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Converts AC power (fixed frequency, voltage) to 
AC Power (variable frequency, current, and voltage)

Enables exact control of speed (RPM) and torque of motors
Motors become  controlled electromechanical energy converters.

Variable Speed Drive

Variable Speed Drive & Motor 
Automation System

Performance Metrics:
• Power Density
• Cost
• Reliability

AC Motor
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Variable Speed Drive and Motor Applications

• Factory assembly lines
• Heating, ventilation and air-conditioning
• Refrigeration
• Disc drives / digital storage
• Electric / hybrid vehicles - commercial and 

military
• Rail transport
• Elevators
• Actuation of e.g., military aircraft controls, 

ship controls
• Practically anything that moves!
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Variable Speed Motor Drive Block Diagram

Variable Speed Motor Drive 

AC / DC 
Power

Conversion
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Torque / Speed 
Control Electronics

Motor /
Load

Solid State
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Electrical 
Power
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The “Heart” of the Motor Drive:
The Solid-State Power Assembly

Silicon Power Transistors

Ceramic Insulation

Wirebonded 
InterconnectionsSoldered 

Interconnections

Gel 

Plastic
Housing

Power Terminals

Metal 
Baseplate

Heatsink

Schematic Cross Section of Typical Solid State Power Assembly
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Thermal Management Goal: Decrease 
Power Density Between Device & Heatsink 

Baseplate Power 
Density ~ 105 W/m2

Heatsink Power 
Density ~ 103  W/m2

Silicon Transistor Power
Density = 106 W/m2

5 hp Motor Drive Example
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Thin, Large Area Solder Joints 
Unique to Solid-State Power Assemblies

Devices

Internal top view of a 1200A, 3300V solid-state module
(courtesy: Eupec GmbH+ Co.)

1 cm

Examples of 
Buried, 

Continuous 
Solder Layers

Copper-Clad
Ceramic 

Substrates

Devices

Substrate

Not to scale

Solder

Copper Baseplate

Baseplate

Solder

Schematic Side View
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Heatsink

. .

.
Device, Tj

Solder Joint Cracking/Delamination 
Raises Package Thermal Resistance

. .

Device Substrate

Solder

Heat
Fatigue Crack / Delamination

No Heat Flow
b/c Fatigue Crack

~

Pristine condition

Damaged condition

Solder

Substrate

Heat

After Some Period 
of Operation
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Stress, σ (∼ ∆α∆Τ)σ (∼ ∆α∆Τ)σ (∼ ∆α∆Τ)σ (∼ ∆α∆Τ)

h Silicon Device

Substrate

Crack

Driving Force for Delamination: 
Mechanical Strain Energy Release Rate, GI

= GI
( )
E
1hZ 22 υ−σ

Mechanical strain energy release rate, GI, 
is the “applied load”

Z ~ 0.3 for this geometry
E = Young’s modulus
ν = Poisson’s ratio
σ = In-plane mechanical stress
h = Top layer thickness
GI = Applied strain energy release rate
∆α = Coefficient of thermal expansion mismatch
∆T = Range of temperature excursion

Solder Interface
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Experimental Methodology: 
Materials and Architectures

Four solder compositions:
97.5Pb/1.5Ag/1.0Sn (Tm=309°C)
80Au/20Sn(Tm=280°C)
96.5Sn/3.5Ag(Tm=221°C)
63Sn/37Pb(Tm=183°C)

Silicon Chip

1/4” Copper Substrate

Hhc
Solder, hs

Z

X

Y

Stress, σ   + σ σ   + σ σ   + σ σ   + σ xx        yy

Three silicon device sizes:
Small:  0.2” square
Medium:  0.6” square
Large:  1.0” square

Three substrate coefficients of thermal expansion (CTE)
Low:  Kovar (~ 6 ppm/°C)
Medium:  mild steel (~12 ppm/°C)
High:  copper (~17 ppm/°C)

1 inch

Test Article
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Different Solders Exhibit 
Large Differences in Delamination

80Au-20Sn
Solder

63Sn-37Pb
Solder

As Soldered      1 cycle        10 cycles      100 cycles   1000 cycles

∆α∆α∆α∆α = 14.1 ppm /ºC

Cu

Si

Sn-Pb or Au-Sn Solder

∆α∆α∆α∆α = 14.1 ppm /ºC

0.6”

Ultrasonic Acoustic Micrographs

Intact Damaged

Intact Damaged
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Stress, σ (∼ ∆α∆Τ)σ (∼ ∆α∆Τ)σ (∼ ∆α∆Τ)σ (∼ ∆α∆Τ)

h Silicon Device

Substrate

Crack

Recall: Driving Force for Delamination, GI

= GI
( )
E
1hZ 22 υ−σ

Greater Damage Suggests Higher Stress and Higher GI…..Right?

Z ~ 0.3 for this geometry
E = Young’s modulus
ν = Poisson’s ratio
σ = In-plane mechanical stress
h = Top layer thickness
GI = Applied strain energy release rate
∆α = Coefficient of thermal expansion mismatch
∆T = Range of temperature excursion

Solder Interface
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Piezospectroscopy: 
Stress Mapping through Raman Spectroscopy

Cu
SiSi

• Stress-Sensitive Raman Peaks • Raman Probe Optical Path
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Material Resistance, GIc, Depends on 
Degree of Cyclic Plastic Work, Wp

σ

Strain, εεεε

Stress, σσσσ

A.

B.

Strain, εεεε

Stress, σσσσ

A.

1) Plastic Work, Wp = ∫∫∫∫ σσσσ dεεεεp

2) Low-Cycle Fatigue Life, Nf ~ (Wp)m

~

Plastic Work, Wp

B.

C.

ε

Force, F

Plastic Response Elastic Response
( Wp ~ 0 )
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Stress, σσσσ

h Silicon Device

Substrate

Fatigue Crack

Delamination Only Occurs of 
GI is Greater than GIc

= GI vs. GIc
( )
E
1hZ 22 υ−σ

Z ~ 0.3 for this geometry
E = Young’s modulus
ν = Poisson’s ratio
σ = In-plane mechanical stress
h = Top layer thickness
GIc = Critical GI for fracture

Solder Interface, GIc

GIc is Intrinsic Material Property - GI is Applied Load
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Thus, Fatigue Life Depends on 
Response of Solder Material as Compared to GI

Strain, εεεε

Stress, σσσσ

A.

B.

Strain, εεεε

Stress, σσσσ

A.

~

Plastic Work, Wp

B.

C.

Plastic Response:
Low Stress (Low GI),

BUT ( Wp >> 0 ),
so Low GIc (Crack Resistance) 

Elastic Response:
High Stress ( High GI)

BUT ( Wp ~ 0 )
so High Gic (Crack Resistance)

IntactDamaged

Different Physical Damage Mechanisms Operate in Different Solders!

Difference in 
Peak Stress

GI Exceeds GIc GI Is Less Than GIc



Overview - MCS 19

Back to Our Problem: 
Unpredictable Performance Changes!

(Evans and Evans, IEEE Trans. Comp. Pack., Mfg. Tech., Part A, v. 21 no. 3 pp. 459 - 468, 1998) 

Forward 
Voltage, Vbe

Number of Power Cycles, N

Packaged 
Bipolar 
Power

Transistor

Large Electrical Deviations May Occur During Operation

Should Remain Constant!!

Now we can apply our detailed knowledge of thermomechanical stress and response of solder
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Predicted Electronic Parameter Shift Correlates 
with Experimental Data
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“The Problem”
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t = silicon thickness
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Conclusions

• Power Electronics Packaging Demands Highly 
Interdisciplinary Analyses, Experiments & Knowledge

• New Methodology Developed to Quantitatively Assess 
Device/Circuit/System Interactions Resulting from 
Degradation

• Rigorous, Physics-Based Coupling of Electronics / 
Mechanics / Materials / Heat Transfer

• Interfaces are Crucial

• Expanding Approach to Explore Biomechanics, 
Biomaterials Applications and Interactions


