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A fully dynamic rate theory for modeling the behavior of point defects in metals during time dependent irradiations has 
been formulated. The state variable approach has been used to determine the microstructure and defect concentrations as 
a function of time. The resulting system of stiff non-linear first order ordinary differential equations is solved by the 
GEAR Program and incorporated into a FORTRAN Computer Code, TRANSWELL. This code has been developed to 
solve the previous system of equations under a variety of irradiation conditions. It is shown that the point defect and 
microstructural behavior during the transient phase of an irradiation is quite different than that found after steady state 
operation. 

1 INTRODUCTION 

Radiation damage in metallic structures has been 
studied since the 1940's, and more recently (1966) 
the phenomenon of void swelling has been added to 
the long list of mechanisms which may reduce the 
useful lifetime of fast reactor cladding and fusion 
reactor blanket structures. Many experimental and 
theoretical studies have been conducted in the past 
10 years on the growth of such voids, and a general 
understanding of the physics of this phenomenon 
has been developed for steady-state irradiation by 
Bullough, Brailsford, and co-worker~'-~ through the 
rate theory approach. One main feature of the 
previous work is that the vacancy and interstitial 
defect concentrations ( C ,  and C, respectively) were 
assumed to be constant during the irradiation. 
However, we know that there is a very complex 
relationship between the development of a dis- 
location-void microstructure and the defect con- 
centration. The assumption of constant C, and C, 
values is not adequate during the beginning of 
irradiation when the dislocation microstructure is 
developing rapidly or during a time dependent 
irradiation such as that which might occur in pulsed 

laser fusion  reactor^.^ Supporting these observations 
is the experimental evidence that time dependent 
heavy ion irradiations can lead to microstructure 
quite different than those produced under steady- 
state conditiom5 Preliminary investigations by 
Schiffgens and D o r a d  have also shown that there 
can be a considerable difference between pulsed and 
steady-state developed microstructure in metals. 

The object of this paper is to present a theory and 
a method of solution that will allow a calculation to 
be made of the time dependent defect concentrations 
and microstructural development in metals. This 
Fully Dynamic Rate Theory (FDRT) relies heavily 
on the previous work of B~l lough '*~  and extends into 
a regime which will be of interest to scientists 
interested in non-steady-state irradiations. For com- 
pleteness here we will also include the effect of 
superimposed stress on the behavior of the dis- 
location components. The FDRT can also be used 
to predict the microstructure and defect con- 
centrations in a wide variety of metals over a wide 
range of steady-state irradiations as well. 

After a brief description of the general approach 
to be taken here, we define the parameters used as 
input to the FDRT. Once the complete set of 
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48 N. M. GHONIEM AND G. L. KULCINSKI 

coupled equations is developed we describe the 
method of solution and apply the results to the early 
stages of a 'steady-state irradiation and also those 
conditions which might prevail in during the neutron 
irradiation of a laser fusion first wall. 

2 GENERAL APPROACH 

It has been found that one can greatly simplify the 
mathematical complexities of a dynamic system by 
describing the kinetic behavior of that system with 
vector notation. This leads to a state variable 
approach which is briefly described below. In 
general, the state of a metal during irradiation can be 
described by a vector Y whose components are 
defined as follows: 

Y(1) = average void radius in cm, rc 
Y(2) = average nonaligned interstitial loop radius 

Y(3) = concentration of nonaligned vacancy loops 

Y(4) = concentration of single vacancies tied up in 

Y(5) = total single vacancy concentration in at./at., 

Y(6) = total single interstitial concentration in 

Y(7) = average aligned interstitial loop radius in 

Y(8) = concentration of aligned vacancy loops per 
cm3,Ntl 

Y(9) = concentration of single vacancies tied up in 
aligned vacancy loops in at./at., q,," 

in cm, r?, 

per cm3, N;! 

nonaligned vacancy loops in at./at., q: 

C" 

at./at., C ,  

cm, r t  

Y( 10) = network creep strain in cm/cm, e 

perpendicular to the plane of the loop. 
A loop is defined to be aligned if the stress is 

3 ANALYSIS OF THE STATE VARIABLES 

Following the notations of previous work by 
Brailsford and Bullough' and Ghoniem and 
Kulcinski7 more detailed expressions for the compo- 
nents of the Y vectors are now derived. First the 
dislocation densities must be determined and then 
the vacancy emission rates, defect time constants, 
defect removal rates, vacancy loop behavior, and 
finally swelling can be calculated. In order to obtain 
a more physical relationship with the events taking 
place in the lattice we will replace the vector 
notation with symbols more familiar to the reader 

and then return to the vector notation at the point 
where a mathematical solution is effected. 

3 .I Dislocation Densities 
Dislocations in the bulk of a metal can be produced 
by at least three different mechanisms: 

1) Cold work of deformation of the metal which 
results in initial dislocation network, p i .  

2) Interstitial loops nucleated during the early 
stages of irradiation, a fraction of which are 
preferentially aligned with the applied stress. Their 
subsequent growth and coalescence form a dis- 
location network. 

3) Vacancy loops are assumed to form atherm- 
ally in the vacancy rich region of the collision 
cascade3 with the initial radius, rvl(0). Their exi- 
stence, which is also affected by applied stress, is 
transient in nature because they have a bias to 
attract interstitials and they thermally emit vacan- 
cies at the same time. 

If P is the Frenkel pair production rate (dpa/sec), 
then EP is the fractional rate at which vacancies are 
removed from solution to form vacancy loops. From 
conservation of vacancy volume within the loops, 
the fraction of vacancies tied up in vacancy loops is 
equal to the volume of a single vacancy loop 
multiplied by their number density, thus: 

q,," = zMcJ2N5 (1) 

4: = .b(P,32Ntr (2)  

for nonaligned vacancy loops, and 

for aligned vacancy loops where b is the Burgers 
vectors and el and r",, refer to aligned and 
nonaligned vacancy loop radii, respectively. 

For interstitial loops, the dislocation densities are 
expressed as: 

py = 27~7, Nlln (3) 

PY = 2 e / N / / a  (4) 

p p  = 27u3y!/ ( 5 )  

p"" = 27utlNt, (6) 

while for vacancy loops: 

where the following is defined: 

&' is the nonaligned interstitial dislocation loop 
line density, cm-2. 
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MICROSTRUCTURE DURING IRRADIATION 49 

is the nonaligned interstitial dislocation loop 
concentration, ~ m - ~ .  
is the aligned interstitial dislocation loop line 
density, cm-2. 
is the aligned interstitial dislocation loop 
concentration, ~ m - ~ .  
is the nonaligned vacancy loop line density, 
ern-*. 
is the aligned vacancy loop line density, cm-Z. 
is the deformation produced straight dis- 
location line density, cm-2. 
is the total dislocation line density produced by 
both deformation and radiation. cm-*. 

From Eqs. (1) and (2), Eqs. 
expressed as: 

pi'n = 2 4 z 5 3  

p y  = 2&z5p7E 
-\ 

The total dislocation density 
sum of all previous components; 

pd = pds + pp + pp + pi'" + py 

( 5 )  and (6) can be 

(7) 

(8) 

in the metal is the 

(9) 

3.2 Vacancy Emission From Microstructural 
Components 
3.2.1 Vacancy emission from voids At high 
temperatures, the probability of emitting a vacancy 
from a void becomes appreciable. A larger void 
surface tension enhances vacancy emission while the 
presence of gas atoms inside reduces the probability 
for' vacancies to "boil off' the surface of voids. A 
mathematical description of this process is given as: 

where 
is the fractional vacancy emission rate from the 
surface of voids, s-l. 
is the temperature dependent void con- 
centration, ~ m - ~ .  
is the temperature dependent vacancy diffusion 
coefficient, cm2 s-'. 
is the fractional equilibrium vacancy con- 
centration, at./at. 
is the surface energy of the void surface, 
eV/cm'. 
is the gas pressure inside the void, eV/cm3. 
is the number of gas atoms in a void. 

Equation (10) is easily derived by considering the 
vacancy concentration at the voids, C,, as given by; 

C,/Ci = exp(( E ) / k T }  

where 8Fl8n is the change in the configuration 
energy per vacancy emitted, and C; the equilibrium 
concentration of vacancies. For a spherical hole in 
an infinite isotropic solid, (8Fl8n) involves the 
surface energy of the void, the elastic strain energy 
in the surrounding metal, the applied hydrostatic 
stress, and the pressure caused by trapped gas 
atoms inside. 

Generalizing the analyses given by Volin and 
Balluffia and Westmacott, et ~ f . , ~  one can write the 
following expressions. 
8F - = F,SZ 
an 
where R is the atomic volume. Here F,,, is the 
mechanical force per unit surface area acting on a 
vacancy at the void surface. 

F , , , = P + - + + - P ,  2Y Y 2  
rc 2 P c  

Here P is the hydrostatic pressure, y the surface 
energy, rc the void radius, ,u the shear modulus, 
and Pg the gas pressure. 

The gas pressure is always expressed in terms of 
the number of gas atoms and void radius. If the 
perfect gas law is used, one gets: 

3 NkT 
4 7 v c 3  

P, = - 
While if Van der Waals law is assumed to hold, 

one gets: 

N2 d 
1619 nzrc6 

- NkT 
(413 mc3 - aN) 

Pb = 

where a and d are constants, and N is the number of 
gas atoms. 

Normally, the elastic energy is negligibly smalla 
so in the general case we have: 

(16) 2Y 
'C 

F , , , = P + - -  ' 8  

This formulation is useful in studying the general 
situation where gas atoms are trapped in voids and 
where stress waves accompany the damage produc- 
tion. 
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50 N. M. GHONIEM AND G. L. KULCINSKI 

Although the principal concern in modeling void 
behavior has been void growth during irradiation, 
some consideration was given to the response of 
voids during high temperature annealing.'O In the 
absence of irradiation, annealing is of interest for 
the practical reason that CTR first-wall materials of 
inertial confinement fusion reactors will be subject to 
short periods of intense irradiation followed by 
relatively long periods at high temperature but under 
no irradiation. 

3.2.2 Vacancy emission from deformation pro- 
duced dislocations For simplicity of calculation, 
all deformation produced dislocations are assumed 
to be of the edge type. Edge dislocations that are 
aligned with the stress have enhanced vacancy 
emission rates as described below: 

= Z/D,C,' exp(uS2/kT)pda (1 7) 

l": = z,"D,c,'pdn (1 8) 

P,P = P; + P; (19) 

where 

is the fractional rate of vacancy emission from 
aligned straight dislocations, s-l. 
is the fractional rate of vacancy emission from 
nonaligned straight dislocations, s-l. 
is the total fractional rate of vacancy emission 
from straight dislocations, s-l. 
is the uniaxial externally applied stress, eV/cm3. 
is the aligned straight dislocation density, cm-*. 
is the nonaligned straight dislocation density, 

is the vacancy-aligned dislocation bias factor. 
is the vacancy nonaligned dislocation bias 
factor. 

3.2.3 Vacancy emission from interstitial 
loops Due to the inherent geometrical curvature of 
an interstitial loop, the vacancy concentration at the 
edge of the loop differs from the bulk thermal 
vacancy concentration. The actual vacancy con- 
centration is controlled by the stacking fault energy 
and the line tension of the loop. The various 
emission rates are written as: 

The equilibrium vacancy concentration at the edge 
of an interstitial dislocation loop of radius el is: 

where 

Pp is the fractional rate of vacancy emission 
from aligned interstitial loops, s-'. 

Py is the fractional rate of vacancy emission 
from nonaligned interstitial loops, s-*. 

Pf: is the total fractional rate of vacancy 
emission from all interstitial loops, s-*. 

yv is the stacking fault-energy, eV cm-2. 
Fe/(el)  is the elastic energy of a dislocation loop of 

radius el, eV 
P is the shear modulus, eV cm-'. 
V is the Poisson's ratio. 

3.2.4 Vacancy emission from vacancy loops The 
probability of vacancy emission from a faulted 
vacancy dislocation loop that is parallel to the 
applied stress is expressed as: 

while for vacancy loops aligned perpendicular to the 
stress it is written as: 

C,' exp (aQ/kT) exp { [ Y ,  + ;;J62} (26) 

From the last expressions, it is clear that these 
structures are thermally unstable and will dissolve 
quickly at high temperatures. The various emission 
rates are given by: 
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MICROSTRUCTURE DURING IRRADIATION 51 

where FJr,,) is defined in (24), and; 
P;;" is the fractional rate of vacancy emission from 

aligned vacancy loops, s-'. 
P;ln is the fractional rate of vacancy emission from 

nonaligned vacancy loops, s-l. 

PSI is the total fractional rate of vacancy emission 
from all vacancy loops, s-l. 

piia is the aligned vacancy loop line dislocations 
density, cm-*. 

&I" is the nonaligned vacancy loop line dislocation 
density, cm-*. 

3.2.5 Total rate of vacancy emission The total 
rate of vacancy emission (P), in at./at./sec., is 
simply the sum of the previously derived rates. 

P = P,P + Pde + q1 + el (3 3) 

33 

In a mathematical formulation that incorporates the 
kinetic behavior of different irradiation produced 
species, there exists a wide range of time constants 
related to those different components. A time 
constant, A, is defined here as the inverse of the time 
required to go through one e-folding change in a 
particular property, i.e., the In (parameter) = - i t .  

The diffusion coefficient of single interstitials is 
orders of magnitude larger than the diffusion 
coefficient of single vacancies so that once they are 
created by irradiation, interstitials tend to diffuse 
quickly to different sinks and to annihilate vacan- 
cies. Since the time constants of single point defects 
depend on the sinks present at a particular instant, 
they are explicit functions of the metal's microstruc- 
ture, and therefore, implicit functions of time. Their 
microstructural dependence can be simply expressed 
as: 

Single Point Defect Time Constants , 

Ai = A; + A; (34) 

A,= i: + A; (35) 

A t  = p d D i  Z ,  (3 6 )  
A; = 4nVc re D ,  (3 7) 

' , d=pdDvZv  (3 8) 
AT = 4nNCreD, (39) 
where 

li is the total single interstitial time constant, s-l. 
A, is the total single vacancy time constant, s-l. A t  is the single interstitial time constant due to 

dislocations, s-l. 

1; is the single interstitial time constant due to 

A,d is the single vacancy time constant due to dis- 

.i,C is the single vacancy time constant due to voids, 

voids, s-l. 

locations, s-l. 

S-1. 

3.4 Removal Rates 
The importance of each type of sink on the dynamic 
behavior of point defects is reflected in the specific 
removal rate of the defect to that sink. Individual 
sink removal rates can be expressed as their relevant 
time constant, A, multiplied by the temporal con- 
centration of point defects. As indicated before, 
mutual recombination of point defects is a second 
order reaction that depends on the product of both 
concentrations. Collective point defect removal rates 
are expressed as: 

Psi = AiCi (40) 
p*v = 1 v c v  (4 1) 

Pr = ac,c, (42) 

a = g(v, exp(-E,"lkT) + Y, exp(-E,"/kT)) 

where 
Psi is the total sink removal rate for 

interstitials, s-I. 
PSV is the total sink removal rate for 

vacancies, s-'. 
Pr is the total recombination rate of 

vacancies and interstitials, s-'. 
a is the recombination coefficient, 

S-1. 

g is the number of unstable sites 
around a vacancy. 

vi exp(-E,"/kT? is the interstitial jump frequency, 
S-'. 

w ,  exp(-E,"/kT) is the vacancy jump frequency, 
S-1. 

(43) 

3.5 Vacancy Loop Behavior 

If b is the magnitude of the Burger's vector, the 
atomic volume is approximated by b3 and n,, is the 
fractional concentrationt of vacancy loops created 
per second, then the number of vacancies in a 
vacancy loop is; 

Here fractional concentration refers to number of loops per 
atomic lattice site. 
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52 N. M. GHONIEM AND G. L. KULCINSKI 

and the rate at which loops are produced is 

n,, = - cPb2 
.rt,(O) 

(45) 

When a vacancy loop has formed, it will 
immediately act as an interstitial sink because of the 
dislocation character of its perimeter. It will then 
instantly be attacked by interstitials and consequen- 
tly shrink. At high temperatures the loops will also 
shrink by thermal emission and this process will be 
greatly assisted by the large line tension of such 
small loops and by the stacking fault energy if the 
loops remain faulted. Thus, each loop will have a 
finite lifetime 7 and the number of vacancy loops per 
unit volume, N,,, present at any time f is given by the 
simple rate equation 

where the first term on the right-hand side is the loop 
generation rate and the second term represents the 
loss term due to shrinkage. 

The lifetime, 7, of an individual loop is a function 
of time in the sense that it depends on the state of the 
overall sink distribution prevailing at its instant of 
creation. From a Taylor series expansion of r J f )  we 
have 

(47) 

In the presence of uniaxial stress in the metal, the 
collapse mechanism of vacancy loops is assumed to 
te influenced by the stress.) Therefore, the following 
processes can be easily expressed: 

CD 

(49) 

is the generation rate of nonaligned vacancy 
loops, ern-%-'. 
is the generation rate of aligned vacancy 
loops, cm-] s-l. 
is the generation rate of the fraction of 
vacancies tied up in nonaligned vacancy 
loops, s-1. 

is the generation rate of the fraction of 
vacancies tied up in aligned vacancy loops, 
S-1. 
is the decay rate of nonaligned vacancy 
loops, s-I cm-]. 
is the decay rate of aligned vacancy loops, 
s-l cnr3 .  
is the decay rate of the fra'ction of vacancies 
tied up in nonaligned vacancy loops, s-l 
~ m - ~ .  
is the decay rate of the fraction of vacancies 
tied up in aligned vacancy loops, s-' cm-'. 
is the fraction of vacancies directly pro- 
duced in vacancy loops (i.e., collision 
cascade collapse efficiency). 
is the initial radius of a vacancy loop formed 
in a cascade, cm. 
is the fraction of total loop population that 
are aligned perpendicular to applied stress 

exp (oRnlkT) - 1 
= exp (oRn/kT) + 2 

n z 10 is the number of point defects defining a 
planar nucleus, as derived by Brailsford and 
Bullough (2). 

3.6 Swelling 
The instantaneous percent swelling can now be 
easily calculated as the number of voids per unit 
volume multiplied by the average volume of each, 
thus; 
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MICROSTRUCTURE DURING IRRADIATION 53 

4 FINAL STATE SPACE REPRESEN- 
TATION OF RATE EQUATIONS FOR 
FDRT 

In state space, at a particular time, there is one and 
only one point that defines completely the state of 
the metal under irradiation. The dimensions of this 
space depend on the system of equations chosen to 
simulate the metal's response to irradiation. Based 
on our general treatment of Section 2, and reverting 
back to vector notation, the following time 
derivatives of 10 different components are obtained: 

r e =  Y ( l ) = -  [ (DuY(5)- -DlY(6) -  D,C; . *  

Y(  1) 

+ D,Z,RCv(Y(2))l 

a!, = Y(3)  = K: - A," 
q,," = Y(4)  = x~~ - A," 
c, = Y(5)  = (1 - &)P + Pe - P,, - P, 

Ci = Y(6)  = P - P,, - P, 
1 
b 

;: = Y(7)  = - [DiZ,"Y(6) - D v Z t Y ( 5 )  

+ DvZ/C,(Y(7) )  exp(aC2lkT)l 
&, = Y(8)  = K~~ - Ala 
4," = Y(9)  = KZa - 
e = Y ( l O ) =  @ { ( ( Z f  - Z,")DiY(6) 

+ (2," - Z,")DuY(5)) + Z,"D,C,e 
exp (oRlkT)-Z,"D,C,g} 

It is this set of nonlinear, first order differential 
equations which form the basis for the FDRT. The 
major difference between this set of equations and 
the smaller set used by Bullough and co-workers'-' 
is the inclusion of ( 6 2 )  and (63) and the allowance of 
all the other variables to depend on the time varying 
values of C, and Ct. 

5 NUMERICAL SOLUTION OF RATE 
EQUATIONS 

Equation ( 5 8 )  to (67) represent a system of stiff 
ordinary differential equations (ODE's) which are 

difficult to solve by standard numerical techniques. 
Most conventional methods for solving ODE's 
require incremental values of the time (f) commen- 
surate with r,, while the size t T - t,l of the problem 
range is commensurate with max 5,. As a result, the 
problem cannot be run to completion in a reasonable 
number of time steps. 

A FORTRAN Computer Code, TRANS- 
WELL,'*'' has been developed to solve the previous 
system of equations under a variety of irradiation 
conditions. Among TRANSWELL's subroutines is 
the GEAR package'* for the solution of the initial 
value problem for systems of ODE's that have the 
form 

Y =f 0, t)  
or more specifically, 

where y, y and f are vectors of length N 2 1. 
The basic methods used for the solution are of 

implicit linear multistep type. The implicitness of the 
basic formulae requires an algebraic system of 
equations be solved at each time step. 

The GEAR package allows the step size and the 
order to vary in a dynamic way throughout the 
problem. The system of equations described in the 
previous section is a highly stiff system due to the 
wide range of time constants for the different 
components. This behavior is particularly impor- 
tant in transient or pulsed irradiation analysis,"* l3  

as briefly described in the next section. 

6 EXAMPLE OF APPLICATION TO 
TRAKSIENT IRRADIATION 

6.I I MeV Electron Irradiation of M3I6 S.S. 
Since collision cascades are not produced in electron 
irradiated metals, vacancy loop formation is not 
then expected and the cascade efficiency can be set 
equal to zero. Furthermore, if the sample is not 
subject to external stresses we will have only four 
components of the vector Y; Y(1),  Y(2) .  Y (5 )  and 
Y(6) or r,, G, C, and C, respectively. 

The parameters for M 3  16 steel (solution treated) 
are those of Bullough, et aL3 The calculations were 
performed at 6OOOC with an experimentally 
measured void con~entration'~ while the interstitial 
loop concentration was taken at lOI4  loops/cm3. 
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54 N. M. GHONIEM AND G. L. KULCINSKI 

The four equations for rd GI, C, and Ci are then 
solved numerically with the initial conditions 

( 70) 
r,,(O) = J4rc~(0)ivc/3bN,, (71) 

rJO) = 10 A 

q o )  < 27lr,(O). (72) 
We assume here that the microstructure has 

already nucleated and its time dependence is studied 
after the radiation has begun. The time dependent 
behavior of the vacancy and interstitial con- 
centrations are shown in Figure 1. At irradiation 

DOSE. doa . .  

' O Y  i 
FIGURE 1 
M3 I6 S.S .  using the fully dynamic rate theory (FDRT). 

Point defect concentrations in electron irradiated 

times of the order of the first few microseconds, 
neither interstitials nor vacancies are mobile enough 
to migrate to neutral and biased sinks. Also their 
concentrations will be so low that the mutual 
recombination is negligible. Under these conditions 
the rate of change of the concentration of vacancies 
and interstitials is almost equal to the production 
rate. In Figure 1 the initial slope of C,(f) and C,(t) is 
about 5 x at./at./sec.; the actual production 
rate. The build-up of the interstitial concentration 
coupled with their high mobility will cause the 
interstitid sink removal rate to increase for -10 
microseconds. The concurrent build-up of the 
vacancy concentration also produces a high 
recombination rate (which is proportional to C,Ci). 

Consequently the total interstitial concentration 
passes through a maximum and then decreases in 
value as a function of time. As time progresses, the 
high vacancy concentration and the high mobility of 
vacancies will result in a vacancy sink removal rate 
which increases with time. After a few vacancy 
mean lifetimes the vacancy concentration will 
decrease with time producing the broad maximum 
as shown in Figure 1. 

The absolute defect removal rates are shown in 
Figure 2. As expected, the interstitial sink removal is 
high at short times seconds) while the re- 

DOSE, dpa 

TIME, sec 
FIGURE 2 
M3 16 S.S .  using the fully dynamic rate theory (FDRT). 

Removal rates PR, P,, Psy in electron irradiated 

combination rates are low. The build-up of vacancy 
concentration causes the recombination rate to 
dominate after - seconds. Eventually the build- 
up of the dislocation loop and void sinks causes the 
point defect removal rates to become dominant 
again after -100 seconds (-0.5 dpa). Note that in 
Figure 2, PR is the point defect mutual recombination 
rate, PSI is the total sink removal rate for inter- 
stitials and Psy is the total sink removal rate for 
vacancies in umts of at./at./sec. 

The significance of Figures 1 and 2 is that there is 
a complex time relation between point defect 
concentration rates and the dynamically changing 
microstructure. It is important to recognize the 
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MICROSTRUCTURE DURING IRRADIATION 55 

chronology of the defect structure development, 
because the microstructural description at 10 or 100 
dpa may be entirely different than that during the 
early stages of irradiation. 

6.2 Pulsed neutron simulation of 316 S.S. 
The pulsed nature of the energy release mechanism 
in a laser fusion reaction will produce bursts of 
neutrons which will cause damage in the first 
structural walls of a reactor for times lasting from 
0.1 to 1 microsecond.15 The instantaneous damage 
rates can be in the neighborhood of 10 dpa per 
second. In order to illustrate the flexibility of the 
FDRT in handling this situation we have calculated 
the vacancy and interstitial concentration in 3 16 
S.S. at 600°C for one burst of neutrons and followed 
their behavior for 10 seconds after the damage has 
been produced. The results are given in Figure 3. 
We have used the Bqllough et a/.’ temperature 
dependent void and interstitial loop concentrations, 
and included vacancy loop formation with E = 4.4% 
and Zi = 1.08. The vacancy concentration is 
assumed to start at the equilibrium value given in 
Figure 3 and we see that over the period of the 
pulse, the defect concentrations are a linear function 
of time. Immediately after the damage pulse is com- 
pleted the interstitial concentration drops to 
essentially zero in 10 microseconds while the 
vacancy concentration drops only slightly due to 
recombination in the first few microseconds and 
then remains at the level for -10 milliseconds. 
Thereafter, the vacancies start to migrate and by 
0.1 second after the damage is produced the 
vacancy concentration drops below that at the edge 
of a 30 A diameter void. This indicates that such a 

VACANCY AN0 INTERSTlTlhL C3NCENTRATION IN 316SS 
AFTER PULSE0 IRRAOIATION 

10’ 10’ 
TIME AFTER NEUTRON ARRIVAL (SIC) 

FIGURE 3 
after pulsed irradiation. 

Vacancy and interstitial concentration in 3 16 S.S. 

void will tend to anneal once the vacancy concen- 
tration drops below that value and the void should 
shrink. 

The reason the vacancy concentration does not 
return to  the equilibrium value is due to thermal 
emission of vacancies by the dislocation micro- 
structure and by the voids. The relationship between 
the microstructure and amount of annealing between 
damage pulses is very complex and will be examined 
in more detail in future papers. The main point to be 
illustrated by this example is that the FDRT can 
adequately handle the rapidly changing defect and 
microstructural conditions so as to describe the 
behavior during and after transient irradiation. 

7 CONCLUSIONS 

The Fully Dynamic Rate Theory (FDRT) can be 
used to describe rapidly changing defect con- 
centrations and microstructural features during 
transient irradiation. Coupled with appropriate 
nucleation conditions, such description should be 
extremely valuable in analyzing the early stages of 
irradiation in a fission reactor, during heavy ion 
bombardment simulation studies, or in HVEM 
damage investigations. The F D R T  should also be 
helpful in analyzing the transient conditions present 
in pulsed nuclear sources such as inertial confine- 
ment fusion reactors or rastered beam heavy ion 
implantation devices. The TRANSWELL Code, 
developed to  solve the time dependent equations for 
the major microstructural defects, can efficiently 
accommodate the widely varying time frames of the 
above nuclear facilities. 
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