Electromigration in Solder Joints and Lines

K. N. Tu, Xu Gu, Hua Gan, and W. J. Choi

Dept. of Materials Science & Engineering, UCLA Los Angeles, CA 90095-1595

- 1. Introduction
- 2. Unique behavior or electromigration in solder joints
- 3. Electromigration of flip chip solder joints- SnPb vs. Pb-free (SnAgCu)
- 4. Electromigration of solder lines in V-groove- Temperature, composition, and polarity
- 5. Summary
- Supported by NSF,SRC, IBM, Intel, Motorola

Co-workers : Dr. Everett C. Yeh, Intel, Santa Clara, CA Prof. C. Y. Liu, National Central University, Taiwan Prof. C. Chen, National Chiao Tung University, Taiwan Dr. Taek Yeong Lee, Bell Lab. Lucent Technologies Drs. P. Elenius & H. Balkan, Flip Chip Technologies

Bump Connected to Positive Terminal on Substrate (bottom)

Bump Connected to Negative Terminal on Substrate (bottom)

Peter Elenius, Flip Chip Technologies, (1999)

Electronic Thin Film Lab

Peter Elenius, Flip Chip Technologies, (1999)

Peter Elenius, Flip Chip Technologies, (1999)

Electronic Thin Film Lab

- 1. Geometry (Line-to-bump)
 - Current crowding and local Joule heating
- 2. Eutectic Composition
 - No chemical potential gradient as a function of composition
 - It can lead to a large composition gradient or redistribution
- 3. UBM dissolution
 - Fast diffusion of noble and near-noble elements in solder
- 4. Multiple driving forces
 - Thermo-mechanical, chemical, electrical

Current Density Distribution

Electronic Thin Film Lab

Simulation of current crowding in the solder bump

- Current carried by solder bump : 0.2 Amps
- \bullet Thickness of Al interconnection : 2 μm
- Contact window (opening) : $100 \times 100 \ \mu m^2$

Void Propagation (e-SnPb solder)

Fig. Sequence of the void propagation at 125 °C, and 2.25×10⁴ A/cm² (a) 37 hrs (b) 38 hrs (c) 40 hrs (d) 43 hrs

Electronic Thin Film Lab

Time - Potential Curve

Fig. Potential change of the solder bump due to the electromigration

Electronic Thin Film Lab

Mean Time To Failure

$MTTF = Aj^{-n}exp\left(\frac{Q}{kt}\right) \qquad \begin{array}{l} n = 1.8, Q = 0.8 \text{ eV} \\ \text{(By Flip Chip Technologies)} \\ \text{(hrs)} \end{array}$										
	$\begin{array}{c} 1.5 \text{ A} \\ (1.9 \text{x} 10^4 \text{ A/cm}^2) \end{array}$		$\frac{1.8 \text{ A}}{(2.25 \text{ x}10^4 \text{ A/cm}^2)}$		$\begin{array}{c} 2.2 \text{ A} \\ (2.75 \text{ x}10^4 \text{A/cm}^2) \end{array}$					
	Expected	Actual	Expected	Actual	Expected	Actual				
100 °C			380	97	265	63				
125 °C	108	573*	79.6	43	55.5	3				
140 °C	46	121	34	32	24	1				

* not failed, These MTTF are averaged value of three samples

24 samples tested (three samples for each test condition) 8 samples cross-sectioned by W.J.Choi

Electronic Thin Film Lab

Failure Mode in Pb-free (SnAgCu) Solder Bump

Fig. Void propagation and failure at 140 °C and 2.4 Amps (3.0E4 A/cm²)
(a) Before current stressing (b) After 14 hours : not failed
(c) Magnified picture of (b)

Electronic Thin Film Lab

Failure in SnAgCu Solder bump on Thin Cu/Ni(V)/AI UBM

MTTF on SnAgCu solder bump

140 °C , 2.4 Amps

2002 Electronic Components and Technology Conference

UBM (Under Bump Metallization) Study for Pb-free Electroplating Bumping : Interface Reaction and Electromigration

Se-yeong Jang, Juregen Wolf, Woon-Seong Kwon, Kyung-Wook Paik Dept. of Materials science and Engineering KAIST (Korea Advanced Institute of Science and Technology)

Fig.6 The resistance change vs time for Pb/63Sn solder bumps on three different UBMs. $(J = 3.58 \times 10^4 \text{ A/cm}^2, \text{ T} = 140 \text{ °C})$

Fig.8 The resistance change vs time for Sn/3.5Ag solder bumps on three different UBMs. ($J=3.58\times10^4$ A/cm², $T=140~^{\rm o}C)$

Fig.9 Cross-sectional images of Sn/3.5Ag bumps after thermo-electromigration failure

Electronic Thin Film Lab

No chemical potential gradient as a function of composition below the eutectic temperature

Ni-Sn

Electronic Thin Film Lab

Failure of SnAgCu Solder Bump on Thick Film UBM

Fig. Failure mode of solder bump on Thick UBM

- (a) No UBM dissolution
- (b) Before failure after 261 hrs at 125°C and 2.0 Amps
- (c) Failure after at 150°C 25 hrs at 150 °C and 2.5 Amps
- In the same solder on thin film UBM sample, MTTF is 14.2 hrs at 140 °C and 2.4 Amps

Experiment

Schematic diagram of experimental setup.

Experimental Conditions:

- Temperature of environment: 100° C
- Time of passing electric current:
 - 15min, 30min, 45min, 60min, 75min, 90min, 95min (short)
- •Current 1.27 A per joint, Current density 2×10^4 A/cm²

Current direction, chip side metallurgy (pure Cu), and substrate side metallurgy (Au/Ni/Cu) used in this study.

Electronic Thin Film Lab

Electromigration in SnPb solder bump

dissolution 90mins SE00um

 $I = 1.27A, T = 100^{\circ}C,$

From Professor R.Kao

in National Central Univ. in Taiwan

Electronic Thin Film Lab

The Top View of the Cu Conducting Trace at Chip Side (solder joint had been polished away carefully)

- The dissolved Cu region was back-filled with solder.
- The failure took place between back-filled solder and Cu conducting trace

Optical micrograph of the top down cross-section at Cu conducting trace

Electronic Thin Film Lab

Room Temperature Interaction in Bimetallic Thin Film Couples

King-Ning Tu and Robert Rosenberg

IBM thomas J. Watson Research Center Yorktown Hights, New York 10598

Table. Intermetallic compounds formed at room temperature

	Pb	Sn
Cu	-	Cu ₆ Sn ₅
Ag	-	Ag ₃ Sn
Au	AuPb ₂	AuSn ₄
Ni	-	Ni ₃ Sn ₄
Pd	PdPb ₂	PdSn ₄
Pt	PtPb ₄	PtSn ₄

Cu, Ag, Au, Ni, Pd, Pt ↓ Interstitial Diffusion Si, Ge, Sn, Pb

Electronic Thin Film Lab

Electromigration in V-Groove Line

J = 2.8 x 10⁴ amp/cm² T = 150 °C

SEM Images

0 day

4 days

8 days

8 days

IMC

Materials Science & Engineering, UCLA

Electronic Thin Film Lab

Redistribution of Pb Concentration

E-PbSn: 150 μm length, 110 μm width After 8 days @ 2.8×10⁴ A/cm² and 150°C

Chart 1: Pb accumulated at the anode side => Pb is dominant diffusing species

Electronic Thin Film Lab

Room Temperature Electromigration in Eutectic SnPb solder on V-groove

Fig. Electromigration phenomenon in
Eutectic SnPb solder line stressed by
a current density 5.7x104A/cm ² at RT
for 4 days, 8 days, and 12 days

Polishing down	Polishing from anode to cathode side						
μm)	0	45	90	135	180		
0	91.66 %	89.33 %	86.04 %	86.00 %	69.34 %		
13.8	86.49 %	86.02 %	-	79.95 %	68.42 %		
23.6	69.63 %	-	68.11 %	66.76 %	67.42 %		

Electronic Thin Film Lab

The Polarity Effect of Electromigration on Intermetallic Compound (IMC) Formation in Solder V-groove Samples

• Experiment and Results

-Morphology change of IMC: polarity effect

-Thickness change of IMC: polarity effect

• Analysis and Discussion

Polarity Effect of EM on IMC Thickness

Electronic Thin Film Lab

Sample Preparation

Electronic Thin Film Lab

Typical Sample View

Solder V-groove sample after reflow

Electronic Thin Film Lab

Materials Science & Engineering, UCLA

Polished sample ready for EM test

Comparing of Morphology Change

Electronic Thin Film Lab

EM effect on Thickness Change of IMC

Electronic Thin Film Lab

EM effect on Thickness Change of IMC (cont.)

Electronic Thin Film Lab