

Electromigration Study of Pure Sn Conductors

Jim Lloyd

IBM TJ Watson Research Center Yorktown Heights NY 10598

Purpose/Charter

"Green" Computer

- Pb may (will) be banned from use in the next decade in electronic components
 - Unfortunately it is a wonderful material for solder joining, there ain't nothin' better
- Sn is a "green" metal
 - Not as well characterized as Pb
 - Strange stuff
 - Has significant problems that Pb does not
 - Sn "Pest"
 - Extreme fast diffusion of Noble and transition metals
 - Anisotropy
 - Mechanical and electrical

Interesting Initial Results

- Engineering
 - j x l Determination
 - Immortality
 - Activation Energy
- Science
 - Resistance Decay

Sn Characterization

- Blech Length effect
 - Literature is very inconsistent
 - Wide variation in jxl product
- Effect of contacted metals
 - Cr
 - No solid solubility (<.0001%)
 - No IMC formation
 - Ni
 - No solid solubility (<.005%)
 - IMC formation
 - Oxide

Failure Physics (Metallization Driving Forces)

$$F = \left(\sum_{i} F_{i}\right) = F_{em} + F_{tm} + F_{\sigma} + F_{S}$$

$$\vec{F}_{em} = Z * e\rho \vec{j}$$

$$F_{tm} = \frac{Q^* dT}{T dx}$$

$$F_{\sigma} = \Omega \frac{d\sigma}{dx}$$

$$F_{S} = \frac{kT \, dC}{C \, dx}$$

Mass Transport Equation

$$J = \frac{DC}{kT} \left(Z * e\rho \, j - \Omega \frac{d\sigma}{dx} \right)$$

Due to electromigration and stress gradient

Stress gradient builds to oppose electromigration.

Blech Condition

$$J = \frac{DC}{kT} \left(Z * e\rho \, j - \Omega \frac{d\sigma}{dx} \right) = 0$$

If there is a blocking boundary condition, electromigration stops completely at steady state

Blech Length

 $j \times l_{Blech} \leq A_{Blech}$

A Blech Length will be defined for any current density.

Consequences for C4 Electromigration Testing

- "Black's Law" isn't
 - Only valid for nucleation dominated failure far from the steady state
- The static steady state condition is very near the use condition in solder ball technology
 - More important to go to lower than higher current density

We may luck out and have solder ball Immortality

Blech Product Determination

- First Experiments with Sn/Cr
 - Successively lower j to find when Blech Condition is satisfied
 - Initial thoughts were that Blech Product for Sn would be substantially less than for Al or Cu
 - lower yield strength
 - Higher z*

If Blech Product is on the order of 100 we may be able to design immortality

Test Structure

Resistance vs Time

Sn Cr 1mA 150C Device 2-8

Therefore the Blech Product is less than 250

Extrusion

Before

After ~20 hours at 5 mA

Therefore Blech Product is less than 1250

Therefore the Blech Product is > 100

Length Effect?

- Failures can occur at 1 mA @ 150C
 - Sample dimensions
 - 2 X 4 X 200 µm
 - $j = 1.25 \text{ x } 10^4 \text{ A/cm}^2$
 - -jl < 250 A/cm
- Failures do NOT occur at 500 μA
 - jl > 125 A/cm
 - For 125 μm solder ball , j_{crit} = \sim 10,000 A/cm^2
 - Immortality below 1.2 A

- For 75 µm solder ball, $j_{crit} = \sim 15,000 \text{ A/cm}^2$

• Immortality below 650 mA

Back Flow

- Merely exceeding the Blech Length of a value of j is not sufficient
 - If the length of the sample is twice l_B , the driving force for failure is reduced by half near end of life and failure times are increased proportionally
- Apparent current density exponent (j⁻ⁿ) will be incorrect
 - Extrapolations to use condition unrealistic

Back Flow

- Experiments at higher current density may be irrelevant
 - Failure by Sn electromigration may not be possible at use conditions
 - For jl = 12.5 ma/µm the Blech current density for a 125 µm C4 is ~ 0.1 ma/µm² (10⁴ A/cm²)

Actually
$$\int_{0}^{l} j(x) dx \le 12.5 \frac{mA}{\mu m}$$

Test Structure II

Like TS I but with different boundary conditions "Reservoir Effect" on RHS

Activation Energy

- From Drift Velocity
 - 5 temperatures
 - 90C, 110C, 130C, 150C, 170C
 - Wide temperature range
 - Down to operational use condition
 - 10 mA
 - Order of magnitude higher than Blech Current for this structure
 - No contribution from back stress gradient
 - Samples allowed to relax fully before measurement

Activation Energy

Activation Energy

- $\Delta H = 0.96 + 0.05 \text{ eV}$
 - -No Evidence of Grain Boundary Contribution
 - Literature
 - Lattice 0.99 and 1.1 eV
 - Grain Boundary 0.41 to 0.51 eV

Other Configurations

- Similar Behavior wrt Blech Product
 - Sn on Ni
 - Sn on Oxide
 - Sn 0.7 % Cu alloy

Interesting Initial Results

- Engineering
 - j x l Determination
 - Immortality
 - Activation Energy
- Science
 Resistance Decay

Resistance Decay

Decay time is a function of the current Resistance later rises due to damage/edge motion

Decay

	1	tau	A	Vo	Ro	V inf	R inf	DV/Vo %	Delta
2-9 Cr	0.5	47172	5.00E-07	0.00716	14.32	0.00667	13.34	6.843575	0.98
2-8 Cr	1	6581	8.10E-04	0.0149	14.9	0.0142	14.2	4.697987	0.7
2-7 Cr	2	1214	4.50E-04	0.0187	9.35	0.0182	9.1	2.673797	0.25
2-5 Cr	2	6018	3.10E-03	0.025	12.5	0.0218	10.9	12.8	1.6
2-3 Cr	4	453	4.00E-03	0.0416	10.4	0.0376	9.4	9.615385	1
2-4 Cr	4	1525	9.50E-04	0.0347	8.675	0.0338	8.45	2.59366	0.225

Substantial uncorrelated variation in initial resistance and in delta R

1/j² Dependence

Other Results

- Not due to temperature alone
 - Samples sitting at 150 C for up to 2 months before application of DC
 - Joule heating is too small
 - AC tests show only minimal changes
 (<0.5%)
 - Frequency dependent
 - 1 KHz a small possible effect
 - » (probably due to temperature)
 - 10 KHz, 100 KHz no effect

Why?

- Sn is anisotropic
 - 40% difference in resistivity
 - (14.3 to 9.9 μΩ–cm)
 - 20% difference in elastic modulus
 - $C_{11} = 7.23$ and $C_{33} = 8.84 \text{ X } 10^{11} \text{ dyne/cm}^2$

Why?

- Electromigration induced stress gradient produces driving force inducing reorientation of Sn structure to minimize strain energy.
- Final orientation is lower resistance

Effect of Structure

- Effect prominent on Sn/Cr and Sn/Ni
- Much less on Sn/SiO₂
- Texture (Ken Rodbell) is very different in as deposited condition
 - Sn/SiO₂ already aligned with lower resistivity orientation
- Before and after Sn/Ni showed change in ρ and change in preferred orientation

What?

- How does this come about?
 - Decay τ suggests grain boundary processes
 - Consistent with $\sim 0.4 \text{ eV}$
 - Grain boundary diffusion?
- More work needs to be done

Comment:

Mass Transport with Soret Effect

 $J = \frac{DC}{kT} \left(Z * e\rho \, j + \frac{Q^*}{T} \frac{dT}{dx} - \Omega \frac{d\sigma}{dx} \right)$

Mass Transport with Soret Effect

- Soret diffusion can have a profound effect on the behavior
 - Comparable to the electromigration driving force in Sn
 - Bizarre current density effects can be expected
- Any projection of reliability must be made in terms of the temperature gradients
 - Must be restricted/eliminated/specified in design rules

I get by with a little help from my Ken Rodbell friends Steve Kilpatrick Henry Nye Tom Shaw

Mike Sullivan

Conal Murray

Cev Noyan

Stephanie Chiras

Bob Rosenberg

Michael Lane