

Packaging Issues of MEMS Devices

Liwei Lin

Associate Professor, Department of Mechanical Engineering Co-Director, Berkeley Sensor and Actuator Center University of California at Berkeley

9/13/2002

Presentation Outline

MEMS Products & Packaging Issues
Microelectronics Packaging
MEMS Packaging Approaches

Integrated microfabrication processes
Water bonding processes

Summary

Existing MEMS Products

Device	Year	Units	Sale	Comment
		(M)	(M)	
Blood Pressu	ire 1998	20	22	price drop, sale flat
Auto MAP	2000	52	400	price dropping
Auto Acceler	om. 2002	100	~400	price dropping
Auto Gyro	2002	20	~200	newer market
Ink-Jet Head	2002	470	8,400	huge market
Disk-Drive He	ead 2002	1,500	12,000	huge market
Head Position	ner 2002	400	~800	new market
Displays	2000	1	300	High chip cost
Valves	2005	1~2	100	small market

MEMS Packaging Issues

MEMS Accelerometer

 Example: Surface-Micromachined
 Accelerometers by Analog Devices, Inc.

Key Issues

- Free standing microstructures
- Hermetic sealing, Vacuun

- Temperature sensitive ADXL50 by Analog Devices, Inc. microelectronics

9/13/2002

Example – Optical MEMS

Optical MEMS

 Example: surfacemicromachined DMD by Texas Instrument

Key Issues

- Free standing microstructures
- Hermetic sealing
- Temperature sensitiv microelectronics

5

TI's DMDTM Chip for Projection Display

Example – BioMEMS & Microfluidics

Microfluidics

 Example: diffusionbased sensor by Micronics Inc.

Key Issues

- Micro-to-Macro interconnector
- Good sealing
- Temperature sensitive materials

Micronics Inc.'s T sensor

9/13/2002

Liwei Lin, University of

Example – RF MEMS

MEMS Relay

 Example: micromachined RF relay by Omron with a needle (1 billion operation, 0.5 msec)

Key Issues

- Free standing microstructures
- Hermetic sealing
- Vacuum encapsulation ?

Omron's MEMS RF relay

9/13/2002

IC and MEMS Packaging

IC Packaging

- well-developed (dicing, wire bonding ...)
- 30% to 95% of the whole manufacturing cost
- MEMS Packaging
 - specially designed packaging processes
 - difficult due to moving structures, chemicals ...
 - the most expensive process in micromachining

Microelectronics Packaging

Electronic Package Hierarchy

- Chip
- Module (1st level)
- Card (2nd level)
- Board (3rd level)
- Gate (4th level)

Liwei Lin, University of California at Berkeley

9

Approach

- To adopt IC packaging processes as much as possible
 Standard IC Dicing Line Micropackage Interconnection
- To protect MEMS devices and follow IC packaging processes
- Encapsulations (caps) are required

NSF CAREER Award, Division of Electrical & Communication Systems, 5/98-4/2002 Rated No. 1 in the panel

MEMS Post-Packaging

MEMS Packaging Processes

- Integrated Processes
 - Highly process dependent, not versatile
 - Not suitable for <u>post-processing</u>
- Wafer Bonding Processes
 - Need <u>high temperature</u> which may damage microelectronics or temperature sensitive MEMS materials
 - Require very <u>smooth and flat surfaces</u>
- Localized Heating & Bonding Processes

 Localized Eutectic, Fusion bonding and others

DARPA BAA98-43, MTO/MEMS Program, 5/98 - 4/2001 US patent, No. 6,232,150, May 15, 2001

Massively Parallel Post-Packaging

Innovative Approach

Industrial Participants

- Analog Devices Inc.
- Motorola Inc.
- Delco Electronics Corp.
- Honeywell Inc.
- Ford Motor Company
- SiTek Inc.

- - -

Rationale: Localized Heating

High temperature is confined

• Temperature is controllable

13

9/13/2002

Lin, Cheng and Najafi, Japanese Journal of Applied Physics, Vol. 11B, pp. 1412-1414, 1998

Surface +

14

Localized Eutectic Bonding

9/13/2002

Cheng, Lin and Najafi, IEEE/ASME J. of MEMS, Vol. 9, pp. 3-8, 2000

Surface +

Localized Fusion Bonding

9/13/2002

Cheng, Lin and Najafi, IEEE/ASME J. of MEMS, Vol. 10, pp. 392-399, 2001

Localized Solder Bonding

Indium solder as intermediate layer - Al Dew Point Sensor

Surface +

9/13/2002

Surface +

Localized Plastics Bonding

Plastics to Silicon, to Glass and to Plastics bonding

Direct encapsulation of liquid

Liwei Lin, University of California at Berkeley

17

Luo and Lin, Transducers'01

Surface +

Nanosecond Laser Welding

Ultrafast bonding, Restricted heating zone, Parallel packaging

Bonding results

Kim and Lin, MEMS'02, pp. 415-418, 2002

19

Ultrasonic Bonding and Sealing

Lateral vibration setup for ultrasonic bonding

9/13/2002

20

Selective Induction Bonding

- This method has great potential for wafer-level selective packaging processes
- The bonding time can be very fast and the heating zone can be well confined by remote heating source

Chiao and Lin, Sensors and Actuators, Vol. 91A, pp. 404-408, 2001

RTP Bonding (Al to Glass or Nitride)

RTP (Rapid Thermal Processing) for device encapsulations (750°C for 10 seconds)

Liwei Lin, University of California at Berkeley

21

Lin et. al., "Microelectromechanical Filters for Signal Processing," IEEE/ASME J. of Microelectromechanical Systems, Vol. 7, pp.286-294, 1998

LPCVD Selective Encapsulation

SEM Microphoto

Measured Spectrum, Q = 2200

Cheng, Hsu, Lin, Najafi and Nguyen, MEMS'01, pp. 18-21, 2001

Surface + Localized Vacuum Encapsulation

• Vacuum encapsulated comb resonator under a glass cap

• Long-term testing under the vacuum packaged cavity

Alta Tees Oft

23

9/13/2002

Chiao and Lin, Hilton Head'02

RTP Vacuum Packaging Results

- Quality Factor~ 1800?200
- Pressure inside the package ~ 200mTorr

 Quality factor increases with the pre-baking time

9/13/2002

MEMS Packaging Summary

Localized thermal bonding processes Eutectic, fusion, solder, laser welding, ultrasonic, plastic bonding processes RTP bonding - Aluminum-to-glass, aluminum-to-nitride Vacuum packaging processes Integrated LPCVD nitride sealing Localized aluminum-glass bonding - RTP aluminum-nitride bonding

Acknowledgements

Researchers

- Dr. Y.T. Cheng Localized resistive heating & bonding
- Dr. M. Chiao RTP bonding
- Dr. C. Luo Nanosecond laser welding
- Mr. Y.C. Su Plastic bonding
- Mr. J.B. Kim Ultrasonic bonding
- Mr. A. Cao Inductive heating and bonding
- Funding sources
 - NSF CAREER AWARD, DMII grant
 - DARPA/MTO/MEMS Program, DARPA/DSO/BioFlips program

