Compression Deformation Response of 95.5Sn-3.9Ag-0.6Cu Solder*

P. Vianco J. Rejent

Sandia National Laboratories Albuquerque, NM

*Sanida is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company for the United States Dept. of Energy, under Contract DE-AC04-94AL85000.

UCLA Pb-Free Workshop 090502

Empirical, accelerated aging programs are fast becoming impractical for developing long-term reliability databases

•A vast array of currently-used electronic packages

•Rapid development of new electronic packaging technologies

- •Shift from OEM "circuit board technology" to CMS "circuit board assembly"
- ...and now -- Pb-free solders

UCLA Pb-Free Workshop 090502

Computational modeling will be heavily relied upon to predict the reliability of Pb-free solder interconnects

A Unified Creep-Plasticity (UCP) constitutive equation provides the basis for a computational model

$$d\varepsilon_{11}/dt = f_o \exp(-Q/RT) \sinh^p \left[\frac{\sigma_{11} - B_{11}}{\beta D} \right] \operatorname{sgn} (\sigma_{11} - B_{11})$$
"A Visoplastic Theory for Braze Alloys," ... Neilsen, Burchett, Stone, and Stephens (1996)

 $d\epsilon_{11}/dt$ the inelastic strain rate (creep + plasticity)

σ ₁₁ T B ₁₁	applied stress temperature back stress
D β	isotropic strength (plasticity) constant (plasticity)
f _o Q p	constant (creep) apparent activation energy (creep) "sinh law" exponent (creep) UCLA Pb-Free Workshop 090502

Finite element analysis provides the spatial "locator" of stress and strain rate within the solder joint geometry

Objective

Develop a unified creep-plasticity constitutive model to predict the reliability of 95.5Sn-3.9Ag-0.6Cu soldered interconnects.

•Step 1 ... Materials properties database

Experimental procedures

Compression testing (ASTM E9-89A): 95.5Sn-3.9Ag-0.6Cu

Chill-cast (modified bullet mold)

Experimental procedures

• Test Temperatures:

-25°C, 25°C, 75°C, 125°C, 160°C

Strain rates (stress-strain):

4.2 x 10⁻⁵ s⁻¹, 8.3 x 10⁻⁴ s⁻¹

• Creep stress (percent of σ_v):

20%, 40%, 60%, 80% (2.7 - 35 MPa)

Samples test conditions:

as-fabricated

•post - 125°C, 24 hour heat treat

Experimental procedures

•Dynamic elastic modulus meausurements:

- -50°C to 200°C
- Temperature dependence of density, ρ:

Furnace

- •Thermal expansion coefficient measurements:
 - -50°C to 200°C
 - Convert the expansion data to a coefficent of thermal expansion (CTE).

Microstructure of the as-cast Sn-Ag-Cu solder

Dendritic microstructure was prevalent near the cylinder walls.

Microstructure of the as-cast Sn-Ag-Cu solder

Equiaxed microstructure was observed near the cylinder interior.

Microstructure of the as-cast Sn-Ag-Cu solder

Effect of the **125°C**, **24 hour** aging treatment on the Sn-Ag-Cu solder microstructure:

- The dendritic morphology near the cyclinder walls became slightly more equiaxed in appearance.
- There was no noticeable change to the microstructure that was interior to the cylinder sample geometry.

- "Roll-up" to linear-elastic deformation for tests at -25°C and 75°C.
- Transition from linear-elastic to plastic deformation for tests at 25°C.

Plastic deformation appears to reflect two simultaneous processes: work hardening ? dynamic recovery.

UCLA Pb-Free Workshop 090502

Plastic deformation at 125°C: work hardening ? dynamic recovery

Thermal aging:	WORK HARDENING > dynamic recovery.
Faster strain rate:	WORK HARDENING > dynamic recovery.

Plastic deformation appears to reflect two simultaneous processes: work hardening ? dynamic recrystallization

UCLA Pb-Free Workshop 090502

Plastic deformation at 160°C: work hardening ? dynamic recrystallization

Thermal aging:	WORK HARDENING > dynamic recrystallization.
Faster strain rate:	WORK HARDENING > dynamic recrystallization.

Work hardening, dynamic recovery and dynamic recrystallization are not adequately understood to develop quantitative state variables.

Deformation microstructure of Sn-Ag-Cu solder

Yield stress versus temperature (ASTM E9-89)

UCLA Pb-Free Workshop 090502

Yield stress versus temperature (ASTM E9-89)

Static elastic modulus versus temperature (ASTM E111-82)

UCLA Pb-Free Workshop 090502

Dynamic (acoustic) **elastic modulus versus temperature**

UCLA Pb-Free Workshop 090502

Differential expansion versus temperature

There was no indication of solid-state phase transitions.

UCLA Pb-Free Workshop 090502

Coefficient of thermal expansion versus temperature

Analysis of the creep test data

Analysis of the creep test data

A large degree of sample-to-sample variability was observed for specimens tested in the as-cast condition.

Analysis of the creep test data

 $d\epsilon/dt_{min} = 34856 \exp(-43?13 (kJ/mol)/RT) \sinh^{4?3} (0.005\sigma)$

1. A Unified Creep Plasticity (UCP) model is being developed to describe inelastic deformation in 95.5Sn-3.9Ag-0.6Cu (wt.%) solder. for the conditions:

As-fabricated Aged: 125°C ... 24 hours

2. Yield stress, elastic (Young's) modulus, bulk modulus, Poisson's ratio, and coefficient of thermal expansion were determined for:

-25°C to 160°C

3. The creep data as-cast samples were fit to a hyperbolic sine law:

 $d\epsilon/dt_{min} = 34856 \exp(-43?13 (kJ/mol)/RT) \sinh^{4?3} (0.005\sigma)$

A final note the back stress, B_{11}

$$d\varepsilon_{11}/dt = f_o \exp(-Q/RT) \sinh^p \left[\frac{|\sigma_{11} - B_{11}|}{\beta D} \right] \operatorname{sgn} (\sigma_{11} - B_{11})$$

•The impact of the back stress, B₁₁, or *Bauschinger effect*, on the fatigue response of solder is not well defined.

A scenario in which $B_{11} = 0$ can be hypothesized when recovery processes occur very rapidly after load reversal

•The back stress, B₁₁, is difficult to measure experimentally.

Experimental techniques almost certainly require load reversal procedures.

