.i.d. uniform) has the weight enumerator AC(w) = (q −

1)w
(
n
w

)
e−n(1−R) ln(q) and the asymptotic weight enumerator [8],

r̃(δ̃) = Hq(δ̃)− (1−R) ln(q), (3.9)

which corresponds to the asymptotic Gilbert-Varshamov bound for the non-binary case.

Example 3. Continuing with the protographs discussed in Example 1, we compute the
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asymptotic symbol weight enumerators for the three protographs for q = 8, as shown

in Figure 3.7. As we can see, in the asymptotic case, the punctured-(2,4) code and the

punctured-(2,4) code variant both have fewer low symbol weight codewords than the

regular code. This result is in agreement with the finite length calculation and threshold

calculation. Similar to the binary case studied in [19], the asymptotic symbol weight

enumerators converge to the Gilbert-Varshamov bound as δ̃ gets larger. Here, again,

of the three candidate protographs, the punctured-(2, 4) variant offers the enumerator

closest to the Gilbert-Varshamov bound.

Example 4. In this example, we provide the asymptotic WE for the (3, 6) regular LDPC

code ensemble over GF (q), as shown in Figure 3.5. We also note that our result for

GF (2) is in agreement with [19]. From the figure, we can see that as q gets larger, r(δ̃)

tends to be smaller for small δ̃ and increases faster as δ̃ grows. Similar to [19], we use

δ̃min to denote the second zero crossing of r(δ̃)(the first zero crossing is r(0) = 0). We

recall that the second zero crossing, if it exists, is called the typical relative minimum

distance.

Figure 3.6 shows how the typical relative minimum distance δ̃min changes with vary-

ing q. Consistent with [26], while δ̃min for the Gilbert-Varshamov bound grows mono-

tonically with q, δ̃min is in fact non-monotonic. In particular, δ̃min attains maximum

value for q = 64 and 128.

3.3 Enumerator of graph cover non-binary protograph

codes

3.3.1 Graph cover non-binary protograph codes

Graph cover non-binary protograph (GC-NBP) code [23] is a special class of non-binary

protograph codes. General protograph codes are built from a small Tanner graph called

protograph. In the graph cover case, each edge in the protograph has a weight associated

with it. The protograph can be represented by G = (V,C,E,S), where V , C, E are the
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sets of variable nodes, check nodes and edges as before and S is the set of weights

associated with all the edges. The construction of GC-NBP code is just a copy-permute

procedure instead of the general copy-permute-and-scale procedure because the weight

of edges are determined by S. Then, we can define the GC-NBP code ensemble as

follows.

Definition 4 (GC-NBP code ensemble). Given a protograph G = (V,C,E, S), we

repeat it N times to get a large graph GN = (V N , CN , EN , SN). The (G,N, q)

GC-NBP ensemble is the collection of codes with all possible permutations of Ei =

{ei,1, . . . , ei,N} for every ei ∈ E.

3.3.2 GC-NBP ensemble finite length enumerators

The weight enumerator of GC-NBP ensemble is derived in [23]. Consider a degree-m

constraint node c in scaled protograph G defined over GF (q). We can view the node c

with specified edge weights as a (mj , mj − 1) single parity check, linear code C over

GF (q). By copying C N times and permuting, we get an N−cover code ensemble CN .

A codeword x̂N ofCN can be represented as (x1,1 · · ·x1,N , x2,1 · · ·x2,N , · · · , xnv ,1 · · ·xnv ,N).

For each codeword, the weight can be represented by a (q−1)×nv matrix d = d(x̂N).

Entry d(`, i) of matrix d is equal to the number of occurrences of symbol ` in positions

xi,k, 1 ≤ k ≤ N . The weight enumerator of GC-NBP ensemble CN is given in [23].

Theorem 4. The frequency weight matrix enumerator AC
N

(d) of CN is given by,

AC
N

(d) =
∑
{n}

C (N ;n1, n2, . . . , nK) , (3.10)

whereC (N ;n1, n2, . . . , nK) is the multinomial coefficient and {n} is the set of integer-

vector solutions to d = n ·MC
b , with n1, n2, . . . , nK ≥ 0, and

∑K
k=1 nk = N , and nk

the number of occurrences of the kth codeword among these N copies of c.

Theorem 5. Let AC
N
j (dj) be the frequency weight matrix enumerator of the code CNj

induced by the N copies of the constraint node cj with the associated scaling sj . Then,

the frequency weight matrix enumerator of the GC-NBP ensemble is
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A(d) =

∏nc

j=1A
CNj (dj)∏nv

i=1C(N ; di,0, di,1, . . . , di,(q−1))ti−1
. (3.11)

In binary channels, the weight of a codeword is the weight of its binary image. With

(3.11), we can get the weight enumerator of binary image of GC-NBP ensembles as,

Ad =
∑
{n}

A(d), (3.12)

where n is the set that db(n) = d.

Example 5. Let us consider the binary image of a LDPC code over GF (q). We want

to choose good edge weighs to maximize the minimum distance of the binary image. In

[24, 25], the authors proposed a method to choose good rows of H . Each row is treated

as a linear code with single check node. The minimum distance of the binary image

of this code is denoted by dmin. The number of codewords with minimum distance is

denoted by W (dmin). The author chose good rows with large dmin and small W (dmin).

We also design codes based on this rule in Section. In this example, we use GC-NBP

ensemble finite length enumerators to check the effectiveness of this approach.

Let’s consider the regular-(2, 4) code in Figure 2.2 over GF (16) and set N = 4.

In [25], the author specified (α0, α3, α7, α11) as good weights of a degree 4 check node

over GF (16) with dmin = 2, W (dmin) = 1. We compare GC-NBP ensemble enumera-

tors with this good edge weights and random generated edge weights (α6, α7, α9, α10)

and (α1, α2, α7, α14). As we can see, the GC-NBP with good edge weights has fewer

low weight codewords.

3.3.3 GC-NBP ensemble asymptotic weight enumerators

Equipped with the new weight enumerator, the authors in [23] also derived the asymp-

totic weight enumerator when N tends to infinity,

31



1 2 3 4 5 6
0

10

20

30

40

50

60

Av
er

ag
e 

nu
m

be
r o

f c
od

ew
or

ds
 A

d

Hamming weight d of the binary image

 

 
( 0 3 7 11)
( 1 2 7 14)
( 6 7 9 10)
Random edge weights

Figure 3.7: Weight enumerator for the binary image of GC-NBP LDPC code ensemble.

rH(δ) = lim sup
N→∞

lnAdH
N

, (3.13)

or in terms of the codeword length n (where n = nv ·N )

r̃H(δ̃) = lim sup
n→∞

lnAdH
n

, (3.14)

where r̃H(δ̃) = 1
nv
rH(δ̃nv). rH(δ) can be calculated in a similar way,

rH(δ) = max{δ}

{∑nc

j=1 a
Cj(δj)

−∑nv

i=1(ti − 1)H
(
[δi,0, δi,1, . . . , δi,(q−1)]

)}
.

(3.15)

The term aCj(δj) stands for the asymptotic frequency weight matrix enumerator of

the constraint node cj , and it is computed as aC
∞
j (δj) = max{Pδj }

{
H(Pδj)

}
. The col-

lection {Pδj} represents the set of solutions to δj = Pδj ·M
Cj
b , with Pδj = [p1, p2, . . . , pK ],

p1, p2, . . . , pK ≥ 0 and
∑K

k=1 pk = 1.

The asymptotic weight enumerators with parameters same as in Example 5 are also

calculated. The result shows that Ad of good edge weights assignments is only about

2% smaller than random edge weights protographs.
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3.3.4 Complexity of computing weight enumerators of PB NB and

GC-NBP codes

Both the finite and asymptotic enumerators of PB NB and GC-NBP are based on enu-

merator of a linear code with single check node. Let’s compare the computation com-

plexity of this basic code for PB NB and GC-NBP case. Assume the single check node

is degree 4 over GF (16). For the finite case, assume the check node is repeated N

times.

(a) For the PB NB case, w = n ·MC
b,r, the dimension of matrix M

Cj
b,r is Kj,r ×mj ,

where Kj,r = 1+
mj∑
i=2

(
mj

i

)
= 12 and mj = 4. For the finite case, there are

(
N+Kj,r−1
Kj,r−1

)
=(

N+11
11

)
possible choices of n. We need to enumerate all possible n’s to get the symbol

weight enumerator. For the asymptotic case, with fixed δ, we need to find the length mj

vector ω = [δ1, δ2, δ3, δ4] under the constraint
mj∑
i=1

δi = δ to maximize ac(ω). This is a

search in dimension 4 space.

(b) For the GC-NBP case, the dimension of matrix M
Cj
b is Kj ×mj(q − 1), while

Kj = q(mj−1) = 163 = 4096 and mj(q − 1) = 60. For the finite case, there are(
N+Kj−1
Kj−1

)
=
(
N+4095
4095

)
possible choices of n. The possible choices of n are much

larger than the PB NB case, which makes the enumeration much more difficult. For the

asymptotic case, with fixed δ, we need to find the length mj(q − 1) = 60 vector δ=

[δ1, δ2, . . . , δ59, δ60] under constraints to maximize ac(δ). This is a search in dimension

60 space. The dimension is much higher than the PB NB case, so the computation

complexity is also higher.

3.4 Enumerator for stopping sets

In the iterative decoding of LDPC codes over binary erasure channel, an (a, b) stopping

set S(a, b) is a set of a variable nodes and b check nodes such that all the a check nodes

are connected to at least two of the b variable nodes. If all of the b variable nodes

of S(a, b) are erased, the iterative decoder will be stuck. The decoding procedure of

binary and non-binary LDPC codes over binary erasure channel are very similar and
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the definition of stopping set does not depend on q. In this part, we enumerate the

structure of stopping set S(a, b) and do not consider the order of the Galois Field.

The way to enumerate stopping sets is derived in [19], [22]. The ensemble stopping

set enumerator of a protograph G is the same as weight enumerator of a protograph G′

which formulated by adding a new degree− 1 variable node to each check node in G.

The modification of the stopping set check nodes - when these are viewed as individual

binary codes is expressed by appending the column [0, 1, 1, · · · , 1]T to the stopping set

constraint matrix of the check nodes in G. This matrix determines the parameter a, and

together with the support of added degree- 1 nodes (corresponding to the appended

column) determines the parameter b in S(a, b). All non-binary scale values on each

edge are converted to 1.

Example 6. Let us consider the (3,6) protograph code again. With the method de-

scribed in this section, the enumerator for stopping sets is similar to the weight enu-

merator for binary protograph LDPC codes. In Figure 3.8, S(a,∆ · a) is evaluated

for several values of ∆. For (3,6) protograph code, each variable node is connected to

three check nodes and each check node is connected to six variable nodes. Thus, for

a erasure variable nodes, there are 3a edges connected to erasure variable nodes and
3a

6
≤ b ≤ 3a

2
, i.e., 0.5 ≤ ∆ ≤ 1.5. From Figure 3.8, we can see that with fixed a, there

tends to be more stopping sets for larger ∆.

3.5 Enumerator for trapping sets

An (a, b) trapping set T (a, b) is a set of a variable nodes and b check nodes. Among all

the variable nodes in a Tanner graph, a variable nodes are non-zero and b check nodes

are not satisfied. The way to enumerate trapping sets is similar to the weight enumerator

and is derived in [19], [22].

The ensemble trapping set enumerator of a protograph G is the same as weight

enumerator of a protographG′ which is formulated by adding a new degree−1 variable

node to each check node in G. After the same repeat-permute-and-scale procedure, we
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Figure 3.8: Asymptotic stopping set enumerators of regular-(3, 6) protograph ensemble.

get a Tanner graph GL from G and GL
′ from G′. Let us use Vn to represent the set of all

new degree-1 variable nodes in GL′ and use Vo to represent the set of all other variable

nodes. Then an (a, b) trapping set in GL is the same as a weight (a + b) codeword in

GL
′, where a non-zero variable nodes are in the set Vo and b non-zero variable nodes

are in the set Vn. Let us define the (a, b) trapping set enumerator as Aa,b. Similar to

the WE case, we define the normalized logarithmic asymptotic trapping set enumerator

r̃(α̃, β̃), as

r̃(α̃, β̃) = lim sup
n→∞

lnAa,b
n

, (3.16)

where α̃ = a/n and β̃ = b/n.

Example 7. Let us consider regular-(3,6) protograph code ensemble. The asymptotic

trapping set enumerators are plotted for different β̃ with q = 16 in Figure 3.9. Note

when β̃ = 0, by our definition, the curve corresponds to the asymptotic symbol weight

enumerator. In the figure, when α̃ is fixed, r̃(α̃, β̃) increases with increasing β̃. This is

the same as trapping set enumerator for binary protograph-based LDPC codes in [19].

Example 8. In this example, we consider regular-(3,6) protograph ensemble for differ-

ent q’s with fixed β̃ = 0.0002. The simulation result is shown in Figure 3.10. In the

figure, we can see that when β̃ = 0.0002, there exist second zero-crossings, i.e. there

exist typical relative r̃(α̃, 0.0002) trapping sets for different q’s. Also, when α̃ is fixed,
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Figure 3.9: Asymptotic trapping set enumerators of regular-(3, 6) code ensemble for
q = 16.
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Figure 3.10: Asymptotic trapping set enumerators of the regular-(3, 6) code ensemble
for different q with β̃ = 0.0002.

r̃(α̃, 0.0002) is smaller for larger q’s. This indicates that for β̃ = 0.0002, codes over

larger q will have less trapping sets.
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Chapter 4

Conclusion

In this thesis, the non-binary PEXIT is presented and thresholds of different protographs

over GF(q) are calculated. In the calculation, regular-(2, 4) protograph is shown to have

lowest threshold for large q. Using this protograph, we designed several codes over

GF(256) with rate 1/2 and length 128, 256 and 512 in bits with much smaller frame error

rate than their binary counterparts. With puncturing of the regular-(2, 4) protograph, we

also designed several codes over GF(256) with rate 2/3 and length 96, 192 and 384 in

bits which also show much lower frame error rate than their binary counterparts.

We also give examples of weight enumerator for protograph-based NBLDPC code

ensemble both for finite and asymptotic case and compare the asymptotic weight enu-

merator with Gilbert-Varshamov bound. Weight enumerator is very useful to predict

the frame error rate of linear codes with maximum likelihood decoder. Moreover, using

similar method, the trapping set and stopping set enumerator are presented which help

describe the error performance of LDPC codes using a belief propagation decoder.
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