Creep Properties of Lead-free Solder Joints

J.W. Morris, Jr¹, H.G. Song¹ and F. Hua²

1 Department of Materials Science and Engineering, University of California, Berkeley and Materials Science Division, Lawrence Berkeley National Laboratory

² Intel Corporation, Santa Clara, California

MATERIALS SCIENCE DIVISION LAWRENCE BERKELEY NATIONAL LABORATORY

Motivation

- High homologous temperature during thermal fatigue means that creep is a major deformation mode.
- Creep behavior of Lead(Pb)-free solder joints in shear must be known to use them reliably in microelectronic applications.

Pb-Free Solders of Interest in This Work

Solder System	M.P.(?C)	Constituent phases	T/T _m at R.T.
Sn-0.7Cu	227	β -Sn, Cu ₆ Sn ₅	0.596
Sn-3.5Ag	221	β-Sn, Ag ₃ Sn	0.603
Sn-10In-3.1Ag	204	β -Sn, Ag ₂ In, γ -InSn	0.625
Sn-3Ag-0.5Cu	218	β -Sn, Ag ₃ Sn, Cu ₆ Sn ₅	0.607

Experimental Procedure

- Solder alloy manufacturing
 - Alloyed by vacuum arc melting
 - Rolled to make foil after homoginization
 - Punched to get the constant volume of solder
- Test specimen manufacturing
 - Manufactured solder masked Cu coupons with 9 pads
 - Assembled to single-shear specimens with bare Cu and electroless Ni/immersion Au plated coupons
 - Reflow and annealing
- Creep tests
 - Performed at 60, 95, 130? C under constant load conditions

Reflow Profile (at N₂ atmosphere)

- Reflow peak temperature of 235°C for SnAg, SnInAg, SnAgCu and 245°C for SnCu
- Followed by aging at 160°C for 4 hours.

MATERIALS SCIENCE DIVISION LAWRENCE BERKELEY NATIONAL LABORATORY

Geometry of Single-Shear Specimen

MATERIALS SCIENCE DIVISION LAWRENCE BERKELEY NATIONAL LABORATORY

Creep Test Apparatus

MATERIALS SCIENCE DIVISION LAWRENCE BERKELEY NATIONAL LABORATORY

Typical Creep Curves of Solder Joints

MATERIALS SCIENCE DIVISION LAWRENCE BERKELEY NATIONAL LABORATORY

SnCu: Shear Stress vs. Shear Strain rate

MATERIALS SCIENCE DIVISION LAWRENCE BERKELEY NATIONAL LABORATORY

SnAg: Shear Stress vs. Shear Strain rate

MATERIALS SCIENCE DIVISION LAWRENCE BERKELEY NATIONAL LABORATORY

SnInAg: Shear Stress vs. Shear Strain rate

MATERIALS SCIENCE DIVISION LAWRENCE BERKELEY NATIONAL LABORATORY

SnAgCu: Shear Stress vs. Shear Strain rate

MATERIALS SCIENCE DIVISION LAWRENCE BERKELEY NATIONAL LABORATORY

Stress vs. Strain rate at 60°C

MATERIALS SCIENCE DIVISION LAWRENCE BERKELEY NATIONAL LABORATORY

Stress vs. Strain rate at 95°C

MATERIALS SCIENCE DIVISION LAWRENCE BERKELEY NATIONAL LABORATORY

Stress vs. Strain rate at 130°C

MATERIALS SCIENCE DIVISION LAWRENCE BERKELEY NATIONAL LABORATORY

Sn: Data normalized separately for high and low stress

Materia Ligeore and three doto points in the middle of the cateria engineering Lawrence Berkeley National Laboratory University of California at Berkeley

SnCu: Data normalized separately for high and low stress

SnAgCu: Data normalized separately for high and low stress

LAWRENCE BERKELEY NATIONAL LABORATORY

SnAg: Data normalized separately for high and low stress

Q-n Values from Normalized data

Solders	n		Q(KJ/mole)		
	low	high	low	high	t/G at transition
Sn-Cu	3.5	8.9	90	85	3~4 x 10 ⁻⁴
Sn-Ag	4.5	10.6	80	75	7~8 x 10 ⁻⁴
Sn-In-Ag	5.4	9.5	100	115	6~7 x 10 ^{−4}
Sn-Ag-Cu	6.6	10.7	95	75	7~8 x 10 ⁻⁴
Sn	5.8	7.7	85	65	3~4 x 10 ⁻⁴

* Based on Shear Modulus for Pure Sn. G=16302-40.5T(°C) Materials Science Division Lawrence Berkeley National Laboratory

Sn: Normalized data(when Q=80KJ/mole)

LAWRENCE BERKELEY NATIONAL LABORATORY

UNIVERSITY OF CALIFORNIA AT BERKELEY

SnAgCu: Normalized data(Q=85KJ/mole)

SnAg: Normalized data(when Q=75KJ/mole)

SnCu: Normalized data(when Q=85KJ/mole)

Conclusion

- Sn-rich solders show two regimes of steady-state creep behavior
 - n_L ~ 3.5-6.5 at low stress
 - n_H ~ 8-11 at high stress

– Break at $\tau/G \sim 4x10^{-4}$ (Sn,SnCu), 7x10⁻⁴ (SnAgX)

• The high-stress exponent (n_H) increases dramatically near room temperature

- due to dominant Sn constituent

• Nonetheless, overall creep behavior is reasonably well fit by two-stage curve with Q \sim 80 KJ/mole