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The effects of irradiation pulsing on the climb-glide creep, and the role of the glide barrier height are investigated. Only 
tokamak-type pulsing is considered. We develop a new formulation for the creep strain increment per pulse for large barriers, 
for which more than one pulse is needed for glide to occur. This formulation is applied to typical tokamak-type conditions, 
including the UWMAK-I and INTOR designs. It is concluded that no significant enhancement over steady irradiation occurs 
for 7” <bum-time. However, in long bum-time Tokamaks with T,, son-time and off-time, it is found that the pulsed creep 
enhancement can be significant. For example, for a duty factor of 0.9 the enhancement is about 3 for small barriers using a 
dose-equivalent average damage rate when comparing pulsed and steady irradiation. The maximum enhancements are 
diminished to about 2 when equal instantaneous damage rates are used. 

1. Introduction 

The importance of irradiation creep in the design of 
fusion reactor structural materials has prompted a con- 
siderable amount of experimental and theoretical re- 
search. Recently, there have also been some efforts to 
understand the effects of pulsed irradiation on creep 
[l-8]. Most of the experimental work has found that 
pulsing gives rise to an enhancement of creep strain. 
This has been understood mostly on the basis of the 
time-dependence of the point-defect concentrations 
which are induced by irradiation pulsing. Even though 
irradiation may be producing equal numbers of vacan- 
cies and interstitials, it does not necessarily follow that 
these will find their way to sinks at a constant rate, 
independent of time. Due to the higher mobility of 
interstitials, an imbalance between the flux to disloca- 
tions of vacancies and interstitials is always created 
when the irradiation source is turned on or off. This is 
the case in most fusion reactors where the damage is 
produced only during the on-time of the reactor. 
MacEwen and Fidleris [l] measured the primary or 

transient creep produced in a cold-worked Zircaloy-2 
specimen in a fission reactor when the neutron flux was 
turned off. It was concluded from their experiment that 
the dislocations are subject to vacancies alone with an 
order of magnitude-increase in the climb rate above the 
steady-state value. Michel, Hendrick and Pieper [2] con- 
ducted an experiment to study the transient irradiation 
creep of nickel during deuteron bombardment. They 
observed about two orders of magnitude decrease in the 
creep rate during the first 8 hours of the experiment, 
and concluded that rapid changes in the microstructure 
are responsible for the behavior. They have not analyzed, 
however, the point defect fluxes. Vandervoort, Barmore 
and Mukherjee [3] conducted creep experiments to study 
neutron irradiation-induced creep in niobium in the 
temperature range 450-6OOT. They observed im- 
mediate increases (or decreases) once the neutron beam 
was turned on (or off), followed by long-term decreases 
(or increases). They rationalized their experiment in 
terms of the rapid change of the interstitial concentra- 
tion immediately after the beam is turned on or off, and 
the slower change for vacancies for the long-term creep 
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rates. Simonen and Hendrick (41 performed deuteron- 
irradiation experiments on nickel, in which the pulse 
frequency was designed to simulate tokarnak reactors. 
They observed a creep strain of about 3 times the 
steady-irradiation value. They attributed this enhance- 
ment to point-defect arrival kinetics at dislocations. 
Bystrov [5] has recently conducted pulsed electron- 
irradiation creep experiments where be observed an 
enhancement of the creep strain during pulsed irradia- 
tion 

In a previous paper [6] we investigated the climb- 
controlled glide (C.C.G.) creep mechanism during 
irradiation pulsing, appropriate to tokamak, accelerator 
and inertial confinement fusion reactor (I.C.F.R.) con- 
ditions. One key assumption of that study was that 
dislocations are able to overcome the glide barriers 
during a single pulse. That is, the dislocation is assumed 
to be able to climb over the barrier during the on-time 
due to the net interstitial flux, whereas during the 
off-time the barrier is overcome because of the solitary 
vacancy flux. This physical ~sumptions will be justified 
for small barriers. We refer to barriers as being small if 
the pulsing conditions are such that the dislocation can 
climb over the barrier during a single pulse. However, it 
should be noted that if the pulse duration is very long 
(on the order of thousands of seconds), then this barrier 
can in fact ~~~~icuZ~ be quite large. It was found [6] that 
under certain conditions, the irradiation pulsing gave 
rise to a significant enhancement of the C.C.G. creep, 
when compared with steady (i.e. continuous) irradia- 
tion. These enhancements, however, represent upper 
bounds, and if the glide barriers are large, there is 
expected to be less of a difference between pulsed and 
steady irradiation. The effect of irradiation pulsing on 
the stress-induced-preferential-absorption (SIPA) mech- 
anism has also been investigated [7]. It is found that the 
SIPA mechanism is virtually unaffected by the pulsing, 
under all conditions that were investigated. 

The main purpose of this paper, is to derive a general 
formulation of the pulsed climb-g~de creep rate by 
including the effects of the size of barriers to dislocation 
motion. We shall consider only tokamak-type pulsing. It 
is expected that maximum enhancement of the creep 
over steady irradiation will occur for the small barrier 
heights we previously considered [6], and will in the 
limit of very large barriers approach a lower constant 
value. 

In section 2.1, we discuss the physical basis of the 
climb-controlled glide creep mechanism. Specifically, we 
show the stress dependence of the barrier height and 
spacing. In section 2.2, we develop equations for the 
creep strain increment per pulse, as a function of the 

barrier height. We apply this new formulation in sec- 
tions 3 and 4 to several typical, tokamak-type pulsed 
conditions, including the UWMAK-I and INTOR fu- 
sion reactor designs. The dependence of the pulsed 
irradiation creep on the barrier height and the duty 
factor is investigated. Finally, in section 5, we present a 
qualitative discussion of the effect of a single cascade 
occurring near a line dislocation, since this physical 
mechanism can be expected to give climb distances that 
are different from those calculated by rate theory. 

2. Theory 

The hindrance to dislocation glide in solids depends 
on its interaction with various obstacles that can be 
present due to irradiation damage. In metals, interstitial 
or vacancy-type loops are considered serious obstacles 
to dislocation motion for the low temperature regime 
(temperatures 5 0.3 melting point), where irradiation 
creep is more significant than thermal creep. In this 
section, we first outline the relationship between the 
barrier characteristics and the applied stress for creep 
deformation. We will only consider small dislocation 
loops, but the analysis can be extended to other obstacles 
such as voids or precipitates. In the next part of the 
theory section we develop equations for irradiation creep 
in both pulsed and steady irradiation systems based on 
point-defect kinetics and the barrier-stress relationship. 

2.1. Elastic interaction between dislocations nnd small 
loops and/or small inclusions 

Small loops and inclusions have a stress field which 
shows the following radial dependence [9]: 

a 
‘J 

=&,,,,A+. (1) 

Here, kij is an angular function, p the matrix shear 
modulus, r the distance from the center of the loop or 
inclusion, and Ak’ the volume change when the loop or 
inclusion is introduced into the lattice. For an intersti- 
tial or vacancy loop 

AV= rt~R=b, (2) 

where R is the loop radius, and b is the Burgers vector. 
The stress u,, exhibits both tensile and compressive 
regions, and hence the interaction with a dislocation can 
be both attractive and repulsive. Kroupa’s detailed anal- 
ysis [9] has shown that the interaction energy of an edge 
dislocation with a loop goes through attraction and 
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repulsion (or vice versa) as the dislocation passes the 
loop. Therefore, a Frank dislocation loop (which is 
immobile) represents a serious glide obstacle. 

The dislocation glide past a Frank faulted loop is 
possible only when the external stress u” exceeds the 
stress field of the loop [IO]. Therefore, the “obstacle 
radius” h/2 of a loop is determined by 

o”=&Al’(h/2))’ (3) 

+m-3 

or 

h= ~/LAV “3 

( 1 no0 (4) 

If N, is the number of loops per unit volume, then an 
arbitrary plane intersects per unit area 

NA = Nr(V2) (5) 

“stress fields” of loops. The average distance between 
the glide obstacles is then given by 

x2?rNA = 1 (6) 

or 

X = (,rN,)-“2 = ;hNe --I”, 
( 1 (7) 

The ratio X/h is then 

$z ( -$2hP3/2 = (&)I”( &)li2. (8) 

The above relationship implies that the creep rate is 

proportional to fl provided that no dislocation pile- 
ups exist. In general, however, pile-ups are prevalent, 
and u” is then the stress exerted on the leading disloca- 
tion, which is [ 1 l] 

(Jo = no, (9) 

where u is now the applied stress and n the number of 
dislocations in the pile-up. If I denotes the length of the 
pile-up [ 111, 

n- 
l-v, 

1lJ 
pb ’ 

so that 

(10) 

u0 = L&$2 
@ 

(11) 

3 

(12) 

(13) 

and 

Now 

N,AV=nR2bNp =So, (14) 

where S, is the fractional loop volume, and for v = l/3 
we finally get the ratio of the obstacle spacing to height 
as 

(15) 

The magnitude of the C.C.G. creep is proportional to 
this stress-dependent ratio. 

2.2. Pulsed climb-glide creep as a function of the barrier 
height 

According to the model of climb-controlled glide, the 
creep rate of a material is given by [ 121 

~=c0(Vh)lK/,I, (16) 

where pd is the mobile dislocation density, A the average 
glide distance between two consecutive obstacles, and 
1 &l/h is the rate of release from an obstacle. Here, V, is 
the climb velocity and h the average obstacle height to 
be overcome. Eq. (16) contains further a numerical 
factor c which arises from averaging over all possible 
orientations of the Burgers vector b and of the glide 
plane normal vector occurring in a polycrystal. For the 
present purpose, this factor is of little significance, and 
will be set equal to unity. 

During irradiation, the climb velocity of an edge 
dislocation is given by 

v, =;(ZiDiCi -Z,D& +Z,D,C,“), (17) 

where Di and D, are the diffusion coefficients for the 
migration of interstitials and vacancies, respectively. 
The atomic fraction of interstitials and vacancies in the 
matrix are denoted by Ci and C,, whereas C,” is the 
atomic fraction of vacancies in thermal equilibrium with 
the dislocation. The last term in eq. (17) is responsible 
for thermal creep, and it is of no interest for the present 
paper. Henceforth, this term will be neglected. 

The bias factors Zi and Z, for the capture of intersti- 
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tials and vacancies at dislocations are commonly con- 
sidered to be the same for all edge dislocations and 

dislocation loops. However, as shown by Wolfer et al. 
[ 121, these bias factors vary substantially depending on 

the configuration of the dislocations. For example, small 
dislocation loops have a bias factor for preferential 

interstitial absorption, Zi, larger than the one for single 

edge dislocations. Furthermore, closely spaced disloca- 
tion dipoles have bias factors still smaller than for single 

edge dislocations. Finally, dislocations in subgrain 

boundaries have extremely short-ranged stress fields, 
and hence a very weak bias. Accordingly, in a real 
dislocation network, there exists a large spectrum of 
values for the dislocation bias, and hence always the 
tendency for some dislocations to absorb more intersti- 
tials, and for some more vacancies. When voids are 

present in the irradiated material, there is of course a 
preference for interstitial absorption at all dislocations. 

In any case, however, dislocations are expected to 
climb continuously under irradiation, and thereby give 

rise to irradiation creep by the climb-controlled glide 
mechanism, provided the density and the height of the 

glide-obstacles are not too large. Favorable conditions 

for this mechanism to contribute to irradiation creep 
exist therefore at low doses for low temperature irradia- 

tions (TS 500°C in stainless steels and typical neutron 
doses of 1O25 n/m2), and at low and moderate doses for 

high temperatures. 
As is evident from expression (17), the time- 

dependence of the interstitial and vacancy concentra- 
tions will directly affect V,. Consider for example dislo- 

cations with interstitial bias factor Zi larger than the 
average for all dislocations. Under steady irradiation, 
there is always a net interstitial flux, hence the disloca- 
tion will only climb in one direction until the barrier is 
eventually overcome. Under cyclic irradiation the situa- 
tion is quite different. During the on-time, there is once 
again a net interstitial flux causing the dislocation to 
climb; however, during the pulse off-time only the 
vacancies reach the dislocations, giving rise to disloca- 
tion climb of almost equal magnitude in the opposite 

direction. If the climb distance during either the pulse 
on- or off-time is greater than the barrier height, then 
this will result in dislocations overcoming barriers both 
during the on-and the off-times. It is this process which 
can be responsible for the large creep enhancements 
previously discussed [6]. Such conditions will be satis- 
fied either for small barriers, and/or long cycle times, 
which enable large climb amplitudes. These conditions 
will be further discussed via numerical examples in 
section 3. If the climb distance during a pulse on- or 
off-time is less than the barrier height, then the disloca- 
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Fig. 1. Schematic of point-defect fluxes $+ =( ZDC),,, and 
dislocation velocities. OP and OS, are the average dislocation 
velocities during pulsed and steady irradiation, respectively. 

0 T 
0” Tf Tf fT0” 2Tf 

TIME - 

Fig. 2. Schematic illustrating climb distances during the on-time 

(jAX?i), during the off-time (I AXii), for steady irradiation 
(AX,,), and net climb distances for small and large barriers 

(A%,). 
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tion will require more than one pulse to get over the 
barrier. Since the distance climbed up during the on-time 
/ AX r 1 is in general different from the distance climbed 
(down) during the off-time /AX $1, the dislocation will 
undergo an oscillatory motion as a function of time 
until the barrier is overcome, as depicted qualitatively in 
figs. 1 and 2. 

Fig. la shows a schematic of the point defect fluxes 
pi = ZiDiCi for interstitials and +, = Z,D,C, for 
vacancies during the on-time r,, and the off-time T,, 
for a fusion cycle of duration Tr. Point defect kinetics is 
mainly controlled by mutual recombination during the 
on-time. The interstitial flux (pi that reaches the disloca- 
tion, rises quickly to a peak value and declines there- 
after to a steady-state during the final portion of the 
on-time. On the other hand, the vacancy flux (rp, increases 
gradually to its steady-state value. During the off-time, 
the interstitial flux drops down to its thermal level, 
while the vacancy flux decays gradually by diffusion to 
sinks. The dislocation velocity due to this kinetic be- 
havior is shown in fig. lb where the climb velocity 
V, = (1 /b)( & - I#,) is shown together with the average 
dislocation velocities during pulsed (0,) and steady 
irradiations (us),,). Notice that during the on-time, a large 
velocity transient exists due to the large difference be- 
tween the interstitial and vacancy fluxes. The transients 
in the fluxes were shown to obey a t’12 dependence for 
vacancies and a t - ‘I2 dependence for interstitials 
[13,14], where t is the time. For a higher contribution 
from recombination, the climb velocity transient will 
extend over a longer period of time, and will therefore 
introduce a larger climb distance. 

The dislocation climb distances during the on-time 
(I AX t I), during the off-time (1 A X..J I), for steady- 
irradiation (AX’“), and net climb distances for small 
and large barriers (A X&J are all shown on fig. 2. It is 
to be noted that the dislocation goes over the barrier 
earlier under pulsed irradiation, and hence sees an effec- 
tive barrier height heft which is smaller than the actual 
barrier height. A distribution of dislocation positions 
will exist along the barrier height from -h/2 to +h/2. 
Those dislocations that are located within a distance 
1 AX t] from the top of the barrier will be able to 
overcome the barrier within only one on-time. On the 
other hand, dislocations located within / AX J, / from the 
bottom of the barrier will escape during the off-time. 
This leads to a definition of the effective barrier height 

l:rr =:h-(]AXtl+ IAX&]). (18) 

For “large” barriers with h > 2]A X t I, the dislocation 
will not be able to overcome the barrier in one single 

pulse. However, since it has climbed a net distance of 
] AX t 1 - I AX&I per pulse, the rate of release per pulse 
is equal to (1 AX t / - ) AX .j, ])/h .__t. Therefore, the creep 
strain increment per pulse is 

forh%2]AXtf. (19) 

On the other hand, for “small” barriers with h G 1 AX t 1 
+ 1 AX&l, the dislocation is certainly able to overcome 
the barrier during one single pulse. Therefore, in this 
case, the creep increment per pulse is simply equal to 

forhGlAX~]+lAXJI (20) 

which agrees with the case treated in a previous paper 
[6]. Both equations (19) and (20) yield at the boundaries 
of their respective inequalities for h the creep strain 
increment 

Ar, = pbh. (21) 

We will therefore assume that eq. (21) is also the creep 
strain increment per pulse for the interval IA X t I + 
I AX J, I Q h G 21 A X t I. This intermediate range will give 
rise to a dependence of Ar, which is continuous as a 
function of h, but not smooth at the boundaries of the 
interval. However, the interval over which eq. (21) is 
defined will be shown to be small, and therefore the 
details of the intermediate regime become insignificant. 

The magnitude of the climb-distances I AX tl and 
/ AX 4 ) depends of course on the entire range of material 
and irradiation parameters. We have previously shown 
[6] that for a given set of conditions the maximum 
pulsed creep enhancement (over steady irradiation creep) 
will occur when the mean vacancy diffusion time to 
sinks, T, is less than the pulse on-time in a recombina- 
tion-don’t regime, that is 7V < 7&, (for a given pulse 
off-time). A&hot@ we only investigated the situation 
where dislocations were able to climb over the barriers 
in a single pulse, the case T” < T,, is the only one that 
needs to be considered over the entire range of barrier 
sizes. This is due to the fact that for T” < T,,, the 
vacancy and interstitial concentrations are able to reach 
their steady state values during the on-time, with a 
transient region at the beginning of every pulse (see 
fig. 1). The duration of the transient is dictated by the 
pulse off-time. This transient will give rise to greater 
dislocation climb under pulsed conditions, regardless of 
the barrier size. It should also be noted that for T” < TO,, 
the point-defect kinetics is repeated each pulse. Hence, 
the climb distances will be independent of the pulse 
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number. On the other hand, for large values of TV > T,,, 
there is very little difference in the point-defect con- 

centrations in pulsed and steady irradiation systems [6] 
giving rise to almost identical climb distances. 

It can be shown [6] that for 
(defined by eq. (22c)), the climb 

IAX?] and ]AXJ,l. are given by 

T\ < T,, and t*>r, 
distances per pulse, 

(TV", 

_ [*l/2 
> 

_ t*3/2 
) 

-t [ ZiDiC”’ - Z,DyC,S’](7;,,~ -~,r) 
1 

(224 

IAXll=$~{l-exp[-h,(71-~,)1}, (22b) 
where 

t* E 7” exp[ -2X,( T, - T,,)]. 

rr E Xi/aP. (22c) 

C:E are the steady-state concentrations of point-defects 
achieved during the on-time with an instantaneous pro- 
duction rate P. In equations (22) a is the recombination 
coefficient, and pd is the total dislocation density. Here 

we have assumed that the only sinks are dislocations, 
with varying bias factors as discussed in the beginning 
of section 2.2. However, our analysis is general, and can 

easily be modified to account for the presence of other 

sinks, by using the appropriate bias factors. The other 
variables are defined as follows: 

x 1.” = ‘/‘i,v 

‘i.v = interstitial/vacancy mean lifetime as 

calculated by the various sink densities [22]. 

TV =7 ” -t*. 

The steady-irradiation climb distance over a pulse 

period Tr is given by 

AX,, = ; ( Z; D,C,Y - Z, D,C,““)T, , (23) 

where CtJ, is the steady-state point-defect concentration 
for a production rate either equal to P,, = P or equal to 
P,, = P(T,,/T,), depending on whether instantaneous 
or average damage rates are used, when comparing 
pulsed and steady irradiation creep. The creep strain 
increment per pulse period under steady irradiation 
then becomes 

Aess =(&h/h) AX,,. (24) 

Therefore, using expressions (19) (20). (21) and (24). 
we find the ratio of the pulsed to steady irradiation 
creep increment to be 

(I AX?1 + IAxll)/Ax,, 
forh</AXT/+IAXJI, (25a 

h/A Xs!,, 
Ae 
P- 

for IAXT/ + IAX& 

AL - <hc2/AX~l, (25b 

I Ax?l- IAJ’ll 
Ax,, 

) 

> 

(25~ ) 

It should be noted that eq. (25) is valid for all material 

and irradiation conditions. However, as we have previ- 

ously remarked the only case where significant depar- 
ture from steady irradiation creep can be expected is 

when rV < To,, for which we use equations (22) for 

]AXT] and ]AXJ]. 

3. Results 

Using the formulation developed in section 2, we 
now evaluate the pulsed dislocation climb and the re- 
sulting creep strain as functions of the pulse off-time 
and the barrier height. The formulas developed in sec- 

tion 2 are quite general and can be used for any instan- 
taneous damage rates P and P” during pulsed and 

steady irradiation, respectively. We will first discuss the 
results of the calculations for the case when one con- 

serves the total amount of.damage accumulated during 

the cycle time. In this case, the pulsed damage rate must 
be P = P’(T,/T,,). At the end of this section and in 

section 4, we will also discuss the effect of using the 

same instantaneous damage rate during both steady and 
pulsed irradiation. 

We first consider nickel at 200°C and p,, = 2 X IO’j 
m/m3. The on-time is taken as 5000 s, and the average 
steady-irradiation production rate is 10 6 dpa/s. These 
parameters correspond to a recombination-dominant 
regime, that is 

and the steady- state point-defect concentrations 
achieved during pulsing are given by 

Substituting C,?j into eqs. (22a) and (22b), we get the 
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following expressions for the dislocation climb distances 
during the pulse on- and off-time, respectively: 

,i\X?, =; ( 2,iDi( !3)“2(T;” -t*‘/*) 

-+z,D, P” ( i 
I/* 

aTi 
(T;/* - p3/‘) 

+[ ZiDi( 2)“‘-ZvDv( %)“*](Ton-~;)} 

(264 

(26b) 
Fig. 3 shows the climb distances 1 AX t [,I AX & ) and the 
sum 1 AX t 1 + I A X & 1, as well as the steady-irradiation 
climb distance AX,, as functions of the pulse period, for 
a fixed on-time Ton = 5000 s. As the pulse period Tr is 
increased, we must increase the pulsed point-defect 
generation rate in order to maintain dose equivalence 
between the pulsed and steady irradiation systems. This 
translates into point-defect kinetics that is more con- 
trolled by recombination, and therefore a larger contrib- 
ution of the transients, as discussed in connection with 
fig. 1. The downward climb distance during the pulse 
off-time 1 AX&l exhibits essentially a T/j2 dependence 

5 IO 15 20 25 30 35 40 45 50 
Tf x IO-? SECONDS 

Fig. 3. Climb distances for pulsed and steady irradiation for 

nickel with 7&=5000 s as a function of the total cycle time. 

p, =2X 10’3/m2, T=200°C, P= 10 m6 dpa/s, and all other 

material parameters are taken from ref. [6]. 

with a rising transient (due to e ~r~“v) due to vacancy 
absorption at dislocations within a vacancy mean life- 
time. This can be observed in fig. 3 where the transient 
term is dominant right after T, = TO, and up to a period 
(To, + T,), that is for pulse off-times between zero and 
7”. This means that / AX&I is greater than I AX t I for 
pulse off-times up to about T,, which is approximately 
3900 s in this example. Thereafter, both I AX t 1 and 
( AX J I follow a T//* dependence. For periods T, 2 (To, 
+ T,), it is always found that IAX? > IAXJI. This is 

due to the fact that every time the pulse is turned on, 
the point-defect concentrations are undergoing a tran- 
sient, which lasts until steady-state concentration levels 
are reached. This then results in an excess interstitial 
flux to dislocations, enhancing the upward climb. The 
duration of this transient can be shown to become 
appreciable only for off-times 2~“. If there were no 
transient during the on-time but only a steady-state 
contribution, and also a long enough off-time to deplete 
all accumulated vacancies, then one would find that 
IAXtl - IAX&/ is equal to AX,,. However, as seen in 
fig. (3), the existence of the transient in the point-defect 
concentrations (which is due to recombination) gives 
rise to a greater difference between I AX t 1 and 1 AX J, I. 
Furthermore, I AX?1 and [AX&l, roughly obey a T:/* 
dependence. Under steady irradiation the climb dis- 
tance over a pulse period T, is given by eq. (23) which 
can be written more explicitly as 

and is obviously linear in T,. 
We now consider for the same set of parameters as 

5 IO 15 20 25 35 40 45 
Tfx IO-‘, 

30 

SECONDS 

Fig. 4. The ratio of pulsed to steady irradiation creep strain for 

nickel at 200°C as a function of the total cycle time for a given 

barrier height h. Conditions are the same as in fig. 3. 



x H. Gurol et ul. / Dispersed hurriers in pulsed rrrudurrotl creep 

in fig. 3, the ratio of the pulsed to steady irradiation 
creep strain increment AcP/AeSs as a function of the 
period 7’r for given barrier heights. Dislocations will be 
able to climb over small barriers both during the pulse 
on- and off-times, and Ae,/Ae, is given by eq. (25a). 
For small barrier heights, it is found that the exponen- 
tial transient during the off- time (1 - exp[( Tr - 
T,,)/T~]) rises very quickly as a function of T,, giving 
rise to a peak ratio of pulsed to steady creep of about 
16, at off-times corresponding to a couple of vacancy 
mean-lifetimes, that is at (T, - To,) w 27, = 8ooO s. As 
T, is increased beyond T, = To, t 8000 s, the ratio 
Aer/Ae,, goes as T/j2/Tf or T,-‘,” as is evident in 
fig. 4. 

When the barriers are large compared with the climb 
-distance, the dislocations will need more than one pulse 
to overcome the barrier, and Aer/Ae,, is given by eq. 
(25~). As before, the pulsed and steady irradiation climb 
distances are evaluated using eqs. (26) and (27), respec- 
tively. From figs. (3) and (4), it is seen that for large 
barrier heights (in this case 75 and 150 nm), the fact 
that 1 AX ~1 increases more rapidly than jAX&l gives 
rise to the small maximum in the ratio at small values of 
the off-time. Furthermore, Atp/Atss rises sharply when 
/AX T / + 1 AX .j, / approaches the barrier height. It is to 
be noted that there can still be a significant enbance- 
ment in creep due to pulsing even for very large obstacle 
heights. This is again due to the facts that the point- 
defect transients during each pulse on-time result in a 
greater net interstitial flux than under steady irradia- 
tion, and furthermore h,, < h. This renders the net 
climb per pulse, that is ) A X t I - I AX J, / in fact greater 
than AX,,. 

In order to analyze expected reactor conditions, we 
also chose to study two existing fusion designs with 
widely varying operational conditions, namely the 
Wisconsin Tokamak design UWMAK-I [ 151 and the 
International Tokamak Reactor INTOR [16]. In both 
cases the irradiation creep behavior of a stainless steel 
first wall at 300°C is analyzed. It was assumed that the 
damage rate is IO-” dpa/s in both cases and that the 
average barrier height, h, is 3 nm representing the early 
stages of irradiation. The following parameters were 
used for UWMAK-I: solution-annealed steel (pd = 
10” m- *) and an on-time of 5000 s. On the other hand, 
for the INTOR, the dislocation density was chosen at 
10 I4 mm2 and the on-time as 75 s. The vacancy mean 
lifetime in UWMAK-I is - 3900 s, while it is only 39 s 
in INTOR. 

Fig. 5 shows the average climb distances in both 
reactors during the on- and off-times as functions of the 
duty factor (f= Ton/T,). The study represents a rea- 

UWMAK -I 

04 55 06 07 08 09 IO 
DUTY FACTOR, f 

Fig. 5. Climb distances for pulsed and steady irradiation for the 
UWMAK-I and INTOR reactor designs as a function of the 
duty factor. The first wall was assumed to be stainless steel 
operating at T=300°C, P= 10 -6 dpa/s, p, = 10i2/m2 for 
UWMAK-I and pd = 10i4/mz for INTOR. All other material 
parameters are taken from ref. [6]. 

sonable variation of the duty factor (0.4- 1.0). It is 
interesting to observe that while the average climb dis- 
tances in UWMAK-I are in the range of tens of nanom- 
eters, they are only in the range of a fraction of a 
nanometer in INTOR. This is obviously due to the 
much shorter cycle time in INTOR. The average climb 
distances during one pulse never exceed the barrier 
height of 3 nm in INTOR, which directly leads to a 
lower enhancement of irradiation creep due to pulsing 
as shown in fig. 6. The m~um creep enhancement 
ratio is slightly above 3 at f = 0.4. The enhancement 
ratio is actually smaller than unity for 0.65 CfC 1.0. 
On the other hand, the enhancement ratio is always 
greater than unity in UWMAK-I, peaking at a value of 
- 16 forf = 0.4. This is a direct consequence of the fact 
that the climb distances of dislocations in UWMAK-I 
are greater per pulse than the chosen barrier height. The 
behavior in INTOR can be understood by considering 
the climb distances I AX t 1 and I AX J I for values of f 
near unity, that is for relatively short off-times. In the 
case of INTOR, one can show that fort> 0.65, T” > (Tf 
-.- To,). This means that the vacancy population in the 
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Fig. 6. The ratio of pulsed to steady irradiation creep strain for 
UWMAK-I and INTOR as a function of the duty factor. 
Conditions are the same as in fig. 5. 

matrix cannot be depleted during the off-time. For 
values of f, approaching unity, ] AX t] + AX,, and 
/AX &I + 0, as seen in fig. 5. Therefore, Ar,/Ar, ap- 
proaches 1 - 1 AX & ]/AX,,, which is a number less than 
unity forfS 1. As the off-time is increased (fdecreased), 
I AX J, 1 increases. The growth rate of I AX & 1, however, 
saturates for values of (T, - TO,) 2 q, since the disloca- 
tions are able to absorb the maximum number of 
vacancies (for off-times >T,). Once this happens, 
) A X t I grows at a faster rate than I AX J, I as f is further 
decreased, and Ae,/Ar, becomes greater than unity. 
The fact that Ac,/Ac, c 1, is also due to the barriers in 
INTOR being large compared with the dislocation climb 
per pulse. When the barriers are overcome in one pulse 
then AC, a I AX t I + I AX&I (instead of minus), and the 
ratio Atr/Ae, will always be greater than unity. A creep 
ratio less than unity results from an analysis that is 
based entirely on the homogeneous rate theory. How- 
ever, dislocations receive fluctuating rates of point- 
defects due to the spatial distribution of cascades [ 171. 
For times less than the mean vacancy life-time T,, the 
effects of individual cascades on dislocation climb is 
worthy of investigation. The regime f> 0.65 in INTOR 
corresponds to off-times which are less than 7”. In 
section 5, we will discuss the possible effects of individ- 
ual cascades on dislocation climb. 

As we have noted, the point-defect transients during 
each pulse on-time play an important role in determin- 
ing the creep enhancement due to pulsing. The length of 
the transient is dictated by 7”. Furthermore, the greater 
the relative length of the transient is when compared 
with the on-time TO,, the greater the expected enhance- 
ment due to pulsing will be. In the above examples, we 
have chosen material parameters such that T" was always 
on the order of Ton, giving rise to long transient times, 
and hence very significant enhancement over steady 
irradiation creep. If, on the other hand, we were to 
consider values of T, << TO,, this means the transient will 
be of short duration (relative to TO,) and steady-state 
point-defect concentrations will be quickly reached. For 
example, if one considers the above parameters for 
UWMAK-I, but uses pP = lOi m -* instead of lOi* m-‘, 
then T" - - 39 s, which is much less than TO,. This means 
that the duration of the transient is very short, and the 
distance climbed during the on-time is dictated mainly 
by the steady-state contribution; that is, I AX t ( given 
by eq. (26a) becomes 

TO,. (28) 

Furthermore, for small T,, the vacancy population is 
iapidly depleted when the pulse is turned off, and hence 
the contribution of the off-time to the pulsed creep will 
be negligible. For long bum-time machines, it may be 
desirable to evaluate the creep increment only during 
the on-time.The distance climbed under steady irradia- 
tion during the on-time is given by 

AX,, =$ ZiDi 

[ ( 

%)I”_ Z$( 2)“’ T 0”’ 

The enhancement ratio hence becomes 

Ar,/A.r, = f -I/*, 

which for typical duty factors on the order of 0.7 or 
greater is very close to unity. The ratio Aer/Ae, becomes 
unity if one uses instantaneous damage rates, that is 
P” = P in the above equation. Therefore, it can be 
concluded that no significant enhancement is expected 
for T" < TO,. However, in long bum-time (commercial) 
tokamaks with 7 -CT V- on, the pulsing enhancement of 
irradiation creep is expected to be quite significant, and 
increases with increasing off-time for a given design, 
when dose equivalent average damage rates are used. In 



section 4, we investigate the effect of using equal 
instantaneous damage rates on the pulsing enhance- 
ment, for the case T, 5 T,,. 

4. The effect of using equal instantaneous damage rates 
in pulsed and steady irradiation creep 

The effect of using equal instantaneous damage rates 
(instead of the dose-equivalent damage rates we have 
been using) can be investigated by replacing P” (dose- 
equivalent damage rate) by the instantaneous damage 
rate P in the steady irradiation climb distance. There 
are two ways of calculating the creep strain when 
instantaneous damage rates are used. The first method 
is to consider the entire period, up to time Tr. However, 
it should be noted that when this is done the total 
damage is not conserved. Using Ps = Pf and eq. (27), 
A X,, for this case becomes 

T,f -- 1/2 

This is the steady irradiation climb distance during the 
time Tr, using the same damage rate P that is used 
during the on-time under pulsed irradiation. Since the 
ratio of pulsed steady irradiation creep can be written as 

(29) 

depending on whether the barriers are “small” or 
“large”, the effect of using equal instantaneous damage 
rates (but not conserving the total damage) is to di- 
minish the ratio Aep/Aes by a factor f”‘. j A X t j and 
I AX&j are given by eqs. (26a) and (26b), respectively. 

The second approach is to use equal instantaneous 
damage rates, but to evaluate the creep strain only to 
the end of the on-time T,,. This of course insures 
conservation of the total damage. During the first pulse, 
there is now no physical basis by which the material can 
distinguish between pulsed and continuous irradiation. 
In fact, at the end of the on-time of the first pulse, the 
pulsed and continuous irradiation creep strains will be 
equal. However, after the first pulse, irradiation pulsing 
will give rise to the point-defect transients discussed in 
previous sections. Since there will be no such transient 
under steady irradiation, an enhancement will occur. 
For times greater than T,,, the distance climbed under 

steady irradiation during the on-time is given by 

Z,D, 2 
I/2 

( iI ari 
To, f - “2. 

The ratio of pulsed to steady irradiation creep can be 
written for this case as 

Aep/Aes = lAX~l/Axr. (30) 

As an example, we have used eqs. (29) and (30) to 
calculate the creep enhancement Ae,/Ae, for instanta- 
neous damage rates for the UWMAK-I design which is 
characterized by long on-times. Fig. 7 shows the pulsed 
creep enhancement using the instantaneous damage 
rates. We have also included a plot of Aer/Ae, using 
the average damage rate. We see that lower enhance- 
ments now occur for all duty factors. Using the instan- 
taneous damage rate, but conserving dose, gives rise to 
the least enhancement of the three cases plotted for 
f 2 0.5. At a typical duty factor off = 0.9 for example, 
the pulsed creep enhancement in fig. 7 will lie between 

Fig. 7. The ratio of pulsed to steady irradiation creep strain for 

UWMAK-I as a function of the duty factor, using different 

damage rates. Curve 1: dose-equivalent averaged damage rate; 

curve 2: equal instantaneous damage rates, dose not conserved; 
curve 3: equal instantaneous damage rates, dose conserved. 
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about 2 and 3, depending on the damage rate used in 
comparing pulsed with steady irradiation. An interest- 
ing feature of using an instantaneous damage rate, but 
not conserving dose is that as the off-time increases (i.e. 
as f decreases), the ratio of pulsed to steady irradiation 
creep must eventually go to zero. This behavior is 
evident in fig. 7, where the ratio Ar,/Ac, reaches a 
maximum value of about 11 at f= 0.5, and then 
decreases for smaller values off (curve 2). On the other 
hand, if one uses instantaneous damage rates, but con- 
serves dose, then Aer/Ae, has no maximum, and keeps 
increasing for smaller values off (curve 3). This is due 
to the fact that an increase in the pulse off-time (i.e. 
decrease in f) gives rise to a longer point-defect tran- 
sient during the pulse on-time, which in turn gives a 
greater enhancement. 

5. Discussion 

In this paper we have used a rate theory formulation 
of the point-defect concentrations to investigate the role 
of the glide barrier sizes on the pulsed irradiation creep 
of fusion reactor materials. In long bum-time machines, 
such as UWMAK-I, it is found that there is always an 
enhancement when compared with steady irradiation, 
regardless of the damage rate used (i.e. averaged or 
instantaneous). This is partially a consequence of the 
fact that. in these designs the distance climbed by a 
dislocation in one pulse can be considerably greater 
than typical barrier heights. In reactor designs that 
possess much shorter pulsing periods (such as INTOR), 
it was found that the climb distances per pulse (as 
calculated by rate theory) are much smaller, and the 
dislocation will require many pulses before it overcomes 
the glide barrier. However, any conclusions about dislo- 
cation climb and the resulting creep, must be re- 
examined in light of the physical fact that high energy 
neutron irradiation (such as 14 MeV neutrons in fusion 
reactor environments) give rise to displacement cascades, 
containing up to a maximum of about lo3 point-defect 
pairs. The occurrence of the cascades is random in both 
space and time. Hence, a dislocation will in reality not 
see a continuous uninterrupted flow of point-defects as 
is inherent in the rate theory, but instead will be subject 
to intermittent arrival of interstitials and vacancies (even 
under steady irradiation). Therefore, it is reasonable to 
question the validity of using rate theory in evaluating 
the climb of dislocations. It is especially interesting to 
speculate about a situation where the amount of dislo- 
cation climb per pulse using the rate theory, is much 
less than the barrier height. One can now pose the 

question whether a single cascade (or succession of 
cascades) occurring near a dislocation line segment, can 
in fact induce sufficient climb for the dislocation to very 
rapidly overcome the barriers. This is a reasonable 
question since rate theory inherently distributes each 
cascade over the entire material volume, and does not 
account for the possibility of the large numbers of 
point-defects which can be deposited if a cascade occurs 
in the vicinity of a dislocation. Therefore, it is of inter- 
est to understand how much the inclusion of randomly 
produced cascades enhances the rate theory averaged 
value of the dislocation climb rate. 

The purpose of this section is to discuss work already 
reported by others on statistical fluctuations of point- 
defect concentrations, and to estimate an upper bound 
value of the dislocation climb induced by a single 
cascade. Gittus [ 181 has previously considered the effect 
of fluctuations in the concentrations of uniformly dis- 
tributed point-defects on creep. He has developed a 
theoretical formulation of so-called F-creep. The uni- 
form distribution of point-defects means that the effect 
of cascades was not considered. Nichols and Dollins 
[19] later showed that the effect of the fluctuations on 
creep considered by Gittus will be very small, and can 
probably be neglected. It should be stressed that this is 
expected to be a much smaller effect than cascade- 
included displacement fluctuations. 

Let us now assume that a single cascade has occurred 
near a dislocation line. Since the interstitials are much 
more mobile than the vacancies, they will diffuse to 
sinks (dislocations) on the average in time TV, leaving the 
vacancies behind. The vacancies will reach the disloca- 
tions much later, after a time _ 7”. If one considers a 
“representative” volume VP of the irradiated material, 
containing segments of a given number of dislocation 
lines, the mean time between cascades will be given by 

Tc = (ZQVJ’ =&/PI/,. (31) 

where Z@ is the number of cascades produced per unit 
volume, per second, v is the net number of point-defect 
pairs in a cascade, b3 is the atomic volume, and P is the 
average damage rate in dpa/s. Then, assuming the 
cascade occurs at t = 0, the time-dependent, spatially- 
averaged interstitial concentration within volume VP ne- 
glecting recombination obeys 

Ci( 1) = PT~ e -‘I’, (32) 

where PT, is the total number of displaced atoms/atom 
per cascade. The climb distance 8, induced by a single 
cascade in volume V,, can be obtained by integrating 
the climb velocity (eq. (17)), due to the interstitials only, 
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over the interval [O.T~]. That is density pd is given by 

8, = ; ITc dt ZiDiC,(t), 
0 

which results in 

pd = Nx(l2/4) = 3/x2, (37) 

since the 12 lines will each be shared by 4 cubes. The 
dimension x is then 

8, w Pr,/pdb, 

or in terms of the volume V,, 

(33) 

S, = vb’/p&. (34) 

In obtaining this expression we have assumed that the 
entire contents of the cascade is deposited only in the 
cell of interest (of volume V,), and no interstitials 
escape to nearby cells. The dependence of the climb 
distance on the irradiation spectrum is given by v. 
Furthermore, it should be noted that the damage rate P 
does not appear in expression (34), since S, is the climb 
distance per cascade. 

x = (3/P,j)“2, (38) 

and the volume VP becomes 

VP = (o.33p,)-3’2, (39) 

where the geometrical factor g = 0.33. To gain an ap- 
preciation for the dimensions of the “representative” 
volume V,, one finds for example that for pd = 10’5/m2, 
x x 55 nm. For g = 0.33, S, becomes 

6 c M 0.2p~‘vb2. (40) 

The volume VP can also be defined by considering a 

If the interstitial concentration arising from a cascade 
were averaged over the interval [O,T,] as in direct rate 
theory calculations, then the dislocation will see both an 
interstitial and a vacancy flux. The distance climbed 
during steady irradiation in time rc then follows the rate 
theory approach, and can be evaluated as 

single dislocation line segment with a cell radius R,, 
defined such that TR f = l/p,. One can now define an 
equivalent square cell of dimension x, such that x2 = 
1,‘~~. The volume VP then becomes 

v, zz p;3/2 

6, =; 
/ [ 

” dt Z,DiC, - Z,D,Cv] 
0 

with g = 1. The climb distance per cascade is then given 

by 

(35) 

where AZ, is the difference between the interstitial bias 
factors of stress-aligned and non-aligned dislocation 
lines in the SIPA induced climb mechanism, and is 
determined by the presence of neutral sinks such as 
voids when the SIPA induced climb mechanism is not 
dominant. It is to be noted that &/a, = Z, /AZi, which 
can be on the order lo- 100. 

S, = pa2vb2. (41) 

Expressions (40) and (41) for S, may at first seem to be 
against intuition, since they predict a greater amount of 
climb for increasing dislocation density. However, it 
should be noted that physically the contents of a single 
cascade is not distributed over all the dislocations, but 
only to those in volume V,. As pd decreases, the volume 
V, increases, and hence the v interstitials per cascade are 
distributed over a greater dislocation length, giving rise 
to diminished climb per segment (within 5). 

Table 1 shows the dislocation segment climb distance 
induced by the interstitials of a single cascade as a 

The expression for the volume l$ depends on geo- 
metrical considerations, but can always be shown to 
depend on the line dislocation density as 

v, = (gPJ3’2, (36) 

where g is a geometrical factor. We consider here two 
simple approaches to calculating V,. First consider N 
cubic cells each of linear dimension x, in a material with 
a dislocation density pd. The cells are defined such that 
Nx3 = 1 cm3. Then, assuming that a dislocation line 
segment is on each edge of the cell of volume x3, the 

Table 1 
Dislocation climb distance as a function of pd for a given 
geometrical factor g (v= lOOO,b=2.5X lop8 cm) 

Pd b/m3 1 13, =0.2p~2ubz[nm] S, =pa’vb*[nm] 

10’2 0.012 0.063 
10’3 0.038 0.2 
10’4 0.12 0.63 
10’5 0.38 2.0 
10’6 1.2 6.3 



H. Gurol et al. / Dispersed barriers in pulsed irradiation creep 13 

function of the dislocation density pa for a given geo- 
metrical factor g. It can be seen that 8, can in fact be 
quite large for the higher dislocation densities, regard- 
less of how the volume VP is defined. This suggests that 
if 8, is on the order of the barrier height h/2, then the 
dislocation can get over the barrier due to a nearby 
cascade. If on the other hand, the interstitials of the 
cascade give rise to only a small 8, (< h/2), the disloca- 
tion will undergo an oscillatory motion due first to the 
net interstitial flux, and then the vacancy flux. And in 
fact, one can easily show that for 8, < h/2, and without 
the effects of recombination, the net distance climbed 
by the dislocation calculated by using (essentially Dirac 
Delta) interstitial pulses superimposed on a fairly con- 
stant vacancy concentration are identical with a 
straightforward rate theory calculation. The only time 
the effect of cascades is expected to be significant (that 
is dislocation climb enhanced over rate theory predict- 
ion) is for S,z h/2. 

The simple model we have discussed here is only 
meant to indicate when the effect of a single cascade 
can be expected to be significant in describing disloca- 
tion climb. Below we discuss some additional physical 
aspects of this problem. The first point to be considered 
is that not all of the interstitials of a given cascade will 
be absorbed in that cell, but a significant fraction will 
leak into nearby cells. This fraction can be estimated by 
noting that the interstitial mean free path can be defined 

as Lfp = l/(Zip,)‘/‘. This means that within a dis- 
tance h mrp, the interstitial concentration will have 
decreased by e - ’ , or about 40%. Since the characteristic 
length x (of the cell volume VP) is also on the order of 

Pd “2, only approximately 40% of the interstitials of the 
cascade will be absorbed in that cell. The rest of the 
interstitials will reach other cells before being absorbed. 
If a cascade is assumed to occur in all cells at the same 
time, then this loss would be compensated by an equal 
and opposite leakage from neighboring cells. But physi- 
cally, cascade production is random, and to preserve 
this randomness it must be assumed that each cell sees a 
cascade at a different time. Therefore, the results in 
table 1 (which assumes all of the interstitials of a cascade 
are absorbed within that cell) are an upperbound value 
for 8, and should be reduced by about 60% when 
leakage into nearby cells is included. It should be noted 
that the number of interstitials leaving the cell will not 
be dramatically altered if one investigates the influence 
of the dislocation capture radius R, for interstitials. 
This is due to the fact that the capture efficiency [20] is 
proportional to [ln( R c / R ,,)I - ’ . Furthermore, we have 
assumed that the interstitials are distributed uniformly 
on the dislocation line. In fact, the points on the line 

closer to the cascade receive a greater number of inters- 
titials giving rise to a Gaussian-like distribution of 
interstitials reaching the dislocation line [21]. The uni- 
form distribution, however, represents a lower bound on 
the ability of the dislocation to overcome the barrier. A 
nonuniform distribution will allow the center portion of 
the dislocation line to climb at a faster rate. 

One can also model the effect of cascades, including 
point-defect recombination by describing the point- 
defect kinetics resulting from a succession of cascades in 
a manner analogous to previous modeling work [22] on 
Inertial Confinement Fusion Reactor pulsing. The “pulse 
period” will now be replaced by T,, the mean time 
between cascades in volume VP. Such an approach is 
currently being investigated. It is expected that the very 
high interstitial concentration achieved immediately 
after the cascade is produced, will result in greater 
recombination than the rate theory prediction, and hence 
possibly less dislocation climb. 

The simple model we have discussed here is only 
meant to indicate when the effect of a single cascade 
can be expected to be significant in describing disloca- 
tion climb. A more detailed analysis, which includes the 
spatial diffusion of point-defects within the volume VP is 
necessary, since the distance of the cascade from the 
dislocation line will play a critical role in determining 
the number of interstitials reaching the dislocation. Fur- 
thermore, the effect of a succession of cascades must be 
investigated, since this will ultimately determine whether 
cascades play an important role in dislocation climb. 
Mansur, Coghlan, and Brailsford [ 171 have recently 
carried out such an investigation to study point-defect 
diffusion to voids without recombination. Their initial 
approach is currently being extended to an assessment 
of the cascade-induced dislocation climb distance 8, 

~231. 

6. Conclusions 

In this paper, we have developed a generalized for- 
mulation of C.C.G. creep under pulsed irradiation, 
accounting for the height of glide barriers. For small 
barriers, the creep strain increment per pulse is depen- 
dent on the sum of the distances climbed during the on- 
and off-times. If the barriers are large, so that disloca- 
tions will require more than one pulse (to overcome the 
obstacle), then the climb distances are subtracted. How- 
ever, because of the transient in the point-defect con- 
centration kinetics that exists at the beginning of every 
pulse in a recombination dominant regime, there is still 
a net climb along the barrier. This transient has a 



duration dictated by the vacancy diffusion time to sinks, 

r.,. It has previously been found that any significant 
differences from steady irradiation can be expected only 
for rV <pulse on-time r,,. The pulsed creep enhance- 

ment depends on the relationship between T,,, 7;,,, and 

the period r,. Typically, enhancement is greatest when 

the off-time is long enough (2 T,) to deplete the vacancy 
population in the matrix, this in turn resulting in a 

longer transient during the on-time of the next pulse. 

This results in greater net climb during a pulse period 
than under steady irradiation. Hence, it is found that 

even for very large barriers, pulsing can produce signifi- 
cantly greater net climb than steady irradiation. 

Nickel at 200°C pd = 2 X 10” m/m’, 7;,, = 5000 s, 
and P = 10 --6 dpa/s. was considered. The ratio of the 
pulsed to steady irradiation creep per pulse Ar,/Ac, 
rises sharply for small barrier heights, when plotted as a 

function of the pulse period.It reaches a peak enhance- 
ment value of about 16, for a pulse off-time x 2-3 rV. 
For longer off-times the enhancement ratio levels off at 
- 10. Even for large barriers, an enhancement of roughly 

a factor of 3 is found. 
Also studied were two fusion reactor designs, with 

very different operating conditions: the UWMAK-I, 

and INTOR, using stainless steel parameters at T= 

300°C P = IO mm’ dpa/s, and pd = 10” m/m3, and lOI 

m/m3, respectively. In both designs, the material 

parameters used are such that T” 5 T,,. An average 
barrier height of 3 nm was used. Since the cycle time in 

INTOR is quite short, it is found that the average climb 

distance during a single pulse never exceeds the 3 nm 
barriers. This leads to lower enhancement values than 
would be expected if the barrier could be overcome in a 
single pulse. Despite this, Ae,/Ac, has a maximum 
value of about 3 at a duty factor/= 0.4, and declines to 
unity at f= 0.65. For values off between 0.65 and I .O, it 
is found that Acr/Ac, < 1. The long burn time of 
UWMAK-I, on the other hand, gives rise to climb 
distances per pulse which are always greater than 3 nm. 

Hence, one finds much greater enhancements: up to 
about 16 at f= 0.4. At f= 0.9 an enhancement of about 

a factor of 3 is found. 
The above comparisons between pulsed and steady 

irradiation creep were performed by using a dose- 
equivalent average damage rate in the pulsed creep rate. 
Since it may be more useful to make the comparison 
using equal instantaneous damage rates for long burn- 
time machines, we have calculated the pulsed creep 
enhancement for UWMAK-I for this case. We consid- 
ered two cases: equal instantaneous damage rates but 
with total damage not conserved in one case, and con- 
served in the other. The first situation corresponds to 

observing the creep over the entire pulse period, while 

the second only considers the pulse on-time. The en- 
hancements were diminished over our previous results. 
However, in the region of greatest interest for reactor 

operation for a long bum-time machine (i.e. 0.X S/S 
0.9), enhancements on the order of 2-3 are found, 

regardless of the damage rate used. 

The C.C.G. creep enhancement under irradiation 

pulsing for all barrier heights is due to the fact that the 
dislocation climb velocity depends on the instantaneous 

difference between the interstitial and vacancy fluxes. 

Pulsing of the irradiation distributes the interstitials and 
vacancies to dislocations in a time-dependent manner 

that is different from steady irradiation. This gives rise 
to a transient in the point-defect concentrations during 
the burn time, which in turn results in a greater net 

number of interstitials reaching the dislocation than 
under steady irradiation. Furthermore, during the off- 
time the vacancies alone contribute to dislocation climb, 
albeit in the opposite direction. 

It can be concluded that enhancement of the irradia- 
tion creep is expected to be especially significant in long 
bum-time tokamaks with T c T “- on, increasing with in- 

creasing pulse off-time. Even with short bum-time mac- 
hines, where the net distance climbed per pulse can be 
much less than the average barrier height, an enhance- 

ment up to a factor of 2-3 is found. 

Finally, it should be pointed out that recent work in 

the literature suggests that the rate theory may not 

always be valid for describing physical processes such as 
dislocation climb. Therefore. further work needs to be 

done to assess the importance of cascades in dislocation 
climb, under both steady and pulsed irradiation. 
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