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A new c~~~tion~ method has been developed for the numerical solution of the Fokker-Planck equation describing 
voids and interstitial loops. Small-size interstitial clusters were studied using a detailed rate theory approach, while large- 
size loops were simulated by descretizing a transformed Fokker-Planck equation. Interstitial loops containing up to 
millions of atoms were investigated using this hybrid technique. The numerical results of the model compare reasonably 
well with previous detailed rate theory calculations, as well as with experimental fmdings on heavy ion irradiated 316 stain- 
less steel. 

1. Introduction 

The problem of point defect cluster nucleation 
and growth in metals under irradiation has been the 
subject of recent active research [l--14]. Apart from 
the interesting academic nature of this area, the ques- 
tion of how the microstructure develops during irra- 
diation is of significant technological importance. 
Irradiation induced swelling, creep deformation, 
growth, embrittlement, hardening and loss of ductil- 
ity are all strongly influenced by the nucleation and 
growth of point defect clusters. 

About a decade ago, Brown, Kelly and Mayer [l] 
carried out calculations for interstitial clustering in 
graphite. They considered heterogeneous nucleation 
when one unbound interstitial encounters another 
interstitial atom bound already to a trapping site such 
as boron impurities. Recently, Kiritani [2] used a 
model similar to Brown et al. to explain HVEM 
experimental results on interstitial loop formation. 
Vacancy mobility and the existence of divacancies 
have been included in his analysis. 

Hayns [3] studied the nucleation and early stages 
of growth of interstitial dislocation loops in irradiated 
materials. A hierarchy of rate equations was solved to 
simulate the homogeneous nucleation of interstitial 
dislocation loops. The assumption that diinterstitial 
atom pairs are stable against thermal dissociation was 

examined and it was concluded to be appropriate. 
Lam [4] developed a time and space dependent 
model to study the radiation induced defect buildup 
and radiation-enhanced diffusion in a foil under irra- 
diation. The ~stribution of ~terstiti~s, mono- 
vacancies and vacancy aggregares containing two to 
six vacancies in a silver foil under irradiation was cal- 
culated as a function of both distance from the sur- 
face of the foil and irradiation time by numerically 
solving the rate equations for various temperatures 
and internal sink concentrations. In an ~vestjgation 
of interstitial cluster nucleation at the onset of irra- 
diation, Johnson [5] developed rate equations for the 
concentrations of single and small clusters of 
vacancies and interstitials. The effects of irradiation 
temperature and displacement rate were investigated, 
and it was found that the cluster concentrations are 
sensitive to cluster binding energies. Hall and Potter 
[6] included interstitial-impurity trapping in a time- 
dependent nucleation and growth model that is used 
to calculate both vacancy and interstitial cluster den- 
sities and size dist~butions during i~adiation. 
Recently, Ghoniem and Cho [7] developed a rate 
theory model for the simultaneous clustering of point 
defects during irradiation. Size-dependent bias factors 
and self-consistent reaction rate constants were used 
to evaluate the feed-back effects between the vacancy 
cluster and ~terstiti~ loop populations. An atom 
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conservation principle was used to determine the 
number of necessary rate equations as a function of 
irradiation time. 

The basic limitation to the rate-theory approach 

(or equivalently the Master Equation formulation) 
lies in the one-to-one relationship between the 

number of simultaneous differential equations and 
the number of species in a cluster. Although the 
previously mentioned methods have been detailed 
enough to analyze fundamental point defect kinetics 

and to describe the effects of various irradiation and 
material parameters, the computations become 
prohibitively expensive for large-size defect clusters. 

The need for the correspondence of theory and 
experiment has prompted the development of 
approximate computational methods for the kinetics 
of defect clustering. Kiritani [8] has developed a 
scheme for the nucleation and growth of clusters in 
which clusters within a range of sizes are grouped 

together, and has applied the method to vacancy 
agglomeration after quenching. Hayns [9] has applied 

the Kiritani grouping scheme to study the nucleation 

and growth of interstitial loops during irradiation, 
and has shown that objections to the method by 

Koiwa [lo] can be surmounted. Hayns [l I] also 
reported c~culations using the grouping to study 
nucleation and growth of interstitial loops under fast- 
reactor and simulation conditions. 

A different approach for studying the nucleation 
and growth of defect clusters has considered solving 

continuum equations rather than rate equations. 
Sprague et al. [ 121 were able to describe vacancy 

clusters containing up to 3920 vacancies by descretiz- 
ing a diffusion-type equation with variable diffusivity. 
Recently, Wolfer et al. [ 131 followed similar lines to 
demonstrate that the rate equations describing the 
clustering kinetics can be condensed into one Fok- 
ker-Planck continuum equation. The latter was inter- 
preted as a diffusion equation with drift terms. They 
showed that void nucleation and growth can be both 
incorporated into such a unified formalism. Hall [ 141 
investigated point defect a~omeration considering a 
different form of the continuum description. Only 

the cluster concentrations were expanded in a Taylor 
series and the resulting set of rate equations were 
shown to be condensed into one partial differential 

equation. 
The majority of the approaches mentioned above 

have not been able to accurately describe the long 

term behavior of defect aggregates, either due to the 
high computational penalties in rate theory methods, 
or because of the restrictive approximations in group- 

ing methods. Koiwa [lo] has developed an anal- 
ytical solution for the vacancy clustering problem in a 

special case, and compared it to the results of the 
grouping method. It was concluded in his study that 
the approximations in the grouping technique 
resulted in cluster distributions that deviate from the 
exact analytical results due to the sensitivity of the 
method to the group width. 

The objective of this work is to develop and apply 
a new hybrid approach to the problem of point 
defect clustering. The theoretical predictions are also 
compared to long term ion simulation experiments. 
In the next section, we describe the theory and 
physical model. The numerical analysis and computa- 
tional aspects are outlined in section 3. Section 4 
compares the results of the numerical analysis of the 
continuum equation to the detailed rate theory 
solution. High dose irradiation results are presented in 
section 5 for fusion reactor conditions, and section 6 
is concerned with comparing the calculational results 
to ion simulation data. Conclusions finally follow in 
section 7. 

2. Theoretical model 

in developing the theoretical model, we will follow 
the rate theory formulation of Ghoniem and Cho ]7] 
for small point defect clusters. Separate rate equa- 
tions will be constructed for single vacancies, single 
interstitials and clusters of up to 4 vacancies and 4 
interstitials. Larger size defects, however, will be 
simulated by condensing the set of rate equations 

into one generalized Fokker-Planck equation for both 
voids and interstitial loops. An outline of this hybrid 
approach is given below. 

Defect behavior during irradiation has been 
successfully studied using the rate theory of chemical 
kinetics in which a set of ordinary differential equa- 
tions was used to describe the concentration rate of 
change for various defect species [3-5,7]. The under- 
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lying principle is to represent the production and 
removal rates of a particular defect size in a species 
balance equation. For the sake of self-consistency, we 
will briefly present the rate theory of Ghoniem and 
Cho [7], and write the rate equations governing the 
rate of change of the fractional defect concentrations. 
The concentrations of single vacancies and vacancy 
clusters up to tetra-vacancies are governed by 

G 
--&- = P +K;(2) cic2, + (27X2) - KX2) c,) C,” 

Xmax Xmax 

+ xG3 (7Xx) - G(x) G) Cxv - xq3 G@) C&xi 

+ zv~dDv(G - Cv) - Gfi - KX 1) c” 

- KtX2) CvcZi 3 (1) 

ds = ;Kxl) @ t 7x3) Csv + KC(3) CC 
dt 

V i 1 3v 

+ ~@a&% - KX2) W2v - K;(2) W2v 
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dt 
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- {K;(x) Ci +KXx) Cv + 7Xx)] Cc(x) 

+{Kf(~+l)Ci+7~(x+l)}Cc(x+l), x=3,4* 

(3) 

On the other hand, the equations representing single 
interstitials and interstitial clusters up to tetra- 
interstitials are given by 

d~=P+K~2)C~2i-K~(1)6:-~C~~ 

- K:(2) CiCzi - K:(2) CiC2v - Z3 K:(X) C&xi 

Xmax 

- xq3 K:(X) CiCxv - ZiPdWi 9 

dA = $Ki(2) c t K!.(3) C&si 
dt 

(4) 

- K:(2) CiCzi - Kt(2) CvC2i , (9 

G(x) - = K~(x - 1) CiCr(X - 
dt 

1) t&x - 1) C,(x - 1) 

- {K:(X) Ci t&x) Cv + 7Q$x)I Cl&x> 

+K\(x + 1) C&(x + 1)) x=3,4, (6) 

with the following definitions: P = irradiation pro- 
duction rate of Frenkel pairs (at/at/s), (Y= point 
defect recombination coefficient (s-l) = 
48Vi exp(-I&&T), Ki$ = rate constant for i/v 
impingement on loops/cavities (s-r), pd = straight 
dislocation density (me2), Dv,i = point defect diffu- 
sion coefficients (mS2), Dzv = divacancy, diffusion 
coefficient (mS2) = V~JI~ exp {-&$/kT] [ 151, and 
p2, = divacancy thermal concentration 

(at/at/s) = 6 exp {-(2EF - E~‘E)/kZ’} [ 151 . (7) 

Notice that divacancies were assumed to be 
mobile, and that their major interaction is with 
dislocations. The definitions of the parameters in the 
equations and their numerical values are given in table 
1. The set of balance eqs. (l)-(7) can be easily derived 
by considering all possible production and removal 
rate processes for a particular cluster size. The reader 
is referred to ref. [ 161 for a detailed description of 
the derivation. Only 4 single rate equations for inter- 
stitial clusters and 4 similar equations for vacancies 
are used in this work. Larger size interstitial loops and 
cavities are characterized using Fokker-Planck con- 
tinuum equations as will be outlined in the next sec- 
tion. Previous numerical results [7] indicated that the 
cluster behavior for the first few sizes is highly sensi- 
tive to defect parameters and rate constants. There- 
fore, a detailed analysis is found necessary for clusters 
up to the tetra-size. 

2.2. Continuum description of large sizes 

For the purpose of simplifying the analysis, we 
will introduce the following notations: 

kt(x) = 7;(x) + d(x) = growth rate of an interstitial 
cluster by either vacancy emission ($8~)) or intersti- 
tial impingement <pi(x)), 

K,(X) = /3Xx) = growth rate of a vacancy cluster by 
vacancy impingement, 

A,(x) = &x) = decay rate of an interstitial cluster 
by vacancy impingement, 

h,(x) = yxx) + Of(x) = decay rate of a vacancy 
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Table 1 
Input parameters for 316 stainless steel 

Symbol 

ti2/Di 

L;tl) 

Lcv(l) 

Parameter 

Recombination combinatorial number 

Interstitial-interstitial combinatorial 

number 

Vacancy-vacancy combinatorial 

number 

Migration energy of a single vacancy 

Migration energy of a single 

interstitial 

Formation energy of a vacancy 

Formation energy of an interstitial 

Migration energy of a divacancy 

cluster 

Binding energy of a divacancy 

cluster 

Binding energy of a trivacancy 

cluster 

Lattice parameter 

Frequency factor for an interstitial 

Frequency factor for a vacancy 

Vacancy-dislocation bias factor 

Interstitial-dislocation bias factor 

Surface energy 

-_-~ 
Numerical value 

_~. -.-____~_ 
48 1201 

84 [31 

84 [31 

2.24 X IO-l9 .I [21] 

3.2 X lo”* J [21] 

2.56 x lo-l9 J [21] 

6.54 X IO-l9 J [Zl] 

1.44 x lo-l9 J [15] 

E% 

& 

a 

“i 

“v 

zv 

zi 
g 

4 x IO-** J [15] 

1.2 x lo-l9 J [22] 

3.63 X lo-** m [9] 

5.0 x 10’2 [4] 

5.0 x 10’3 [4] 

1.0 [21] 

1.08 [21] 

1 J/m2 [21] 

cluster by either vacancy emission or interstitial 
impingement, where the impingement rates are given 

by 

P ;f =K$i, . (8) 

Eq. (3) for a vacancy cluster and eq. (6) for an inter- 
stitial cluster of any size “x” can now be lumped into 
one rate equation 

dCt ctx> 
--?---=K,,c(X- 1)&(X - 1) 

dt 

- h,e@) +&,&)I c&> 

+ b,c(x + 1) qctx + 1) 9 
x>4. (91 

Dropping the cluster subscript (i, c) and expanding 
the first and last terms of eq. (9) in a Taylor series up 
to the second term, Wolfer et al. [13] showed that 
the set of equations (9) can be replaced by one con- 

tinuum equation of the form 

where C is a generalized concentration for either type 
of point defect clusters, and the “drift” function is 
defined as 

9(X, t) = K(X, t) - h(X, t) 

= point defect net bias flux , (10 

and the “diffusion” function by 

a(& t) = f {K(X, t) + h(X, t)} 

= point defect average diffusion flux . 02) 

The last equation is used to present both vacancy and 
interstitial clusters, with the appropriate 9 andCD 
functions, for sizes containing more than four atoms. 
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Eq. (10) is the well known form of the Fokker- 
Flanck equation that describes diffusion in a drift 
field [17]. 

2.3. Log-size transformation 

The Fokker-Planck formulation presented by eq. 
(10) has been the subject of investigation in various 
areas of physics [ 17-191, especially the physics of a 
nonequilibrium system of particles [17]. This 
equation describes the combined time dependent 
nucleation and growth regimes of the microstruc- 
ture. However, even with the simplest initial and 
boundary conditions, the equation proved to be diff- 
cult to solve analytically in its general form [ 18,191. 

In order to realistically define the microstructural 
behavior after large irradiation doses, we will intro- 
duce a new variable that is related to the defect radius 
by a logarithmic transformation: 

u = ln(&/b) , (13) 

where I is the cluster radius and b is the Burgers 
vector. Also let us define the following quantities 

n = 2 for loops , n = 3 for voids ; (14) 

Bz = C?/nb for loops , 83 = 3f2/4n for voids , (15) 

where fi = b3 = atomic volume, xt = number of inter- 
stitials in an interstitial loop, x, = number of vacan- 
cies in a cavity, q = interstitial loop radius, and r, = 
cavity radius. 

The following relationships can then be easily 
verified: 

rc = (3tiJ4~)“~ = (Bs,~,,)r’~ = fb eUc , (16) 

rl = (Ckq/nb)“2 = (B2xl)1’2 = ib eUI , 

or generally, for both cavities and loops 

I= (&A r/n=$beU, 

(17) 

(18) 

and 

z.f=iln ~KX . 
( ) 

using 

a aau 1 ---.--=_ ax-au ax rrx 
a 2 -nu 

au=iFe 

(19) 

a 
;tu3 (20) 

the describing eq. (10) would now transform to 

ac(u, f) 2 _m a ar=--e ww n a~ SC-ze-“UX C 1 , 

which reduces to 

ac 2 --nu 
-_=-e 

at K 

Eq. (21) is quite general and shows independence of 
the cluster type, except through(D, Sand n. 

2.4. Numerical analysis 

The approach we use here to solve the transformed 
equation is strictly numerical. In this regard, we first 
descretize the independent variable U, and then 
develop expressions for all the dependent variables 
only at the discrete points. The first and second 
derivatives are represented by first order, central 
finite differences. 

The nurne~c~ solution is sought only at discrete 
values of the variable U, that is given by 

~(~)=(~-4)~+~(4), k>4. (22) 

The value u(4) corresponds to tetra-clusters; 

u(4)=iln fn -4 , 
( 1 

(23) 

which is 0.6821 for cavities and 0.8 140 for interstitial 
loops. In implementing the numerical solution, we 
replace the derivatives in the variable u by central dif- 
ferences, obtaining: 

ac(k) _ 2 e-nu(k) 
at n 

(24) 
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Now define the new functions 

4(k,J)=(2e;;(*))2Q(J) 

= diffusion function , (25) 

@(k, J) = $h e- 2nu(k)(D(I) + i e-“WS(J) 

= diffusion-drift function . (26) 

With the new definitions introduced in (25) and (26), 
the basic equation (24) can now be written in a 
simpler form as 

dF={r(k,k- l)t@(k,k- l)}C(k- 1) 

- 2\k(k, k) C(k) 

+{\k(k,k+l)-@(k,k+l)}C(k+l). (27) 

In matching the continuum and rate theory solu- 
tions, the diffusion and diffusion-drift functions given 
by eqs. (25) and (26) were multiplied by the factors 

m2 and m, respectively, for the (k, k-l) values in 
only the first continuum equation. The numerical 
factor m was determined as follows: 

step size 

m =u(5 points defects) - ~(4 point defects) 

nh =- 
ln(5/4) ’ 

This ensures that the reaction rates between the last 
rate theory equation and the first continuum equa- 
tion are independent of the step size h. 

2.5. Calculations of microsbucture parameters 

The developments outlined in the previous 
sections will yield the fractional concentrations of 
point defect clusters at discrete points at any irradia- 
tion time. In comparing with experimental data, 
however, one would be interested in characterizing 
parameters such as the total defect density, the aver- 
age radius of both loops and cavities and the disloca- 
tion density for loops or sink strength for cavities. In 
the present calculations, the development of the void 
sink and its effects on the interstitial loop microstruc- 
ture were neglected. Experimental data indicate that 

the dislocation microstructure develops much faster 
than the corresponding cavity microstructure [26]. 
Therefore, we will only develop equations for the 
dislocation loop microstructure. 

The total concentration of interstitial loops per 
unit volume N,,,(t) is given by: 

Xmax 

JJtot(t) =; J- C(x, t) dx = ; xg* C(x, t) Ax , 
0 

Ax>l. (28) 

And since, 

nr2b =xb3 (29) 

or 

Ax z (2wlb’) Ar , (30) 

it is easily concluded from eqs. (28) and (30) that 

‘max 

N&r) - as c C(r, t) r Ar . 
‘min 

(3 1) 

The average radius of an interstitial loop is given by 

q = 7 C(x, t) r(x) dx/J C(x, t) dx 
0 0 

(32) 

or approximately 

‘max 

I 
‘max 

q 1: c C(r, f) r2 Ar c C(r, t) r Ar . (33) 
rmin ‘min 

On the other hand, the radius of the loop of an aver- 
age area is obtained as follows: 

Average area = rr [e] 2 = Xb2 (34) 

or 

(35) 

where 

i=I,,, 

I 
i=Imax 

X= C XiCiAXi y 2 CiAXi. (36) 
i=2 i=2 

Using the relations in eqs. (29) and (30), we obtain 
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iiy(f, = [“c” rfCi(r, t) *i/ ‘!fT riCi(r, t> pi] It2 . 
rmin ‘rnin 

(37) 

If we now define Mi as the jth moment of the frac- 
tional radial distribution, i.e. 

rmax 

Mi = c Ci(r, t) r$ Ari , 
rmin 

(38) 

the following quantities can be easily calculated: 

Ntot = (27Gb2W1 > (39) 

q =M21M1, (40) 

%=(M3/M,)1'2 , (41) 

~1~~=(2~/~)2 S2-'Mz (42) 

Eq. (39)-(42) represent average quantities that are 
calculated as functions of irradiation time. 

In the present calculations, the loss terms of point 
defects to the developing microstructure have been 
appro~mated using eqs. (47)--(50). Also, the cavity 
sink was found to be unimportant up to doses of 
-1 dpa. Therefore, the summations 

xmax 

2 cYX~) - GB) CJ Cvx 

in eq. (l), and 

Xmax 

In eq. (4) were neglected throughout the calculations. 
On the other hand, we used the following substitu- 
tions: 

The reaction rate constants K::$(x) and the 
vacancy emission rates $“(x) were calculated using 
the size dependent bias factors estimated by Wolfer 
[233. It is also assumed that point defect interaction 
with clusters is governed by a combination of bulk 
diffusion and surface reaction kinetics. This is dis- 
cussed in ref. [ 161, where the reaction rates are calcu- 
lated by an~yzing point defect transport along lines 
similar to the heat transfer in different media. 

3. ComputationaI aspects 

The set of single rate equations (l)-(6) and the 
descretized Fokker-Planck equations (35) are solved 
using the GEAR package [24], which is designed for 
stiff non-linear ordinary differential equations. 

The computational requirements of the present 
approach are modest when compared to more exten- 
sive rate theory calculations. For example, 600 CPU 
seconds were required to study ‘the interstitial loop 
microstructure development up to a total dose of 10 
dpa. In this typical computer run we used a maxi- 
mum of 21 equations to simulate the irradiation con- 
ditions of 3 16 stainless steel irradiated at 600°C and a 
dose rate of lo-’ dpals. An initial dislocation density 
of lOi m/m3 was chosen, and the material parame- 
ters of table 1 were adopted in the calculations. The 
number of continuum rate equations was dynamically 
increased by bounding the ratio of the largest cluster 
size concentration to the peak size concentrations 
with an error criterion (e< 10e2). This is a less 
accurate version of the more general conservation 
principle discussed in ref. [7]. 

4. Com~son with detailed rate theory ~.~~a~ons 

In an earlier study of point defect clustering 
kinetics [7], a detailed time-dependent rate theory 
was deveioped to study the early stages of this 
phenomenon. The ability to describe the microstruc- 
ture after long irradiation periods was found to be 
restricted by extensive computational requirements. 
In this section, we apply the present formulation to 
simulate the microstructure evolution of stainless 
steel under reactor conditions, and compare the 
results of the calculations to the previous rate theory 
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12 , 

0 IO 20 30 40 50 60 70 80 90 

LOOP SIZE, ATOMS 
Fig. 1. The development of the loop size distribution for 316 SS. Dose rate = 10” dpa/s, temperature = 723 K, pd = 1Ol3 m/m3 
and AZ+ = 0.203. 

computations. In addition to the parameters of table the size distribution is sharp, with most of the inter- 
1, we use the following: irradiation temperature = stitial loops containing only few atoms. This is due to 
723 K, initial dislocation density = 1013 m/m*, and the large forward reaction rate for the formation of 
dose rate = 10S6 dpa/s. diinterstitials, which in turn helps to create loops of 

Loop size distributions for this reference case are small size. As irradiation proceeds, more interstitial 
shown in fig. 1 at various irradiation times. Initially, atoms agglomerate into loops, and consequently the 

!i 

. Al& = 0.347 

a:- 

l Au,, = 0.203 

a 

W’ 

01 I I I I I I I 1 I I 

0 I 2 3 4 5 6 7 8 9 IO 

RRPSI~~N TIME, SEC 
Fig. 2. Average loop size as a function of irradiation time. The solid line represents the full single equation solution, while data 
points are for the numerical solution. 
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size distribution broadens. The area under the curve is 
proportional to the total loop concentration. Notice 
that a smaller peak of the distribution exists at the 
tetra-interstitial loop size. This behavior is due to a 
discont~uity in the reaction rates, where 
~~terstitials and t~terstitials were treated as 
spherical clusters, while loops of 4 atoms or larger 
were considered as atomic disks [ 161. The speed at 
which the distribution moves in cluster size space can 
be measured in terms of the time behavior of the 
average size, This is shown in fig. 2, where the average 
loop size is plotted as a function or irradiation time 
for small mesh spacing (Auk = 0.203), and for larger 
mesh spacing (Au, = 0.347). The results are also 
compared to the complete solution of single rate 
equations from our previous work [7]. It is interest- 
ing to observe that the present numerical results agree 
within a reasonable error band with the more detailed 
solution using single rate equations. It can also be 
seen from the figure that the average size grows 
almost linearly after an initial transient at the 
be~n~g of irradiation. 

5. Temperature effects on the loop evolution at low 
dose rates 

The wide range of fusion reactor concepts makes it 
difficult to generalize conclusions of the effects of 
irradiation on the structural materials used in their 
designs. However, if we restrict ourselves to studying 
the microstructure evolution of long burn-cycle 
fusion machines, such as the tokamaks or mirrors, we 
should be able to obtain results that are concept- 
independent. In this section, we study the 
characteristics of interstitial loop microstructure 
evolution in representative fusion reactor conditions. 
For practical considerations, we select to study a 3 16 
stainless steel first wall irradiated at an average low 
displacement rate of 10W6 dpa/s, and the same con- 
ditions of the previous example. The microstructural 
behavior at irradiation temperatures of 773 and 873 K 
is examined here. 

The time-dependence of the small size defect cort- 
centrations at 773 K is shown in fig. 3. After about 1 
ms, the single vacancy and interstitial behavior is con- 
trolled by mutual recombination, and the point 
defects tend eventually to their steady-state values in 

ICP 3 
10-6 10-4 lo-2 IO0 IO2 IO4 

IRRADIATION TIME (SEC) 

Fig. 3. Time dependence of small-size defect cluster concen- 
trations at 723 K and a dose rate of IO6 dpafs. 

-1000 s. The diinterstitial concentration peaks 
around 0.1 ms and then declines to a steady-state 
value. The large peak concentration of diinterstitials 
acts as a driving force for the nucleation of triinter- 
stitial clusters, which plays a similar role in forming 
tetrainterstitials. After about 1000 s (-10V3 dpa), the 
concentrations of these clusters achieve approximate 
steady-state equ~ib~um values. Although the concen- 
trations of small size clusters reach steady-state 
equilibrium, the concentrations of larger sizes are 
found to continue being strongly time-dependent. 
Fig. 4 shows the time behavior of large-size loop con- 
centrations (containing up to -1000 interstitials). 
The interesting feature here is the wide variation of 
the time constants of different cluster sizes. It can be 
seen from the figure that is takes a much longer 
irradiation time for the concentrations of larger size 
loops to reach steady-state. 

The total interstitial loop concentration and the 
loop line dislocation density as functions of irradia- 
tion time at two different temperatures are shown in 
fig. (5). The important features of this figure is the 
rapid transients in both of these quantities, which ter- 
minate very early during irradiation (--O.l s). The 
total loop concentration and the dislocation density 
increase gradually with irradiation after the initial 
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Fig. 4. Large-size interstitial loop concentrations at 773 K 
and 10m6 dpals. 

transients. Notice that the total accumulated dose is 
small at the end of the irradiation (10M2 dpa), and 
that the densities are still relatively low. The average 
loop radius is shown as a function of irradiation time 
in fig. 6 for both 773 and 873 R. The average radius 
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10-z 
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10-8 to-‘0 

10-6 10-4 10-Z IO0 102 IO4 

IRRADIATION TIME, SEC 

Fig. 5. Temperature effects on the total loop concentration 
and dislocation density. The solid lines are for 773 K while 
the dashed are for 873 K. 
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Fig. 6. Average interstitial loop size as a function of irradia- 
tion time at 773 and 873 K. 

increases rapidly at the start of irradiation, and then 
shows a slower time dependence as irradiation 
proceeds. 

At the higher temperature of 873 K, the general 
behavior of the clustering kinetics is similar to that at 
773 K. However, the time constants for similar 
clustering events are much shorter. High tempera- 
tures enhance the diffusion controlled point defect 
clustering kinetics, and the recombination limited 

regime establishes quasi-steady-state concentrations 

after only -100 s at 873 K. Figs. 5 and 6 indicate 
that the average loop radius is larger while the total 
dislocation density and loop concentration are both 
smaller at the higher temperature. This is in line with 

EBR-II experimental observations [25] at similar 
dose rates. Fig. 7 shows the temperature effects on 

the loop size distribution expressed as the fraction of 
loops in size interval per size interval (for convenience 
of comparison with experiments). The higher irradia- 
tion temperature is observed to cause a shift in the 
distribution towards larger sizes. This is attributed 
mainly to the shorter time constants at the high tem- 
perature as discussed earlier. In the next section, we 
compare the results of the calculations using the 
present model with heavy ion simulation data. 
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Fig. 7. The temperature effect on the interstitial loop size 
distribution at low dose rate. 

6. Comparison with ion simulation experiments 

Recently, Williams [26] performed experiments to 
study solution-treated type 3 16 austenitic steel 
irradiated to low doses in the Harwell Variable 
Energy Cyclotron_ Specimens have been irradiated 
with 46.5 MeV Ni6+ ions and 22 MeV C2+ ions, after 
room temperature pre-injection with 10 ppm helium 
and without helium pre-injection, at temperatures in 
the range 300-600°C. In his analysis of the micro- 
structure, the simple arithmetic mean diameter drd 
was used in the estimation of the dislocation density. 
The diameter of a loop of mean area, &, where 

was used in the estimation of the number of inter- 
stitial atoms contained in dislocation loops. 

The loops were found to be unifo~ly distributed 
throughout irradiated areas that were free of grown-in 
dislocations prior to irradiation. Our assumptions of 
homogeneous (space independent) reaction rates 
seem to be reasonable in view of this observation- The 
loop number density was found to decrease and the 
mean loop size to increase with increasing irradiation 

-14 
lo 

KP KS4 lcf2 I$ to2 
Irradiation TIME 5EC) 

Fig. 8. Time dependent concentrations for small-size defects 
at 673 K and 10m3 dpa/s. 

temperature. Loop numbers and sizes appeared not to 
be significantly affected by the presence of pre- 
injected helium. 

6.1. Low temperature simulations 

The time dependencies of single point defects at 
673 K are displayed in fig. 8, along those for di-, tri-, 
and tetra-interstitial clusters. A displacement rate of 
10m3 dpafs and the material input parameters of the 
previous examples are used in these simulations. The 
high displacement rate used in the present calcula- 
tions has the effect of increasing the fractional con- 
centrations of defect clusters. A relatively large con- 
centration of tetra-interstitial clusters (10” at/at) 
peaks around 0.1 ms. This contrasts with low dose 
rate irradiations where the peaking occurs at much 
longer times (*.l s)_ The rapid development of 
tetra-interstitial peak concentration due to the high 
displacement rate promotes interstitial clustering, and 
ioop fo~ation occurs at a much faster rate. Large 
size loop concentrations were found to increase 
rapidly, and by -100 s (0.1 dpa) loops containing 
-3000 interstitials maintain a relatively large frac- 
tional concentration (lo-l2 atfat). 

The average loop radius as a function of irradiation 
time increases rapidly at the beginning of irradiation 
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Fig. 9. A comparison of the results of the calculations with 
experimentally determined loop concentrations and line den- 
sities at 673 K and low3 dpa/s. 

as a result of the enhanced clustering kinetics at this 
high displacement rate. While the predicted value of 
the average radius after 100 s is -55 8, the experi- 
mentally measured radius is reported as 15 a [26]. 

Although it is intended to correlate the model 
results with experimental data, we realize the relative 
simplicity of the physical picture presented by our 
fo~ulation. Collision cascade effects in ion bom- 
bardment experiments [27], impurity effects in com- 
plex alloys such as 3 16 stainless steel [28] and grown- 
grown-in dislocation dynamics are just examples of 
added physics that can be important. For example, a 
high initial dislocation density has been shown to 
reduce the average loop size [ 161. Fig. 9 compares 
the results of our calculations to the experimentally 
measured total loop concentration and dislocation 
density. The two parameters exhibit rising transients 
at the start of irradiation establishing values that are 
close to those measured exper~enta~y, in only 
about a millisecond. This behavior supports the 
approximation of a constant loop number density in 
microstructure growth calculations [27]. 

6.2. High temperature simulations 

At high temperatures, point defect diffusion and 
interaction rates increase, which speeds up the 

10-6 10-4 10-2 IO0 IO2 it-J4 

IRRADIATION TIME (SEC) 

Fig. 10. Time dependence ot the clustering process for large- 
size interstitial loops at 873 K and 10T3 dpa/s. 

dynamics of clustering. Generally, the higher point 
defect mobilities result in lower defect concentra- 
tions. At high temperatures, it is then expected that 
point defect agglomeration is fast and results in low 
concentrations of microstructural features (such as 
interstitial loops or cavities). The peak concentration 
of tetra-interstitials at 873 K is actually observed to 
form very quickly at -50 ps and to be -2 orders of 
magnitude lower than the corresponding value at 
673 K. 

The clustering processes of large-size interstitial 
loops are shown in fig. 10, where the fractional con- 
centrations are shown as functions of irradiation 
time. With the present calculations technique, ioops 
containing up to several million interstitial atoms are 
simulated. One can easily observe some general trends 
in the behavior of interstitial agglomeration. The con- 
centration rises to a m~um and then declines to 
an equilibrium value. The time scales for achieving 
either a maximum or an equilibrium concentration 
increase with increasing loop size. It is also noticed 
that the absolute fractional concentrations go down 
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Fig. 11. Evolution of the interstitial loop size distribution at 
high dose rates. 

for large size loops, since each loop contains a very 
large number of interstitial atoms. The development 
of the loop size distribution at 873 K is shown in fig. 
11. With increasing irradiation dose, the peak of the 
distribution broadens and also shifts towards larger 
radii. 

The results of the numerical simulations are com- 
pared to the experimental data of Williams [25] in 
fig. 12. We compare the calculations with the data 
obtained from 1150°C solution-treated type 3 16 stain- 
less steel specimens irradiated to 1 and 2 dpa with 
46.5 MeV Ni6+ ions at 600°C with no helium pre- 
injection. Fig. 12 shows the average radius, the total 
loop concentration and the dislocation density as 
functions of irradiation time. It is interesting to note 
that the present model shows a reasonable agreement 
with experiment for the dislocation loop parameters. 
In comparing with experimental data, no correction 
was introduced for the resolution limit of the micro- 
scope. The average loop diameter in our comparisons 
are in the range of lo-100 nm, while the resolution 
limit is usually -1 nm. 

Finally, the effect of the irradiation temperature 
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Fig. 12. Comparison between theory and experiment of the 
interstitial loop parameters at 873 K and loo3 dpa/s. 
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Fig. 13. Effect of irradiation temperature on the interstitial 
loop size distribution after a dose of 0.1 dpa. 
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on the interstitial loop distribution at 0.1 dpa is 

shown in fig. 13. A comparison between figs. 7 and 
13 reveal that at the high dose rates, the peak height 
decreases considerably with increasing temperature. 

On the other hand, the temperature effect on the 
peak height is not as strong at the low dose rate. 
However, for both dose rates the higher temperature 
shifts the distribution towards larger values, which is 
consistent with the experimental findings. 

7. Summary and conclusions 

In this paper, we have developed a new method for 
calculating void and loop size distributions during 

irradiation. Small size interstitial clusters were studied 
using the detailed rate theory approach, while large- 

size loops were simulated by descretizing a trans- 
formed Fokker-Planck equation. This numerical 
approach allows the study of defects containing up to 

millions of atoms with very modest computational 
requirements. Microstructure parameters such as total 

defect concentrations, average size, defect distribu- 
tion and moments, and total sink strength can be cal- 

culated as functions of irradiation time. 
The results of the present hybrid approach have 

been compared to previous detailed rate theory com- 
putations. Various mesh sizes of the descretized 

Fokker-Planck equation resulted in interstitial loop 
size distributions that compare reasonably well with 

the rate theory calculations. 
A simulation of low dose rate irradiations was 

carried out at 10T6 dpa/s, which is produced to 

within an order of magnitude in both fission reactor 
core components and fusion reactor first walls. It has 
been shown that the concentrations of small-size 
defect clusters reach equilibrium values after -1000 
s of irradiation. However, large size interstitial loops 
continued to develop with time lags that increased 
with increasing size. Interstitial loop fractioanl con- 
centrations were found to be smaller by l-2 orders 
of magnitude at 873 K when compared to 773 K. The 
total loop concentration and dislocation loop line 
density were found to decrease while the average size 

increased with increasing irradiation temper- 

ature, which is qualitatively consistent with fission 
reactor experiments. 

A correlation with experimental data on heavy ion 

irradiated 3 16 stainless steel at 1 0v3 dpa/s was finally 
conducted. The numerical values obtained from the 

present model were shown to match reasonably well 
with the experimental data at 673 and 873 K. Total 
interstitial loop concentrations, average radii and 
total dislocation line densities were shown to be 
in reasonable agreement with the experimental data. 
Moreover, the qualitative behavior of the micro- 
structure, which is probably more important than the 
absolute numerical values, showed the following 
trends: 

(a) The loop concentration and dislocation density 
decrease with increasing temperature at the same dose 
and dose rate. 

(b) For a fixed irradiation temperature and dose, 
the loop concentration and dislocation density 
increase rapidly with dose rate. 

(c) The average loop size increases with increasing 
temperature at the same dose and dose rate, but 
decreases slightly with increasing dose rate if the total 
irradiation dose and temperature are constant. 

(d) The growth speed of the interstitial loop dis- 
tribution increases with increasing temperature. 

The previous qualitative trends are consistent with 

the experimental data from fission reactors [25] and 
simulation facilities [26], 
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