(Workshop on Pb-Free Solders, UCLA, 9/5-6/2002)

# Recent Progress in Lead (Pb)-Free Solders and Soldering Technology

Sung K. Kang

IBM T. J. Watson Research Center P.O.Box 218, Yorktown Heights, NY 10598, USA (T) 914-945-3932 (email) kang@us.ibm.com

### **Outline**

- Introduction
- Pb-Free Candidate Solders
- Technical Issues in Pb-Free Solders
- Review on Bulk Properties
- Review on Solder Joint Properties
- Thermal Fatigue Properties
- Interfacial Reactions
- Other Reliability Issues
- Summary



# Introduction

### Plastic Ball Grid Array (PBGA)



- Desirable Properties of Solder Joints
  - Soft Solder to relax the stress/strain caused by thermal fatigue
  - Slow growth of intermetallic compound (IMC) at the solder joints

# **Pb** Consumption

Worldwide Pb Consumption: 5 M tons

- Primary uses;
  - Electric batteries (80 %)
  - Ammunition
  - Electronic applications (less than 1 %)

#### **Electronic Applications**

- Board assemblies (~40K tons)
  - PIH, SMT, HASL (surface finish)
  - **Sn-37Pb**
- Components (~10K tons)
  - SOP, QFP, DIP, BGA, FC
  - Sn-10Pb, Sn-37Pb, 97Pb-3Sn

(01/01)

# **Recent Development**

#### <u>Europe</u>

- Legislation banning Pb in electronics proposed by WEEE\* pushed to 2007
- Product take-back proposed

#### <u>Asia</u>

- No legislation pending
- Japanese companies driving "Green" consumer products by 2003

### <u>US</u>

- No legislation on horizon
- Renewed interest by electronic industry
- EIA, IPC, NEMI demonstrated technical initiatives
- Push back of WEEE date + lack of other legislation has taken immediate pressure off drive to implement (NEMI, Jan. 2002)

(\* WEEE = Waste in Electrical & Electronic Equipment)

(09/02)

### **US Patents on Pb-Free Solders**

|       | US Pat # | Assignees   | Sn<br>(wt %) | Bi<br>(wt %) | Ag      | In      | Sb     | Cu      | Zn    | Others   | Major<br>Composit'n  |
|-------|----------|-------------|--------------|--------------|---------|---------|--------|---------|-------|----------|----------------------|
| 7/88  | 4758407  | Harris      | 87-93        |              | 0.1-0.5 |         | 4-6    | 3-5     |       | Ni(1)    | Sn Sb Cu             |
|       | 4778733  | Engelhard   | 92-99        |              | 0.05-3  |         |        | 0.7-6   |       |          | Sn Cu Ag             |
|       | 4806309  | Willard     | 90-95        | 1-4          | 0.1-0.5 |         | 3-5    |         |       |          | Sn Sb Bi             |
| 7/93  | 5229070  | Motorola    | 90           | 5            |         | 5       |        |         |       |          | Sn Bi In             |
|       | 5328660  | IBM         | 78           | 10           | 2       | 10      |        |         |       |          | Sn Bi In Ag          |
|       | 5344607  | IBM         | 90           | 2            |         | 8       |        |         |       |          | Sn In Bi             |
|       | 5393489  | IBM         | 93           | 2            | 3       |         | 1      | 1       |       |          | Sn Ag Bi Sb          |
|       | 5411703  | IBM         | 94           | 2            |         |         | 3      | 1       |       |          | Sn Sb Bi Cu          |
|       | 5368814  | IBM         | 42           | 56           |         | 2       |        |         |       |          | Bi Sn In             |
| 5/95  | 5414303  | IBM         | 70-90        | 2-10         |         | 8-20    |        |         |       |          | Sn In Bi             |
|       | 5455004  | Indium Co.  | 82-90        | 1-5          |         | 3-6     |        |         | 4-6   |          | Sn In Ag Bi          |
|       | 5580520  | Indium Co.  | 71-92        |              | 2-4     | 4-26    |        |         |       |          | Sn In Ag             |
|       | 5410184  | Motorola    | 92-97        |              |         |         |        | 3-8     |       |          | Sn Cu                |
|       | 5435968  | Touchston   | 79-97        | 0-1          | 0-4     |         |        | 3-15    |       | Se(1)    | Sn Cu Ag             |
|       | 5429689  | Ford        | 80           | 4-15         | 0.5     | 5-15    |        |         |       |          | Sn Bi In             |
|       | 5538686  | Lucent      | 86           |              |         | 5       |        |         | 9     |          | Sn Zn Ag             |
|       | 5569433  | Lucent      | 40-60        | 40-60        | 0.2-0.5 |         |        |         |       |          | Sn Bi Ag             |
|       | 5698160  | Lucent      | 59-82        |              | 2-11    |         |        |         | 16-30 |          | Sn Zn Ag             |
|       | 5352407  | Seelig      | 93-98        |              | 1.5-3.5 |         | 0.2-2  | 0.2-2   |       |          | Sn Ag Sb Cu          |
|       | 5405577  | Seelig      | 90-99        |              | 0.5-3.5 |         | 0.2-2  | 0.1-3   |       |          | Sn Ag Sb Cu          |
|       | 5520572  | US Army     | 86-97        | 0-5          | 0.3-4.5 | 0-9.3   |        | 0-5     |       | interm   | SnAg BilnCu          |
| 6/96  | 5527628  | Iowa St. U. | 89           |              | 3.5-7.7 |         |        | 1-4     |       |          | Sn Ag Cu             |
| -     | 5658528  | Mitsui      | 90           | 0.5-1.5      | 1-4     | 3-4     |        |         |       |          | Sn In Ag Bi          |
| -     | 5718868  | Mitsui      | 90           | 2-3          |         |         |        | 0.5     | 7-9   |          | Sn Zn Bi             |
|       | 5733501  | Toyota      | 65-95        | 0.1-9.5      | 0.8-5   | 0.1-9.5 | 0.1-10 |         |       |          | SnSbBilnAg           |
| -     | 5730932  | IBM         | 80           | 12           | 3       | 5       |        |         |       |          | Sn BI In Ag          |
|       | 5762866  | Lucent      | 76-98        | 0.2-6        | 1-6     | 0.2-6   |        |         | 0.2-6 |          | Sn Ag BilnZn         |
| 10/00 | 5755896  | Ford        | 37-57        | 37-57        |         | 6-10    |        |         |       |          | Bi Sn In<br>Sn Bi In |
| 10/90 | 5833021  | Ford        | 40-50        | 38-52        | 1-2     | 2-5     | 5-15   | 1_/     |       |          | SnBiShCuln           |
|       | 5027101  | lohncon     | 45-50        | J0-J2        | 0.6     | 2       | 0.75.2 | 0.6     |       | NI(0.6)  | Sh Sh Ag             |
|       | 58/2271  | Samsung     | 95<br>77-80  | 6-14         | 2-4     | 2-5     | 0.75-2 | 0.0     |       | INI(0.0) | Sn Bi Ag In          |
| -     | 5851/82  | KIMM        | 80           | 1-20         | 5-4     | 0.1-3   |        |         | 0.01- | ALMa     | Sn Bi In Zn          |
| 2/99  | 5051402  |             | 00           | 1-20         |         | 0.1-5   |        |         | 3     | Ai,ivig, |                      |
| 2/33  | 5863493  | Ford        | 91-97        |              | 2-5     |         |        | 0-3     |       | Ni(0-3)  | Sn AaCuNi            |
|       | 5874043  | IBM         | 70-74        |              | 6.5-7.5 | 12-24   |        |         |       |          | Sn In Ag             |
|       | 5938862  | Delco       | 84-90        |              | 2.5-3.5 | 7-11    |        | 0.5-1.5 |       |          | Sn In Ag Cu          |
|       | 5985212  | H-Tech      | >75          |              |         | 0-6     |        | 0.1-9.5 |       | Ga(<5    | Sn Cu In Ga          |
| 1     | 5993736  | Mitsui      | 91-95        | 2-3          | 2-4     |         |        |         | 0.5-2 |          | Sn Ag Bi Zn          |
| 12/00 | 5942185  | Hitachi     | 72-87        | 10-23        |         |         |        |         | 3-5   |          | Sn Bi Zn             |
| 12/00 | 6077477  | Matsushita  | 81-91        | 5-10         | 3-6     | 0.1-1.0 |        | 0.1-2   |       |          | Sn Bi Ag Cu          |
| •     | 6086687  | Alpha Fry   | >90          | 0-9.25       | 0-9.25  | 0-0.25  | 0-9.25 | 0-9.25  | 0-0.2 | Ti(0.2)  | Sn ++                |
| •     | 6139979  | Murata      | 92-96        |              |         |         | 3-5    | 0.7-2.0 |       | Ni(0.5)  | Sn Sb Cu Ni          |
| •     | 6156132  | Fuji Elec   | 40-70        | 30-58        | 0-5     |         | 0-5    | 0-1     | Ge    | Ni(0.2)  | Sn Bi Ag Sb          |

(01/01, SKK)

# **US PATs on Pb-Free Solders (II)**

|       | US Pat # | Assignees   | Sn<br>(wt %) | Bi<br>(wt %)     | Ag                | In       | Sb      | Cu      | Zn           | Others         | Major<br>Composit'n        |
|-------|----------|-------------|--------------|------------------|-------------------|----------|---------|---------|--------------|----------------|----------------------------|
| 1/01  | 6176947  | H-Tech      | bal          | (0.5-5)          | 2.5-4.5           | 6-12     | (0.5-2) | 0.5-2.5 |              |                | Sn In Ag Cu                |
|       | 6179935  | Fuji Elec   | bal          |                  | 0-4.0             |          | (0-3.5) | 0-2.0   |              | Ni, Ge         | Sn Ag Cu Ni                |
|       | 6180055  | Nihon Supr  | bal          |                  |                   |          |         | 0.3-07  |              | Ni(0.1         | Sn Cu Ni                   |
|       | 6184475  | Fujitsu     | 34-40        | 46-55            | (Ag)              | 5-20     |         |         | (Zn)         | Ge             | Bi Sn In                   |
|       | 6187114  | Matsushita  | bal          |                  |                   |          |         | (0.1-5) | (Ni)         | Pd(3.0         | Sn Pd Cu Ni                |
|       | 6229248  | Murata Mfg  | bal          |                  | 1.0-2.0           |          | 1.0-3.0 | 0.5-1.0 |              |                | Sn Sb Ag Cu                |
|       | 6224690  | IBM         | bal          | 1-20             | 1-5               | (0.5-10) | 1-10    | (0.5-5) | (0.5-5       | (Ni,Co         | SnBiAgSb++                 |
|       | 6228322  | Sony        | bal          | 0.5-8.0          | 1.5-6.0           |          |         | 0.1-5.0 | Sm,Gd        | La,Ce,         | Sn Bi Ag Cu                |
|       | 6231691  | lowa St. U. | bal          |                  | 3.0-7.7           |          |         | 0.5-4   | Fe(0.5       | Co(0.5         | SnAgCuFeCo                 |
|       | 6241942  | Matsushita  | bal<br>bal   | (0.2-6)<br>10-30 | 0.1-3.5<br>0.05-2 | (0.5-3)  |         | 0.1-3   | 7-10<br>2-10 | P(<1)<br>P(<1) | Sn Zn Ag Cu<br>Sn Bi Zn Ag |
|       | 6253988  | Antaya Tec  | 30           | (0.25)           | 4.5               | 65       | (0.75)  | 0.5     |              |                | In Sn Ag Cu                |
| 12/01 | 6267823  | Matsushita  | bal          | 5-18             | 2-3.5             | (0.1-1.5 |         | (<0.7)  | (<10)        |                | Sn Bi Zn Ag                |
|       | 6296722  | Nihon Supr  | bal          |                  |                   |          |         | 0.1-2   | (Ga<1)       | Ni(<1)         | Sn Cu Ni (Ga)              |
|       | 6319461  | Nippon Gls  | bal          | (<10)            | 0.1-6             |          | (<10)   | 0.1-6   | 0.1-3        | Al,Ti          | SnAgCuZnAl                 |
|       | 6325279  | Matsushita  | bal          | 5-10             | 3.0-6.0           | 0.1-1.0  |         | 0.1-2.0 |              |                | SnBiAgCuIn                 |
|       |          |             |              |                  |                   |          |         |         |              |                |                            |
|       |          |             |              |                  |                   |          |         |         |              |                |                            |
|       |          |             |              |                  |                   |          |         |         |              |                |                            |

# **Pb-Free Candidate Solders**

| Composition<br>(wt %)  | Melting<br>Point (°C) | Applications       | Concerns                                 |
|------------------------|-----------------------|--------------------|------------------------------------------|
| 58Bi-42Sn              | 139                   | PTH<br>Low temp    | Poor wetting<br>Low mp phase<br>(BiPbSn) |
| Sn-3.5Ag               | 221                   | SMT,<br>Flip chip  | Cu dissolution,<br>IMC,                  |
| Sn-3.5Ag-5Bi           | 208-215               | SMT                | Fillet lift in PTH<br>Low mp phase,      |
| Sn-3.5Ag-<br>0.7Cu     | 217                   | SMT, PTH,          | OSP wetting,<br>Voiding,<br>IMC          |
| Sn-0.7Cu               | 227                   | PTH,<br>Flip chip, | Poor wetting,<br>Cu dissolution,<br>IMC  |
| 63Sn-37Pb              | 183                   | PTH, SMT,<br>BGA   | Pb- environ                              |
| 95Pb-5Sn,<br>97Pb-3Sn, | 314,<br>317,          | Flip Chip,<br>C4,  | Pb- environ                              |

(5/02, SKK)

### **Technical Issues in Pb-Free Solders**

- What are the candidate Pb-free solders?
- What are the selection criteria?
- Can we make reliable Pb-free joints?
- What are the implications of higher reflow temp req. for the new solders?
- Are the new surface finishes needed?
- What is the Pb-free solder for flip chip?
- Are the new UBM(BLM) needed?
- Can we maintain the solder hierarchy?
- What are the reliability issues?
- What are the solidification mechanisms?
- Microstructure-property relations?
- Thermal fatigue mechanisms?
- Corrosion behavior of the new solders?
- Tin pest (transformation to gray tin)?
- Tin whisker growth?
- Electromigration of Pb-free solders?

#### **Bulk Properties of Pb-Free Solders**

| Properties            | Sn-37Pb | Sn-3.5Ag | Sn-5Sb | Sn-0.7Cu | Sn-9Zn |
|-----------------------|---------|----------|--------|----------|--------|
| Melting point<br>(°C) | 183     | 221      | 238    | 227      | 199    |
| UTS                   | 31-46   | 55       | 23-42  | 31       | 60-65  |
| (MPa)                 | [1]     | [2]      | [3]    | [4]      | [5]    |
| Elongation            | 35-176  | 35       | 90-350 | 12       | 38     |
| (%)                   | [1]     | [2]      | [3]    | [4]      | [5]    |
| Hardness              | 12.9    | 17.9     | 17.2   | 14.4     | 23     |
| (HV)                  | [6]     | [7]      | [7]    | [8]      | [9]    |
| Elec resistivity      | 17.0    | 7.7      | 17.1   | 10-15    | 10-15  |
| (μΩ-cm)               | [7]     | [7]      | [7]    | [10]     | [10]   |

References:

- 1. H. Rack and J. Maurin, J. Testing and Eval. Vol.2, p.351, (1974).
- 2. M. McCormack, et. al., Appl. Phys. Lett., Vol.63(1), pp.15-17, 1993.
- 3. R.K. Mahidhara, et al., J. Mat's Sci. Lett., Vol.13, pp.1387-1389, 1994.
- 4. S. Huh, et al., Mater. Trans.(Japan I. Metals), Vol.42(5), pp.739-744, 2001.
- 5. C.M. Chuang, et al., J. Elec. Mat's, Vol.30(9), p.1232, 2001.
- 6. S. K. Kang, T. G. Ference, J. Mater. Res., Vol.8(5), pp.1033-1040, 1993.
- 7. S.K. Kang, et al, Proc. 49th ECTC, pp.283-288, (1999).
- 8. P. Lauro, private communication, November, 2001.
- 9. Y. Miyazawa, T. Ariga, Mater. Trans. (Japan I. Metals), Vol.42(5), pp.776-782, (2001).
- 10. J. Glazer, J. Elec. Mat's, Vol.23(8), p.693 (1994).

(2/02, SKK)

### Shear Strength of Pb-Free Solder Joints (to Cu substrate)

| Solder Alloy<br>(wt %)   | Shear Strength<br>(MPa)              | Shear<br>Strength<br>(MPa)            | Shear<br>Strength<br>(MPa)                 | Presemt<br>Study<br>(MPa)  |
|--------------------------|--------------------------------------|---------------------------------------|--------------------------------------------|----------------------------|
| 63Sn-37Pb                | 32.7                                 | 29                                    | 9.2                                        | 50                         |
| Sn-3.65Ag                | 37.2                                 | 28<br>(Sn-3.5Ag)                      | 11.4                                       | 38<br>(Sn-3.5Ag)           |
| Sn-0.7Cu                 | 27.0                                 |                                       | 9.2                                        |                            |
| Sn-3.8Ag-0.7Cu           | 35.1                                 | 47<br>(3.6Ag-1Cu)                     | 12.5                                       | 39                         |
| Sn-3.5Ag-3Bi             |                                      |                                       |                                            | 49.6                       |
| Strain rate<br>(mm/min)  | 0.10                                 | 0.10                                  | 15                                         | 0.25                       |
| Solder joint Gap<br>(mm) | 175                                  | 76                                    | 100 ?                                      | 20                         |
| Test method              | Ring & plug                          | 4 point bend                          | Flip chip<br>in shear                      | Shear test                 |
| Reference                | JFoley, et al,<br>p.1258JEM,<br>2000 | B.Cook, et al,<br>p.1214,JEM,<br>2001 | D. Frear, et al<br>p.28, June<br>JOM, 2001 | S. Kang, et al,<br>TMS2002 |

(2/02, SKK)

### **Fabrication of Model Solder Joints**



A model solder joint made of two copper coupons of "L-shape" for electrical and mechanical evaluation.

(SKK, 2/02)

### **Electrical Resistance of Pb-Free Solder Joints**



Cu/Ni/Au Substrate



(SKK, 2/02)

### **Shear Strength of Pb-Free Solder Joints**



Cu/Ni/Au Substrate



### **Percent Elongation of Pb-Free Solder Joints**



Cu/Ni/Au Substrate



Interfacial Reactions, Microstructure and Mechanical Properties of Pb-Free Solder Joints in PBGA Laminates

S. K. Kang, W. K Choi, D.-Y. Shih, P. Lauro, D. Henderson<sup>\*</sup>, T. Gosselin<sup>\*</sup>, D. N. Leonard<sup>\*\*</sup>

IBM Research Division Thomas J. Watson Research Center

> \*IBM Microelectronics Endicott, NY \*\*IBM Microelectronics East Fishkill, NY

# **Scope of Study**

### **Objectives**

- Effect of Surface Finish
- Effect of Multiple Reflows

#### **Materials**

- BGA Solder Composition
  Sn-3.8Ag-0.7Cu (SAC)
- Surface Finishes
  - Cu/OSP
  - Au/Ni(P)
  - Au/Pd/Ni(P)

#### Joining Process

Reflow up to 12 cycles at 260°C

# **Joining Process**







"Laminate" side

Reflow #1

Reflow #2

| Module<br># | Surface Finish<br>(side B) | Surface Finish<br>(side L) | Reflow #<br>at 260 °C |
|-------------|----------------------------|----------------------------|-----------------------|
| 1           | Cu                         | Cu                         | 2,1                   |
| 2           | Cu                         | Cu                         | 7,6                   |
| 3           | Cu                         | Cu                         | 12,11                 |
| 4           | Au/Ni(P)                   | Cu                         | 2,1                   |
| 5           | Au/Ni(P)                   | Cu                         | 7,6                   |
| 6           | Au/Ni(P)                   | Cu                         | 12,11                 |
| 7           | Au/Ni(P)                   | Au/Ni(P)                   | 2,1                   |
| 8           | Au/Ni(P)                   | Au/Ni(P)                   | 7,6                   |
| 9           | Au/Ni(P)                   | Au/Ni(P)                   | 12,11                 |
| 10          | Au/Pd/Ni(P)                | Cu                         | 2,1                   |
| 11          | Au/Pd/Ni(P)                | Cu                         | 7,6                   |
| 12          | Au/Pd/Ni(P)                | Cu                         | 12,11                 |
| 13          | Au/Pd/Ni(P)                | Au/Pd/Ni(P)                | 2,1                   |
| 14          | Au/Pd/Ni(P)                | Au/Pd/Ni(P)                | 7,6                   |
| 15          | Au/Pd/Ni(P)                | Au/Pd/Ni(P)                | 12,11                 |

### Interfacial Microstructure of Sn3.8Ag0.7Cu with Cu-Cu after 2/1 Reflows at 260C



(5/02, SKK)

### Interfacial Microstructure of Sn3.8Ag0.7Cu with Au/Ni(P)-Cu after 2/1 Reflows at 260C



(5/02,SK

### Interfacial Microstructure of Sn3.8Ag0.7Cu with Au/Ni(P)-Au/Ni(P) after 2/1 Reflows at 260C



### Interfacial Microstructure of Sn3.8Ag0.7Cu with Au/Pd/Ni(P)-Cu after 2/1 Reflows at 260C



# IMC Growth as a Function of Reflow Cycle & Surface Finish



# **IMC Growth as a Function of Reflow Cycle & Surface Finish**



Au/Ni(P) (B) - Cu (L)

🔲 Cu side 🔳 Au/Ni side

30

25

20

15

10



Au/Ni(P) (B) - Au/Ni(P) (L)





Au/Pd/Ni(P) (B) - Cu (L)



Au/Pd/Ni(P) (B) - Au/Pd/Ni(P) (L)



### Composition Analysis of the Interfacial IMC after 12/11 Reflows



| Surface Einich                 |                               |             |             |             |             |  |  |  |
|--------------------------------|-------------------------------|-------------|-------------|-------------|-------------|--|--|--|
| Surra                          | ce rinish                     | Sn<br>(wt%) | Ag<br>(wt%) | Cu<br>(wt%) | Ni<br>(wt%) |  |  |  |
| Cu-Cu                          |                               | 63.05       | -           | 36.95       | -           |  |  |  |
| Cu-                            | ②<br>Cu side                  | 63.93       | 0.33        | 35.1        | 0.64        |  |  |  |
| Au/Ni(P)                       | Au/Ni(P) <sup>③</sup><br>side | 63.32       | 0.3         | 33.7        | 2.68        |  |  |  |
| Au/Ni(P)-Au/Ni(P) <sup>④</sup> |                               | 71.39       | 0.24        | 25.49       | 2.88        |  |  |  |

# Composition Analysis in the Solder Matrix after 12/11 Reflow



| Surface<br>Finish | Site            | Sn<br>(wt%) | Ag<br>(wt%) | Cu<br>(wt%) | Ni<br>(wt%) |
|-------------------|-----------------|-------------|-------------|-------------|-------------|
| 00.               | Near Cu side    | 97.71       | 1.34        | 0.95        |             |
| Cu-Cu             | In the middle   | 94.81       | 3.95        | 1.24        |             |
| Cu-               | Near Cu side    | 96.31       | 3.03        | 0.6         | 0.06        |
| Au/NI(P)          | In the middle   | 95.17       | 3.57        | 1.26        |             |
| Au/Ni(P)          | Near Au/Ni side | 95.21       | 3.87        | 0.49        | 0.43        |
| Au/Ni(P))         | In the middle   | 95.12       | 3.65        | 1.23        |             |

# Microhardness Variations as a Function of Reflow Cycle

 Average values in each BGA solder ball



# Microhardness Variations as a Function of Ball Location



# Microstructure of BGA Solder Balls as a Function of Surface Finish and Reflow Cycle



100**m**m

# Conclusions

- Surface finish plays a dominant role in determining the microstructure, mechanical properties, and possibly the reliability of BGA solder joints.
- IMC growth is faster on Cu than on Au/Ni or Au/Pd/Ni surface finish.
- Microhardness of solder joints is more affected by surface finish, and less affected by reflow cycle.
- Ni-Ni joint is harder than Cu-Cu joint, possibly resulting in reduced fatigue life.
- The microstructure of BGA joints changes with reflow cycles, affected by the dissolution of surface finish layers.