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I INTRODUCTION

Many of the proposed fusion reactor concepts'—
are designed to operate in a cyclic mode. During
the burn cycle, thermonuclear energy is primarily
delivered to the reactor first wall and blanket:
and during the cool cycle, the initial reactor
conditions are re-established. In the case of
Inential Confinement Fusion Reactors (ICFR’s),
the production of thermonuclear energy and the
ensuing radiation damage to reactor components
occur in a very short period of time (less than a
microsecond®). This is followed by a relatively
long down time (on the order of a fraction of a
second). The extremely small duty factors in
ICFR’s (on-time/cycle time) pose some interesting
problems related to the behavior of the damage-
produced defects.

The interest in experimental and theoretical
methods for pulsed damage analysis has been
increasing in the last few years. The small number of
pulsed irradiation experiments performed to
date®'" have demonstrated the significant dif-
ferences in the response of materials to pulsed
irradiation when compared to steady irradiation.
On the theoretical side, various models have been
recently used to analyze aspects of microstructural
behavior during irradiation. Rate theory models
have been applied to point defect behavior,'2
void nucleation,'*!'* void growth and swel-
ling,'*~'? defect buildup and solute segregation,®
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irradiation creep®'-*? and finally void and loop -

nucleation and growth.??

In most of the theoretical models, the numerical
integration of a large system of non-linear, coupled
differential equations places severe computational
limitations, especially when the solution is re-
quired after many pulses. Aside from numerical
error control problems that can arise when the
stiff system of differential equations is integrated
with a pulsed source term, the solution can be
unrealistically expensive for the millions of pulses
expected over the wall lifetime in an ICFR.
Furthermore, fusion reactor concepts, particularly
for inertial confinement fusion, are still evolving
and continuously changing. A model that is
physically based and computationally simple can
be very useful in reactor design sensitivity studies.

In a previous paper, a Fully Dynamic Rate
Theory (FDRT) was developed'® for studying the
void swelling of metals irradiated with time-varying
irradiation sources. This theory was then further
utilized in a numerical integration scheme'” in
order to evaluate the void swelling of pulsed fusion
reactors. In the present paper, we present an
analytical method to study void growth in ICFR
first walls. The analytical approach is intended to
be used for the description of the long term
behavior of irradiation-induced voids in ICFR’s.
A large combination of material and irradiation
variables can thus be studied in preliminary
investigations of reactor parameters.
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2 ANALYTICAL MODEL

The solution of the diffusion equation for point
defects in the vicinity of a spherical cavity of
radius R yields the following void growth equation

drR | 20
= —ID.C, —DC— DT -1}t

(1

The symbols and parameters used in Eq. (1) and
all following equations are listed in the nomen-
clature at the end of this paper.

Before attempting to solve Eq. (1), the explicit
time dependence of point defect concentrations
C,; has to be specified. In our analysis, we will use
Eq. (1) to describe void behavior during steady-
state irradiation, and then proceed to a comparison
of this behavior during the equivalent pulsed
irradiation,

2.1 Model Assumptions and Limitations

Since the basic motivation behind the development
of the present analytical model is to describe
void behavior in ICFR first walls without excessive
computations, the model will rely on certain
simplifying assumptions, This will in turn limit
the applicability of the model to cases where the
assumptions are valid.

Point defects are assumed here to diffuse in a
uniform, homogeneous medium. Vacancy loops
resulting from collision cascades are considered a
part of the overall sink, which is expressed as a
constant dislocation density, p, cm/cm®. After
immediate point defect recombination in cascades,
a net production rate of P at/at/second is estab-
lished in the bulk material of the first wall. This
also implies that cascade overlap effects should be
considered in the final evaluation of the point
defect production rate. The diffusion of vacancies
to sinks is described by a mean lifetime, ., while
that for interstitials is described by t;. This lifetime
description is obviously valid only after the initial
damage production state, and is therefore regarded
accurate for point defect diffusion to pre-existing
voids. The present study will focus on the inter-pulse
behavior of a preconditioned microstructure (i.e.,
in the growth or shrinkage phase).

Modeling of the interstitial loop microstructure
evolution is implicitly included in a constant
initial dislocation density. The only microstructural
feature that is allowed to change with irradiation

is the void microstructure. In principle, interstitial
loops can also be included in the present analytical
model. However, the fact that this analysis applies
past the void nucleation time immediately implies
the presence of a more or less stable dislocation
density.”*

It is also assumed in our analysis that the
cavities are formed by the condensation of irradia-
tion produced vacancies and do not contain gas
atoms from nuclear reactions. The analysis is
therefore limited to inertial confinement designs
where the He/dpa ratio is low and voids rather than
helium filled cavities are expected to dominate.
Even though an analytical solution including
helium effects would be more complex, it is still
possible to incorporate a separate rate equation for
helium diffusion and to include a gas pressure
term in treating the growth and shrinkage kinetics
of cavities.

2.2 Steady-Irradiation Analysis

The term steady-irradiation is used here to indicate
that the source of irradiation is time-independent.
The state of the irradiated material is best described
as being in a quasi-steady-state. Changes in point
defect lifetimes due to microstructure evolution are
usually small as to validate the steady-state
assumptions within a prescribed time period.

During steady-state, the concentrations of point
defects are determined by the balance between
production and destruction rates. A point defect
mean lifetime, 1, is defined as the average time spent
in the matrix before a point defect is absorbed
at the various microstructural components. For
vacancies (v) and interstitials (i), the lifetimes can
be written as:

1
D, (Z, ps + 4nRN)

Assuming that the dislocation density, p,, does not
change with time, we define:

4aR(0)N
Pa

as the ratio of the void sink strength to the disloca-
tion sink strength. Equation (2) can then be written
as:

i = {Z,,04D, (1 + o)}~ (4)

If we choose a time interval, At, such that x(t) is
approximately constant, we have the quasi-steady

Tvi =

(2

x(t) = (3)
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state (QSS) point defect equations
dC Cv.i

— s 0= P - 4C,C, ~
df 0 = b t\"i (5)
The general solution of which is given by**
; | —_—
Ccos = = (/1 + 4aPr;7, — 1. (6)

ez okt A1

The problem of void growth and swelling during
steady irradiation has been previously solved
using numerical integration methods.'-'7 In this
section we will consider an alternate discretization
technique that simplifies the calculations of point
defect and void parameters without resorting to
numerical integrations. The same method will also
be shown to apply to pulsed irradiation. Therefore,
technique-dependent differences in the swelling
behavior of metals under the two modes of irradia-
tion are eliminated.

Consider dividing the irradiation time ipto equal
intervals, At, such that at the end of interval k, the
time is given by

™ = kAr. (7)

After k intervals, the average void radius will be
given by

R R ™) (8)

and the time constants will change as the voids
Brow

o) = 1+ ] 9
where

|

i _— |

T“‘bi Z'v.lpd'Dv‘l ( 0)
and

mN
= 4nR (11)

Pa

In the next section, we will present the analysis
for steady-irradiation, The analysis depends on
the dominant mode of point defect interaction,

2.2.1  Sink-Dominant Behavior If the absorption
rate of point defects at sinks (such a voids, loops
and dislocations) is larger than their mutual
recombination rate, the solution to the equations
describing point defect concentrations will simplify
to:

CY) =P (12)

This solution is obtained from Eq. (6) if
4aPr, 1, < 1. (13)

Let us define the net point defect flux during the
interval k as

$% = D,c¥ — Dicl ~ DO — 1] (19)

where,

290 (
- S 15
> HRg 2
and,

k=1)
k-1 =RR = (16)
4]

Also define
¢|‘ — DVC:’ (I?}
and

PAZ,

d = ._p;, AZ,=Z 1. (18)
7

Using these definitions, and introducing the di-
mensionless parameter

4
P
Po
as the ratio of the emission flux of vacancies from a
straight surface to the net diffusion flux, we get

e U e e
(20)

Now, during the time interval, At, the void growth
equation can be analytically integrated by assuming
that the net vacancy flux given by Eq. (20) is
approximately constant. Performing the integra-
tion and substituting for ¢*', we get

my =

(19)

B 2A1¢
(Lkazfi& ll|_|,.,_ =
{ (=DRG?
1/2
% [(1 + gol* )72 — my(e®"™ ™" - 1)]
(21)

This is a simple recurrence formula for I'**', and hence
the steady-irradiation average void radius at any
irration time.

Notice that the critical radius for void growth is
obtained when " = [, This will lead to the
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definition of the critical radius R§ as
(o)
. kg T}
e T
pdl + x5)*D,Cy

which is a simple transcendental equation in Rj.
A similar result was obtained by Hayns.?®

(22)

2.2.2 Point Defect Behavior Dominated by Mutual
Recombination  When mutual recombination do-
minates the behavior of point defects, simplified
expressions for their quasi-steady-state concentra-
tions can be obtained. This situation is realized if

4aPr,1, > 1. (23)
In this case, Eqs. (6) approximate to

P ;
CH ~ \/ e (24)
Substituting for the concentrations, and defining

PD, D,
o8 = AZ, \/ = (25)
and
mg = = = dimensionless (26)
¢o

we obtain the following expression for the net
vacancy flux to the void

o™ = ¢H{[1 + xol* V]! = mg[et™ " —17).
(27)

Finally, the dimensionless void radius in this case

will be given by

2A1¢R

!1” = ﬂl_”{] + “it—lIRo)Z

1/2
X [(l &+ Iof‘.*_”)'l — mg(e‘:'”"" T 1)]} /

(28)

which is again a recurrence formula, that relates
¥ to I*~ V. The void radius at any interval, k,
can be obtained by a simple progression scheme.

The critical void radius is again obtained by
noting that R*® = R, when ['" = [/ Therefore

(&)
o Ky T,

N % {Azi, /PD,DJa 1}-

(1 + x0)D,C;

Before we present the results of the steady-irradia-
tion model, we will develop similar formulas for
the average void radius under the irradiation
conditions of ICFR’s. The previous analysis will
be used in comparing steady and pulsed irradiation
effects on void swelling.

(29)

2.3 Void Behavior in ICFR Conditions

The behavior of voids under the irradiation con-
ditions of ICFR's is unique in the sense that damage
is produced during an extremely short period of
time. For the majority of ICFR designs, the on-
time is usually smaller than the interstitial mean
life-time. For example, in the SOLASE conceptual
reactor design,’ the majority of the displacement
damage due to neutrons occurs within 4 x 108
seconds. At the end of the on-time, the concentra-
tions of both vacancies and interstitials will be
approximately equal, since their diffusion to sinks
is negligible within this short time. We will assume
here-that the average damage rate over an entire
cycle is P dpa/s. The amount of accumulated
damage per pulse is thus

&= PT, (30)

where T is the period. We define here two possible
cases at the end of the on-time.

a) The on-time is smaller than the mutual
recombination time T,, < 7, where 7, is the mutual
recombination time defined by Sizmann.?3

The fractional concentrations of both vacancies
and interstitials can be described by:

CUT,) = C(T,,) ~ & (31)

b) The on-time is longer than the mutual
recombination time, but smaller than the inter-
stitial mean lifetime (1, < 1., < 7).

This case is achieved at low temperatures, and
low to intermediate sink densities. The fractional
point defect concentrations are then given by

amg=amgzjg (32)

L),
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Notice that the definition of 7, that corresponds to
Sizmann’s work is given by**

Ton
P =
L7

The important point here is that the concentrations
of both vacancies and interstitials are equal at the
end of the very short on-time.

Now, we proceed to develop the equations for
point defect concentrations during any irradiation
pulse. The following analysis is applicable to both
cases (a) and (b). For simplicity, however, it will
be restricted to case (a), while the results for (b)
are readily obtained by replacing & with (¢g/xT,,)'*
in the final expressions. In this section, we will
develop solutions to the void growth problem in
the general situation where point defect behavior is
governed by both diffusion to sinks and mutual
recombination.

During the off-time, vacancies and iaterstitials
will start diffusing in the medium as well as interact
via mutual recombination. The source of irradiation
will be absent, and their initial concentrations will
be the same at the start of the first pulse. The
governing equation for point defect kinetics during
the first pulse is given by

(33)

dcv.i

=ut = —aC, €~ el

(34)

Before solving these two coupled equations, we
first define an important dimensionless variable,
#. as the ratio of interstitial sink loss rate to the
loss rate due to recombination at the end of the
first on-time. Thus

0 = (eeti') . (35)

Now we will approximate the recombination loss
rate in the interstitial equation only by assuming
that 2C, C, ~ «C}. This will effectively separate the
interstitial equation from the vacancy equation,
resulting in the solution

ehe” (t—Ton)fel1)

cin = (36)

3= o= e-il—‘l"nnmln‘

If we substitute this equation back into the vacancy
equation and integrate, we get

C(" = 892 ‘ll e - rﬂﬂ}-’“t“

v 1 + 6 = e~(l-‘l"gnlrr'.‘l'

Details of the manipulations leading to Egs. (36)

(37)

and (37) are given in appendix A. Since T, > ",
the interstitial concentration will be always close
to the thermal equilibrium value by the end of the
first pulse. However, the vacancy concentration
will not generally decay to thermal equilibrium
but will retain a certain value that is determined by
the mean vacancy lifetime. Thus, the initial con-
ditions for the interstitial and vacancy concentra-
tions for the second pulse are:

CPAT,,) =& (38)
and
gle=\Tr- Tonti

CNT) =+ ———F3 3

VT, =¢+ a+0 (39)
Now, if we use the notation
'fi” = X t,—[T;-'rg,..irr!.“ (40)
and

0

12y
L 1+ 0 4n)
The initial condition (39) becomes:
CN(T,,) = &1 + n\™) (42)

Notice that all times are now measured from the
start of the second pulse. Again, if we approximate
the recombination rate, «C,C;, in the interstitial
equation by a{a(1 + n\*)}C;, we can decouple the
two equations and arrive at a similar solution for
the second pulse.

1
E{(Zi + 2 ])9 + qi“}e""‘ Ton)/t?
Zi + %o

a = 7 (51
Loy o —= 2)
i i f 2\ _ {t="Ton)¢|
+{(Zi+10) % } ;
(43)
and
Z. + x“" i2)
(l + "tll) ( i )9 £ qtl}}e—tl—"ronl!tv
C;n = Zl s Xo
= Zy + xt“ 2)
1+ Zl % - )9 g 'ﬁ.‘n} — e-ll-T.ml.‘r!
i 0
(44)
where

14y
@) _ 0 (1)
Wi (1 + x“’)t"
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and

Z £ z(l] ot
= Lo + o [0 S

Following the same procedure for successive
pulses, one can write the generalized equations for
point defect concentrations during any pulse, k:

k-1
{(z—iz-'-f‘ j)l’) + ﬂy"}a:e"" Tanl/st
i T o

i k=1
1+ {({;Tx = )9 + rr‘.k’} ol Tamief®
i T Xo
(47)
and
th) _ i b -
i Z; +Zﬁﬁn) } = o)
4+ 5 g 4 gl _ o= t=Tound
{( Zi+ fo ;
(48)
where
1 + .
i (k=11 | =
t{“ - {(Z,Z+-fz _')f rEk— h g sar;f,“} (50)
i 0
TR aili = p
(5 e o
n' = -
Z +y 21) .
1 + (—ﬁ' 0+ n*- v
{ Zi + Yo
(51)

Equations (47-51) are self-contained, and can be
used to determine point defect concentrations
during any pulse (k) and at time ! measured
from the start of the pulse. The validity of the
solutions given by Eqs. (47) and (48) has been
tested by comparing the results with more extensive
calculations using numerical integration tech-
niques. It is found that over 100 pulses the analytical
solutions given by Egs. (47) and (48) result in
values that are within 2-59% of those obtained
by the exact numerical integrations using the GEAR
computer package.*” It is to be noted that in our
previous paper?? simpler solutions for C, and C,

were developed, where the microstructure was
assumed to be constant during irradiation with no
void sinks. The application to irradiation creep
was appropriate. In the present work the equations
for €, and C; are more general and necessary to
describe the feedback effects between the void
microstructure and point defect concentrations.

In order to determine the average void radius
during the k'th pulse, the vacancy emission rate
from the void surface will be approximated
as a constant value corresponding (o that at the
end of the previous pulse. The net vacancy flux
during the k’th pulse is then given by

Ae™ — Ee™*

o = -—F 52
e (52)
where

Z 4 y*-"
= : : (k) Ky
({ i 0+ g® (1 + y*eD, (53)
Zi+ - ")
B=1+<|———|0 +n® (54)
( Z + 1o
Z, 4
E=ql——— )0 + n* 3D 55
{( Z; + Zu U q\f & v ( )
F=¢"{ef " — 1) (56)
Rm
(1]
e (57)
i Rtl
ra=ir— TP (38)
and
o :
a = —t'ﬁ?’ | (59)
T

In Eq. (52), we notice that the term ¢~ in the
denominator plays a significant role only during
the mutual recombination period that follows the
end of the on-time. During this period, however,
very little diffusion of point defects to voids occur
and the denominator can be simply regarded as
the constant B. Now, if we follow similar lines to
the steady-irradiation procedure, by integrating
the void growth equation within the time interval
of one single pulse (7;), we obtain for the di-
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mensionless void radius %'

l‘:’ ~ tﬁ:-l!
o [ L e
xq1+ v i xo{k—n
(Rol;77)° [+ (‘Zi + X )3 + g
Z + % !
| +
X - ("*1 = xtffu)(l + 0 = i)
I ‘:”lk—ll
TTZ A g =mfer ]
(EE
(60)
where -
&

N — 61
o (1 + x0)pa {5
and

@ lTy— T5)

= __tﬁp P (62)

Equation (60) is a recurrence formula for the
dimensionless void radius /. In the following
section we will present the results of the analytical
model by first comparing with previous numerical
calculations for the case when the microstructure
(sink densities) depend on the irradiation tempera-
ture. The comparison with the numerical solution
will also establish the accuracy of the analytical
procedure, and therefore will not be repeated in
later sections. Finally, we will show the results
when the microstructure is assumed to be tem-
perature independent.

3 RESULTS OF THE MODEL

3.1 Temperature Dependent Sink Densities

The loss of point defects by intrinsic recombination
introduces a source of non-linearity in the rate
equations describing point defect behavior. This
nonlinearity makes it difficult to develop analytical
methods to the void swelling problem during
steady-irradiation. Above the peak void swelling

temperature, it has become usual to ignore bulk

recombination and hence develop analytical solu-
tions. Hayns?® has recently discussed the validity of

these assumptions and demonstrated that this is
only true when the sink densities are temperature-
independent. He also showed that the situation for
temperature dependent sink densities gives almost
the exact opposite result.

We have recently performed numerical calcula-
tions for a set of rate equations describing void
swelling in ICFR’s,'” where realistic sink densities
and material parameters were used. In this section,
we compare the results of the present analytical
model to previous numerical calculations. The
analytical solutions for ICFR’s will be further
discussed in view of the Hayns?® findings on
the importance of mutual recombination.

The material parameters used in our calculations
represent 316 stainless steel and are shown in
Table (1). The microstructure is considered to have
been already developed (past the nucleation stage)

and the loop and void number densities are given

byzq
N = 6.7 x 107% exp{2.8(eV)/ky T} (63)
N, =65 x 10% exp{1.0(eV)/kzT}. (64)

These microstructure expressions were obtained
by fitting the experimental data of electron
irradiated stainless steel, where collision cascades
are absent.*® The results of this section apply
only to the growth phase of void swelling, and the
calculations start with a preconditioned micro-
structure. The results of the growth calculations
are therefore not necessarily dependent upon the
initial microstructure. For consistent loop and void

TABLE 1
Material parameters for stainless steel
(Ref. 29)
Parameter Units Value
S — 1.08
s — 1.00
Dy m?/s 1=
D, m?/s 50T
EP J 3.2 510522
E? J &1 xq07?
a/D, e 107
0 m? S 0T
¥ Jjm? 2
Ef J 256 %1077
E{ J 6.41 x 1071
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number densities, however, we use electron irradia-
tion results in this section and neutron irradiation
data in the next section.

Two main factors contribute to the difference in
the behavior of voids during steady and pulsed
irradiation conditions. The high damage rates in
pulsed irradiation increase the fraction of re-
combining point defects. The second process is an
increased rate of vacancy emission from the void
surface because of its slower growth due to the
shrinkage transient associated with the interstitial
absorption. In order to understand the importance
of these processes, we compare the results of the
present analytical model to the more general nu-
merical calculations of Ref. (17). In Figure (1), the
parameter 6 is plotted as a function of the pulsing
frequency, w. The microstructure described by Egs.
(63) and (64) was used in calculating f at various
temperatures. The importance of point defect
mutual recombination is shown to increase with
increasing temperature for any given number “of
pulses. This point was clearly demonstrated by
Hayns®® in his steady-irradiation calculations. An
interesting feature of Figure (1) is the greater role
of recombination for the low pulsing frequencies.
A low pulsing frequency with the same average
damage rate implies that the damage per pulse is

108

i > 1 = DIFFUSION
DOMINANT

#=1=RECOMBINATION =
DIFFUSION

(DIFFUSION RATE/RECOMBINATION RATE), 1
b

# < 1= RECOMBINATION DOMINANT

1 ] ] ] 1
10 102 108 104 108
PULSING FREQUENCY, w {sec™ )

FIGURE | The ratio of the interstitial diffusion rate to re-
combination rate (#) plotted as a function of the pulsing fre-
quency, w for the temperature dependent microstructure.

102
01

-

high, and consequently, so is the amount of
recombination.

Figure 2 shows a comparison between the
previous numerical calculations'” and the present
analytical method. The figure shows the change in
the void radius as a function of the frequency for a
given amount of total displacement damage (10~ °
dpa). The agreement between the analytical and
numerical calculations is fairly good. It is also
shown that for the high temperature 823 K, the
combined effects of mutual recombination and
interpulse annealing result in significantly slower
void growth rates at lower pulsing frequencies.

10
O NUMERICAL RESULTS [REF. 17 |

= ANALYTICAL SOLUTION

£
£
uz’ 8 823K
%
(- 4
-
o 6
=
g
o 4
8
>
z
8 2
773K
Z
x
Qo
> - p—— Qe 673K
0.1 1 10 102 108 104 108
PULSING FREGQUENCY, w (sec—) f

STEADY-STATE

FIGURE 2 A comparison between the numerical and ana-
Iytical results for the change in void radius as a function of the
pulsing frequency,w  Z, = LOS, T,, = 1077 sec. R(0) = 10nm,
and average dose rate = 10" dpa/s.

Figure 3 shows a summary of the results of void
growth as a function of irradiation temperature at
various pulsing frequencies. The microstructure
described by Eqs. (63) and (64) was again used,
with an initial void radius of 10 nm. Steady-
irradiation void growth is small at low tempera-
tures due to the high sink densities. At high tem-
peratures, voids tend to evaporate by vacancy
emission resulting in the elimination of void
swelling for temperatures that are higher than
~890 K. Intense radiation pulsing changes this
void growth behavior. At the low temperature end,
the pulsing effects are shown not to be very
significant. Intrinsic recombination and interpulse
annealing both play a minor role at low tempera-
tures, and the differences between steady and pulsed
irradiation results are small. As the temperature
is increased, point defect recombination and void
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STEADY-IRRADIATION

INCREASE IN VOID RADIUS (AR) x 10% , am

1
0
673 m 873 973

TEMPERATURE (K)

FIGURE 3 The increase in the average void radius as a
function of irradiation temperature for various pulsing fre-
quencies. R(0)= 10 nm, T, = 1077 sec. Z, = LOB, and
average dose rate = 107° dpa/s.

annealing become important producing slower
void growth, The peak void growth is shown to be
lowered for the smaller frequencies, and the peak
swelling temperature is slightly smaller. The void
growth cut-off temperature is also lowered due to
pulsing. It decreases by as much as 60 K for a
pulsing frequency of 0.1 Hz.

3.2 Temperature Independent Sink Densities

The number densities of voids and interstitial loops
is experimentally established to decrease as the
irradiation temperature increases.'® This is the
case if one starts with a fresh metal that has not
been irradiated before. The temperature depen-
dence of the microstructure complicates the under-
standing of the way point defects are partitioned
between various sinks versus mutual recombina-
tion. Another method to study the response of
materials to irradiation is to pre-condition the
irradiated material with a desired microstructure.

To illustrate various aspects of pulsed irradiation
effects, we choose here to use a temperature
independent microstructure that corresponds to
the EBR-II irradiation conditions at 823 K. This
microstructure was chosen at a neutron fluence of
10%® n/m? of energy >0.1 MeV (~4.7 dpa). At
this fluence, the void density is ~1.3 x 10'¢
voids/m?, the average void radius is ~11 nm and
the dislocation density is ~2 x 10'* m~2.2*

Since the microstructure was assumed to be
temperature independent, the parameter ¢ will
also be insensitive to temperature variations. Notice
that 0 depends primarily on the behavior of
interstitials, which is not very sensitive to tempera-
ture. In Figure 4, the parameter (! is shown as a
function of the pulsing frequency. The intrinsic
recombination starts to become important for
frequencies lower than ~ 100 Hz and dominant
for frequencies lower than ~ 5 Hz.

108

10° |-

w0t

i - ALL TEMPERATURES

021 = DIFFUSION
DOMINANT

§=1=RECOMBINATION =

[DIFFUSION RATE/RECOMBINATION RATE), 0
S
T
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FIGURE 4 The ratio of the interstitial diffusion rate to re-
combination rate as a function of the frequency for a temperature
independent microstructure that corresponds to EBR-II at
4.7 dpa and R23 K.

The vacancy concentration at 773 K for a
pulsing frequency of 10 Hz and the initial con-
ditions of the chosen EBR-II microstructure, is
shown as a function of the irradiation time in
Figure 5. The vacancy mean-lifetime is 0.23 seconds
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FIGURE 5 The detailed behavior of the vacancy concentra-
tion as a function of time at 4 temperature of 773 K and w = 10
Hz for the microstructure of Figure 4.

under these conditions (t° ~ 0.23 s). We noticg
from the figure that each pulse adds 10~ at/at to the
vacancy concentration, part of which instantane-
ously recombine, while the rest diffuses to the dis-
location and cavity microstructure. Since the
vacancy means lifetime is longer than the cycle time,
vacancies accumulate from pulse to pulse. By about
9-10 pulses (3 ~ 4 17), this accumulation process
saturates, and the vacancy concentration fluctuates
between ~ 10~ 7 at/at and 2 x 10”7 at/at.

The effects of the irradiation temperature on the
temporal behavior of point defects are shown in
Figure 6, for the same conditions of EBR-II
microstructure and a frequency of 10 Hz The
vacancy concentration at the end of each pulse
and the effective interstitial mean-lifetime (z*))
are shown as functions of the pulse number in
Figure 6. Notice that the vacancy concentration at
773 K is just the lower envelope of the detailed
behavior of Figure 5. At the lower irradiation
temperature of 673 K, the vacancy mean-lifetime
is much longer than the cycle time (4.23 seconds),
giving the vacancy concentration a much slower
rate of increase. After about 100-150 pulses, the
vacancy concentration saturates at a value that is
almost an order of magnitude higher than at
773 K. The concentration fluctuates between
~8 x 10”7 at/atand 9 x 107 at/at. The behavior
of interstitials can be studied by examining the
effective interstitial mean-lifetime. The interstitial
mean lifetime is not very sensitive to the irradiation
temperature, starting at values of 8-12 micro-
seconds at the beginning of irradiation and
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FIGURE 6 Vacancy concentrations and effective interstitial
mean lifetime as functions of the pulse number at different
temperature. EBR-11 data at 4.7 dpa (~10°° n/m?, E > 0.1
MeV).

dropping down to ~3-6 microseconds after a
few vacancy mean-lifetimes. The smaller values
of ¥ correspond to the lower temperature. The
interesting feature to observe here is the strong
coupling between the vacancy and interstitial
behavior due to mutual recombination in each
pulse. The interstitial mean-lifetime levels off
(except for a slow decrease due to the growing
microstructure) at about the same time vacancies
achieve a repeatable fluctuating behavior.

Figure 7 shows the change in the average void
radius of the same EBR-II microstructure at 673 K
and 773 K. The average void responds to the
temporal fluctuations in point defect concentra-
tions by a shrinkage transient followed by a growth
rate that is always slower than the corresponding
steady-irradiation. The initial void shrinkage is
attributed to the rapid arrival of interstitial atoms
to the void surface in consecutive pulses. Once the
point defect concentrations reach a state of repeat-
able profiles from pulse to pulse (in ~2-3 1),
there will always be an excess of vacancies reaching
the void with each pulse. At this time the shrinkage
transient is reversed, and a slower increase in the
radius than the corresponding steady-irradiation
commences (after ~ 10 pulses at 773 K and 150
pulses at 673 K). The slower increase in the
average radius of the void under pulsed irradiation
is partly due to the enhanced recombination of
point defects, and partly because of the higher
vacancy emission rate of the smaller size void.
Finally, Figure 8 shows the change in the void
radius as a function of irradiation time for various
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FIGURE 7 A comparison between steady and pulsed irradia-
tion results for the EBR-11 data and R(0) = 11 nm.

-1.0

pulsing frequencies at the same temperature of
823 K and the EBR-II microstructure. The steady-
irradiation void growth rate is seen to be the fastest.
It is also indicated that the lower the frequency,
the slower the void growth rate.

STEADY -IRRADIATION

CHANGE IN VOID RADIUS, AR x 107 nm

FIGURE 8 The change in void radius as a function of
irradiation time for steady and pulsed irradiation at various
frequencies. Irradiation temperature = 823 K.

4 SUMMARY AND CONCLUSIONS

In this paper, we have developed an analytical
model to study the problem of void growth in
metals subjected to intense radiation pulsing. The
analytical formulas developed for the dynamic
behavior of point defects and voids agree to
within a few percent with the more extensive
numerical integrations that have been previously
reported.

The swelling of metals due to void growth
without collision cascades under intense radiation
pulsing was concluded to be generally smaller
than the corresponding steady irradiation. The
magnitude of point defect mutual recombination
can be accurately determined by the present
analytical model. As a consequence of the increased
rate of recombination due to the high damage
rates in pulsed systems, the void growth rate is
generally lower. Void shrinkage transients result
from the rapid diffusion of interstitials. Vacancy
emission is thus enhanced, and void growth will
become even slower at temperatures above ap-
proximately half of the melting point.

When the microstructure is temperature de-
pendent, void growth is particularly retarded at
high temperatures. Recombination and interpulse
annealing become dominant at temperatures above
the peak swelling temperature. Pulsing frequency
was shown to have a profound effect on both the
magnitude of the maximum swelling rate and on
the swelling cut-off-temperature. Low pulsing
frequencies reduce the maximum void growth rate
as well as the swelling cut-off temperature.
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Appendix A

POINT DEFECT CONCENTRATIONS IN
ICFR’s

To determine the concentrations of point defects
during the off-time starting from Eq. (34) and the
initial conditions given by Eq. (31), we first solve
the interstitial equation by setting C, ~ C, in the
recombination rate:

ik Sl A1)

Upon integration, the solution of (A.1) is given by:
C"ls ES (1)

lﬂ&{[ci + (@) /L& + (axf™)~ 1]} = —t/g.

(A.2)

Upon rearranging Eq. (A.2), we can easily obtain
Eq. (36). Now, substituting Eq. (36) back into Eq.
(34), we get

dc, o C

@ e g)etr—r.,:ud" ~ 1 (A3)

which can be integrated by separation of variables
to obtain Eq. (37).

NOMENCLATURE
Symbol  Definition Units
Ciz, Point defect concentration at/at
D, ; Point defect diffusion

coefficient m?/second
R Average void radius m
cr Thermal Equilibrium

vacancy concentration  at/at
7 Surface energy J/m?
Q Atomic volume m?
kg Boltzmann'’s constant J/K
T; Irradiation temperature K
00 Point defect time

constant during

interval k second
Z,; Dislocation bias to point

defects —




Symbol Definition

Pa
N

Dislocation density

Cavity number density

Point defect
recombination
coefficient

Average displacement rate

Time interval

Initial cavity radius

Critical cavity radius
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Units Symbol
mne £
m- 3

Ton

T
second ~! f
at/at/second
second
m
m

Definition

Accumulated damage
per pulse

On-time

Cycle time

Ratio of interstitial sink
diffusion to recombina-
tion rate at the end of
the first on-time
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Units

at/at
second
second



