Electromigration Study of Pure Sn Conductors

Jim Lloyd
IBM TJ Watson Research Center
Yorktown Heights NY 10598
Purpose/Charter

• “Green” Computer
 – Pb may (will) be banned from use in the next decade in electronic components
 • Unfortunately it is a wonderful material for solder joining, there ain’t nothin’ better
 – Sn is a “green” metal
 • Not as well characterized as Pb
 – Strange stuff
 • Has significant problems that Pb does not
 – Sn “Pest”
 – Extreme fast diffusion of Noble and transition metals
 • Anisotropy
 – Mechanical and electrical
Interesting Initial Results

- Engineering
 - j x l Determination
 - Immortality
 - Activation Energy

- Science
 - Resistance Decay
Sn Characterization

- **Blech Length effect**
 - Literature is very inconsistent
 - Wide variation in jxl product
- **Effect of contacted metals**
 - Cr
 - No solid solubility (<.0001%)
 - No IMC formation
 - Ni
 - No solid solubility (<.005%)
 - IMC formation
 - Oxide
Failure Physics
(Metallization Driving Forces)

\[F = \left(\sum_{i} F_i \right) = F_{em} + F_{tm} + F_{\sigma} + F_S \]

\[\vec{F}_{em} = Z \ast e \rho \vec{j} \]

\[F_{\sigma} = \Omega \frac{d\sigma}{dx} \]

\[F_{tm} = \frac{Q^* dT}{T} \frac{dx}{dx} \]

\[F_S = \frac{kT dC}{C} dx \]
Mass Transport Equation

\[J = \frac{DC}{kT} \left(Z * e \rho j - \Omega \frac{d\sigma}{dx} \right) \]

Due to electromigration and stress gradient,

Stress gradient builds to oppose electromigration.
Blech Condition

\[J = \frac{DC}{kT} \left(Z^* e \rho j - \Omega \frac{d\sigma}{dx} \right) = 0 \]

If there is a blocking boundary condition, electromigration stops completely at steady state
A Blech Length will be defined for any current density.

\[j \times l_{Blech} \leq A_{Blech} \]
Consequences for C4 Electromigration Testing

• “Black’s Law” isn’t
 – Only valid for nucleation dominated failure far from the steady state

• The static steady state condition is very near the use condition in solder ball technology
 – More important to go to lower than higher current density

We may luck out and have solder ball Immortality
Blech Product Determination

- First Experiments with Sn/Cr
 - Successively lower j to find when Blech Condition is satisfied
 - Initial thoughts were that Blech Product for Sn would be substantially less than for Al or Cu
 - lower yield strength
 - Higher z^*

If Blech Product is on the order of 100 we may be able to design immortality
Test Structure
Resistance vs Time

Sn Cr 1mA 150C Device 2-8

Therefore the Blech Product is less than 250
Extrusion

Before

After ~20 hours at 5 mA

Therefore Blech Product is less than 1250
Sn Cr 0.5 mA 150C then 170C

Therefore the Blech Product is > 100
Length Effect?

- Failures can occur at 1 mA @ 150C
 - Sample dimensions
 - 2 X 4 X 200 µm
 - \(j = 1.25 \times 10^4 \text{ A/cm}^2 \)
 - \(jl < 250 \text{ A/cm} \)
- Failures do **NOT** occur at 500 µA
 - \(jl > 125 \text{ A/cm} \)
 - For 125 µm solder ball, \(j_{\text{crit}} = \sim 10,000 \text{ A/cm}^2 \)
 - **Immortality below** 1.2 A
 - For 75 µm solder ball, \(j_{\text{crit}} = \sim 15,000 \text{ A/cm}^2 \)
 - **Immortality below** 650 mA
Back Flow

• Merely exceeding the Blech Length of a value of j is not sufficient
 – If the length of the sample is twice l_B, the driving force for failure is reduced by half near end of life and failure times are increased proportionally

• Apparent current density exponent (j^{-n}) will be incorrect
 – Extrapolations to use condition unrealistic
Back Flow

• Experiments at higher current density may be irrelevant
 – Failure by Sn electromigration may not be possible at use conditions
 – For $j_l = 12.5 \text{ ma/} \mu\text{m}$ the Blech current density for a 125 μm C4 is $\sim 0.1 \text{ ma/} \mu\text{m}^2$ (10^4 A/cm^2)

$$\int_{0}^{l} j(x) \, dx \leq 12.5 \frac{mA}{\mu m}$$

Actually
Test Structure II

Like TS I but with different boundary conditions
“Reservoir Effect” on RHS
Activation Energy

• From Drift Velocity
 – 5 temperatures
 • 90°C, 110°C, 130°C, 150°C, 170°C
 • Wide temperature range
 • Down to operational use condition
 – 10 mA
 • Order of magnitude higher than Blech Current for this structure
 • No contribution from back stress gradient
 – Samples allowed to relax fully before measurement
Activation Energy

Sn Electromigration (Drift Velocity)
0.96 +- 0.05 eV

Upper 95% Confidence Limit
Lower 95% Confidence Limit
Activation Energy

\[\Delta H = 0.96 \pm 0.05 \text{ eV} \]

– No Evidence of Grain Boundary Contribution

– Literature
 - Lattice 0.99 and 1.1 eV
 - Grain Boundary 0.41 to 0.51 eV
Other Configurations

- Similar Behavior wrt Blech Product
 - Sn on Ni
 - Sn on Oxide
 - Sn – 0.7 % Cu alloy
Interesting Initial Results

• Engineering
 – j x l Determination
 • Immortality
 – Activation Energy

• Science
 – Resistance Decay
Resistance Decay

Decay time is a function of the current
Resistance later rises due to damage/edge motion
Decay

<table>
<thead>
<tr>
<th>I</th>
<th>tau</th>
<th>A</th>
<th>Vo</th>
<th>Ro</th>
<th>V inf</th>
<th>R inf</th>
<th>DV/Vo %</th>
<th>Delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-9 Cr</td>
<td>0.5</td>
<td>47172 5.00E-07</td>
<td>0.00716</td>
<td>14.32</td>
<td>0.00667</td>
<td>13.34</td>
<td>6.843575</td>
<td>0.98</td>
</tr>
<tr>
<td>2-8 Cr</td>
<td>1</td>
<td>6581 8.10E-04</td>
<td>0.0149</td>
<td>14.9</td>
<td>0.0142</td>
<td>14.2</td>
<td>4.697987</td>
<td>0.7</td>
</tr>
<tr>
<td>2-7 Cr</td>
<td>2</td>
<td>1214 4.50E-04</td>
<td>0.0187</td>
<td>9.35</td>
<td>0.0182</td>
<td>9.1</td>
<td>2.673797</td>
<td>0.25</td>
</tr>
<tr>
<td>2-5 Cr</td>
<td>2</td>
<td>6018 3.10E-03</td>
<td>0.025</td>
<td>12.5</td>
<td>0.0218</td>
<td>10.9</td>
<td>12.8</td>
<td>1.6</td>
</tr>
<tr>
<td>2-3 Cr</td>
<td>4</td>
<td>453 4.00E-03</td>
<td>0.0416</td>
<td>10.4</td>
<td>0.0376</td>
<td>9.4</td>
<td>9.615385</td>
<td>1</td>
</tr>
<tr>
<td>2-4 Cr</td>
<td>4</td>
<td>1525 9.50E-04</td>
<td>0.0347</td>
<td>8.675</td>
<td>0.0338</td>
<td>8.45</td>
<td>2.59366</td>
<td>0.225</td>
</tr>
</tbody>
</table>

Substantial uncorrelated variation in initial resistance and in delta R
$1/j^2$ Dependence

![Graph showing Cr Underlay Decay with the equation $y = 9927.4x^{-1.926}$]
Other Results

• Not due to temperature alone
 – Samples sitting at 150 C for up to 2 months before application of DC
 • Joule heating is too small
 – AC tests show only minimal changes (<0.5%)
 • Frequency dependent
 – 1 KHz a small possible effect
 » (probably due to temperature)
 – 10 KHz, 100 KHz no effect
Why?

• Sn is anisotropic
 – 40% difference in resistivity
 • (14.3 to 9.9 $\mu\Omega\cdot$cm)
 – 20% difference in elastic modulus
 • $C_{11} = 7.23$ and $C_{33} = 8.84 \times 10^{11}$ dyne/cm2
Why?

• Electromigration induced stress gradient produces driving force inducing re-orientation of Sn structure to minimize strain energy.

• Final orientation is lower resistance
Effect of Structure

• Effect prominent on Sn/Cr and Sn/Ni
• Much less on Sn/SiO₂
• Texture (Ken Rodbell) is very different in as deposited condition
 – Sn/SiO₂ already aligned with lower resistivity orientation
• Before and after Sn/Ni showed change in ρ and change in preferred orientation
What?

• How does this come about?
 – Decay τ suggests grain boundary processes
 • Consistent with \sim0.4 eV
 – Grain boundary diffusion?

• More work needs to be done
Comment:
Mass Transport with Soret Effect

\[J = \frac{DC}{kT} \left(Z^* e \rho j + \frac{Q^*}{T} \frac{dT}{dx} - \Omega \frac{d\sigma}{dx} \right) \]
Mass Transport with Soret Effect

• Soret diffusion can have a profound effect on the behavior
 – Comparable to the electromigration driving force in Sn
 – Bizarre current density effects can be expected

• Any projection of reliability must be made in terms of the temperature gradients
 – Must be restricted/eliminated/specified in design rules
I get by with a little help from my friends

Ken Rodbell
Henry Nye
Cev Noyan
Conal Murray

Steve Kilpatrick
Tom Shaw
Mike Sullivan

Stephanie Chiras
Bob Rosenberg
Michael Lane