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A fundamental description of plastic deformation has been recently pursued
in many parts of the world as a result of dissatisfaction with the limitations
of continuum plasticity theory. Although continuum models of plastic defor-
mation are extensively used in engineering practice, their range of application
is limited by the underlying database. The reliability of continuum plasticity
descriptions is dependent on the accuracy and range of available experimental
data. Under complex loading situations, however, the database is often hard to
establish. Moreover, the lack of a characteristic length scale in continuum plas-
ticity makes it difficult to predict the occurrence of critical localized deforma-
tion zones. Although homogenization methods have played a significant role
in determining the elastic properties of new materials from their constituents
(e.g., composite materials), the same methods have failed to describe plastic-
ity. It is widely appreciated that plastic strain is fundamentally heterogenous,
displaying high strains concentrated in small material volumes, with virtually
undeformed regions in-between. Experimental observations consistently show
that plastic deformation is heterogeneous at all length-scales. Depending on the
deformation mode, heterogeneous dislocation structures appear with definitive
wavelengths. A satisfactory description of realistic dislocation patterning and
strain localization has been rather elusive. Attempts aimed at this question have
been based on statistical mechanics, reaction-diffusion dynamics, or the theory
of phase transitions. Much of the efforts have aimed at clarifying the fundamen-
tal origins of inhomogeneous plastic deformation. On the other hand, engineer-
ing descriptions of plasticity have relied on experimentally verified constitutive
equations.

At the macroscopic level, shear bands are known to localize plastic strain,
leading to material failure. At smaller length scales, dislocation distributions
are mostly heterogeneous in deformed materials, leading to the formation of
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a number of strain patterns. Generally, dislocation patterns are thought to be
associated with energy minimization of the deforming material, and manifest
themselves as regions of high dislocation density separated by zones of vir-
tually undeformed material. Dislocation-rich regions are zones of facilitated
deformation, while dislocation poor regions are hard spots in the material,
where plastic deformation does not occur. Dislocation structures, such as Per-
sistent slip Bands (PSB’s), planar arrays, dislocation cells, and subgrains, are
experimentally observed in metals under both cyclic and steady deformation
conditions. Persistent slip bands are formed under cyclic deformation con-
ditions, and have been mostly observed in copper and copper alloys. They
appear as sets of parallel walls composed of dislocation dipoles, separated by
dislocation-free regions. The length dimension of the wall is orthogonal to the
direction of dislocation glide.

Dislocation planar arrays are formed under monotonic stress deformation
conditions, and are composed of parallel sets of dislocation dipoles. While
PSB’s are found to be aligned in planes with normal parallel to the direction of
the critical resolved shear stress, planar arrays are aligned in the perpendicular
direction. Dislocation cell structures, on the other hand, are honeycomb config-
urations in which the walls have high dislocation density, while the cell interiors
have low dislocation density. Cells can be formed under both monotonic and
cyclic deformation conditions. However, dislocation cells under cyclic defor-
mation tend to appear after many cycles. Direct experimental observations of
these structures have been reported for many materials.

Two of the most fascinating features of micro-scale plasticity are the
spontaneous formation of dislocation patterns, and the highly intermittent and
spatially localized nature of plastic flow. Dislocation patterns consist of alter-
nating dislocation rich and dislocation poor regions usually in the µm range
(e.g., dislocation cells, sub-grains, bundles, veins, walls, and channels). On the
other hand, the local values of strain rates associated with intermittent disloca-
tion avalanches are estimated to be on the order of 1–10 million times greater
than externally imposed strain rates. Understanding the collective behavior of
defects is important because it provides a fundamental understanding of failure
phenomena (e.g., fatigue and fracture). It will also shed light on the physics
of elf-organization and the behavior of critical-state systems (e.g., avalanches,
percolation, etc.)

Because the internal geometry of deforming crystals is very complex, a
physically-based description of plastic deformation can be very challenging.
The topological complexity is manifest in the existence of dislocation struc-
tures within otherwise perfect atomic arrangements. Dislocation loops delineate
regions where large atomic displacements are encountered. As a result, long-
range elastic fields are set up in response to such large, localized atomic
displacements. As the external load is maintained, the material deforms
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plastically by generating more dislocations. Thus, macroscopically observed
plastic deformation is a consequence of dislocation generation and motion. A
closer examination of atomic positions associated with dislocations shows that
large displacements are confined only to a small region around the dislocation
line (i.e., the dislocation core). The majority of the displacement field can be
conveniently described as elastic deformation. Even though one utilizes the con-
cept of dislocation distributions to account for large displacements close to dis-
location lines, a physically-based plasticity theory can paradoxically be based
on the theory of elasticity!

Studies of the mechanical behavior of materials at a length scale larger than
what can be handled by direct atomistic simulations, and smaller than what
allows macroscopic continuum averaging represent particular difficulties.
When the mechanical behavior is dominated by microstructure heterogene-
ity, the mechanics problem can be greatly simplified if all atomic degrees of
freedom were adiabatically eliminated, and only those associated with defects
are retained. Because the motion of all atoms in the material is not relevant,
and only atoms around defects determine the mechanical properties, one can
just follow material regions around defects. Since the density of defects is
many orders of magnitude smaller than the atomic density, two useful results
emerge. First, defect interactions can be accurately described by long-range
elastic forces transmitted through the atomic lattice. Second, the number of
degrees of freedom required to describe their topological evolution is many
orders of magnitude smaller than those associated with atoms. These obser-
vations have been instrumental in the emergence of meso-mechanics on the
basis of defect interactions by Eshelby, Kröner, Kossevich, Mura and others.
Thanks to many computational advances during the past two decades, the field
has steadily moved from conceptual theory to practical applications. While
early research in defect mechanics focused on the nature of the elastic field
arising from defects in materials, recent computational modelling has shifted
the emphasis on defect ensemble evolution.

Although the theoretical foundations of dislocation theory are well-
established, efficient computational methods are still in a state of develop-
ment. Other than a few cases of perfect symmetry and special conditions, the
elastic field of 3-D dislocations of arbitrary geometry is not analytically avail-
able. The field of dislocation ensembles is likewise analytically unattainable.
A relatively recent approach to investigating the fundamental aspects of plas-
tic deformation is based on direct numerical simulation of the interaction and
motion of dislocations. This approach, which is commonly known as dislo-
cation dynamics (DD), was first introduced for 2-D straight, infinitely long
dislocation distributions, and then later for complex 3-D microstructure. In
DD simulations of plastic deformation, the computational effort per time-step
is proportional to the square of the number of interacting segments, because
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of the long-range stress field associated with dislocation lines. The computa-
tional requirements for 3-D simulations of plastic deformation of even single
crystals are thus very challenging.

The study of dislocation configurations at short-range can be quite
complex, because of large deformations and reconfiguration of dislocation
lines during their interaction. Thus, adaptive grid generation methods and
more refined treatments of self-forces have been found to be necessary. In
some special cases, however, simpler topological configurations are encoun-
tered. For example, long straight dislocation segments are experimentally
observed in materials with high Peierls potential barriers (e.g., covalent mate-
rials), or when large mobility differences between screw and edge components
exist (e.g., some bcc crystals at low temperature). Under conditions conducive
to glide of small prismatic loops on glide cylinders, or the uniform expansion
of nearly circular loops, changes in the loop shape is nearly minimal during its
motion. Also, helical loops of nearly constant radius are sometimes observed
in quenched or irradiated materials under the influence of point defect fluxes.
It is clear that, depending on the particular application and physical situation,
one would be interested in a flexible method which can capture the essen-
tial physics at a reasonable computational cost. A consequence of the long-
range nature of the dislocation elastic field is that the computational effort per
time step is proportional to the square of the number of interacting segments.
It is therefore advantageous to reduce the number of interacting segments
within a given computer simulation, or to develop more efficient approaches to
computations of the long range field.

While continuum approaches to constitutive models are limited to the
underlying experimental data-base, DD methods offer new directions for mod-
eling microstructure evolution from fundamental principles. The limitation to
the method presented here is mainly computational, and much effort is needed
to overcome several difficulties. First, the length and time scales represented
by the present method are still short of many experimental observations, and
methods of rigorous extensions are still needed. Second, the boundary con-
ditions of real crystals are more complicated, especially when external and
internal surfaces are to be accounted for. Thus, the present approach does not
take into account large lattice rotations, and finite deformation of the underly-
ing crystal, which may be important for explanation of certain scale effects on
plastic deformation. And finally, a much expanded effort is needed to bridge
the gap between atomistic calculations of dislocation properties on the one
hand, and continuum mechanics formulations on the other. Nevertheless, with
all of these limitations, the DD approach is worth pursuing, because it opens
up new possibilities for linking the fundamental nature of the microstructure
with realistic material deformation conditions. It can thus provide an addi-
tional tool to both theoretical and experimental investigations of plasticity and
failure of materials.
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Two main approaches have been advanced to model the mechanical beh-
avior in this meso length scale. The first is based on statistical mechanics
methods. In these developments, evolution equations for statistical averages
(and possibly for higher moments) are to be solved for a complete description
of the deformation problem. The main challenge in this regard is that, unlike
the situation encountered in the development of the kinetic theory of gases, the
topology of interacting dislocations within the system must be included. The
second approach, commonly known as Dislocation Dynamics (DD), was ini-
tially motivated by the need to understand the origins of heterogeneous plas-
ticity and pattern formation. An early variant of this approach (the cellular
automata) was first developed by Lepinoux and Kubin [1], and that was fol-
lowed by the proposal of DD [2–4]. In these early efforts, dislocation ensem-
bles were modelled as infinitely long and straight in an isotropic infinite elastic
medium. The method was further expanded by a number of researchers, with
applications demonstrating simplified features of deformation microstructure.

Since it was first introduced in the mid-eighties independently by Lep-
inoux and Kubin, and by Ghoniem and Amodeo, Dislocation Dynamics (DD)
has now become an important computer simulation tool for the description
of plastic deformation at the micro- and meso-scales (i.e., the size range of a
fraction of a micron to tens of microns). The method is based on a hierarchy
of approximations that enable the solution of relevant problems with today’s
computational resources.

In its early versions, the collective behavior of dislocation ensembles was
determined by direct numerical simulations of the interactions between infini-
tely long, straight dislocations [5]. Recently, several research groups extended
the DD methodology to the more physical, yet considerably more complex
3-D simulations. The method can be traced back to the concepts of inter-
nal stress fields and configurational forces. The more recent development of
3-D lattice dislocation dynamics by Kubin and co-workers has resulted in
greater confidence in the ability of DD to simulate more complex deformation
microstructure [6–8]. More rigorous formulations of 3-D DD have contributed
to its rapid development and applications in many systems [9–15]. We can
classify the computational methods of DD into the following categories:

1. The Parametric Method: The dislocation loop can be geometrically rep-
resented as a continuous (to second derivative) composite space curve.
This has two advantages: (1) there is no abrupt variation or singularities
associated with the self-force at the joining nodes in between segments,
(2) very drastic variations in dislocation curvature can be easily handled
without excessive re-meshing. Other approximation methods have been
developed by a number of groups. These approaches differ mainly in the
representation of dislocation loop geometry, the manner by which the
elastic field and self energies are calculated, and some additional details
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related to how boundary and interface conditions are handled. The suit-
ability of each method is determined by the required level of accuracy
and resolution in a given application. dislocation loops are divided into
contiguous segments represented by parametric space curves.

2. The Lattice Method: Straight dislocation segments (either pure screw or
edge in the earliest versions , or of a mixed character in more recent ver-
sions) are allowed to jump on specific lattice sites and orientations. The
method is computationally fast, but gives coarse resolution of dislocation
interactions.

3. The Force Method: Straight dislocation segments of mixed character in
the are moved in a rigid body fashion along the normal to their mid-
points, but they are not tied to an underlying spatial lattice or grid. The
advantage of this method is that the explicit information on the elas-
tic field is not necessary, since closed-form solutions for the interaction
forces are directly used.

4. The Differential Stress Method: This is based on calculations of the stress
field of a differential straight line element on the dislocation. Using
numerical integration, Peach–Koehler forces on all other segments are
determined. The Brown procedure [16] is then utilized to remove the
singularities associated with the self force calculation.

5. The Phase Field Microelasticity Method: This method is based on the
reciprocal space theory of the strain in an arbitrary elastically homoge-
neous system of misfitting coherent inclusions embedded into the par-
ent phase . Thus, consideration of individual segments of all dislocation
lines is not required. Instead, the temporal and spatial evolution of sev-
eral density function profiles (fields) are obtained by solving continuum
equations in Fourier space [17].
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