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The dynamic diss~i~tion of ~crost~~tures by radiation induced collision cascades is theoretically calculated. Coupled cascade- 

showing down diffusion equations are formulated. The resulting equations are decoupled and analytically solved by using the 

Neumann series expansion for total particle fluxes. Specific examples illustrating the dependence of precipitate dissolution rate on its 

siye and the incident Pk.4 energy are given. Spatial fluxes and currents of precipitate and matrix atoms are calculated. Dissolution 

parameters which control the stability of precipitates show that the concept of a modified “escape zone” for precipitate atoms from its 

surface is a valid representation of the phenomenon. It is shown that, for large precipitates, the dissolution rate is approximately 

proportional to the incident ion energy and inversely proportional to the precipitate radius. 

1. Introduction 

The evolution of microstructural features during 
irradiation involves complex physical phenomena. Dy- 
namic, diffusional and ~croche~cal processes cooper- 
ate synergistically to produce changes in the properties 
of these features. Atomic diffusional processes can now 
be adequately modeled by the rate theory of chemical 
kinetics. Mi~roche~cal changes during irradiation are 
more complex to describe, but can be accounted for by 
usmg chemical thermodynamics. However, the effects of 
radiation on microstructural features through dynamic 
collisions is a relatively unexplored area. Neutron or ion 
collisions with materials create PKA’s (primary knock- 
on atoms) which in turn lead to atomic displacements. 
Average energy PKA’s emerging from collisions with 
high energy neutrons, or fast ions, can cause atomic 
displacements on the order of a few thousands. It is 

therefore conceivable that if these displacements lead to 
the ejection of precipitate atoms into the matrix, pre- 
cipitates would be unstable under irradiation. Balance 
between ~crostructural processes, such as dissolution 
due to high energy collision events and re-formation 
rate by atomic diffusion, eventually control precipitate 
stability [1,2]. 

The strength of dynamic dissolution processes can be 
measured by a dissolution parameter. This can be de- 
fined as the ratio of precipitate atomic ejection rate to 
matrix displacement rate. When this ratio is unity, every 
displacement of a precipitate atom leads to its perma- 
nent implantation into the matrix. This process is, in a 
way, similar to atomic displacements. However, the 

energy involved in a dissolution event is much higher 
than the displacement energy, due to the fact that 
energies are required for the displacement of precipitate 
atoms as well as the transport of those atoms into the 
matrix. Therefore, it is expected that such long-range 

displacement events are much more difficult as com- 
pared to traditional atomic displacement events. In an 
earlier paper 131, we developed a Monte Carlo computer 
program, TRIPOS, to study the TRansport of Ions in 
POlyatomic Solids. The interaction between collision 
cascades and precipitates was numerically stimulated. 
In this paper, an approximate analytical theory is devel- 
oped for the study of the dynamic interaction between 
primary knock-on atoms (P&A’s) and microstructural 
features. A diffusion formulation, derived from trans- 
port theory, is given. Coupled particle slo~ng-diffusion 
equations are solved by expanding the flux in Neumann 
series. The dissolution parameter is evaluated based 
upon an average PKA generated from neutrons at dif- 
ferent energies. Finally, an empirical formula for the 
dissolution parameter is given, together with a compari- 
son with results by Nelson 141. 

2. Diffusion-slowing down representation 

Consider charged particle balance in differential 
space dr dE dQ about position r, energy E, and 
direction 52. At steady state, by equating losses from 
leakage elastic collisions, slowing down by electronic 
interactions, and particle production; the following form 
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of the Boltzmann transport equation is obtained [5,6]: 

s1. v@(r, E, ii’)+Z,(r, E, S2)@(r, E, P) 

= a[S(E)@(r, E, O)l 
aE 

+ d0’ 
j j 

dE’2,(r, E’+E, P’+O)@(r, E, Jz) 

+Q(r, E, a), (1) 
where 

@ ( r, E, sl) = particle angular flux 

= (particle speed) 

X (particle number density) ; 

0. V@(r, E, 52) drdE dJ2 
= net rate at which particles are lost from dr d E dP 

due to leakage; 

Z,(E) = total macroscopic cross section; 
Z,(E)@(r, E, 52) dr dE dS1= rate at which particle 

undergo nuclear interactions in dr dE da; 
Z,( E’ + E, Q’ + 51) 

= differential scattering cross section; 

/ dD’l dE’X,(E’ -+ E, 0’ + P)+(r, E’, 52’)] dr dE 
dS = rate at which particles scatter into dr dE d0; 

= net &?e at which particles slow down into dr dE 
dJ2 due to Coulomb interactions with electrons; 

S(E) = electronic stopping cross section; 
Q( r, E, 42) = source for PKA’s. 

For charged particle transport problems such as the 
slowing down of PKA’s in materials, scattering processes 
are due to nuclear as well as electronic interactions. 
Nuclear interactions occur mainly by screened Coulomb 
collisions between a moving atom and background 
atoms. Electronic interactions are of Coulomb type 
collisions between moving atoms and the background 
electron cloud. Due to the fact that electronic collisions 
are highly forward, we were able to replace the elec- 
tronic inscattering integral in the transport equation by 
substituting an electronic stopping term for the integral 
in the transport eq. (1). 

The previous transport equation has six degrees of 
freedom; namely, three spatial, one energy and the 
remainder from velocity direction cosine dependence. 
Assuming that the angular flux has nearly isotropic 
distribution, diffusion equations can be derived from 
the transport equation. Such simplication leads to the 
elimination of two independent variables (velocity di- 
rection cosines) and the reduction of degrees of freedom 
from 6 to 4. Computer simulations have shown that 
displacement collisions are isotropic in cascades over 
most of the energy range. Also PKA sources have 
isotropic and homogeneous distributions. We will there- 
fore use the simpler diffusion approximation in our 

attempt to calculate a dissolution parameter. The only 
independent variables in these equations are space and 
energy. In order to simplify mathematics, and for the 
sake of obtaining approximate analytical solutions, we 
will assume that nuclear scattering is approximately 
isotropic. However, electronic stopping is highly aniso- 
tropic, and we will take account of this by using an 
average scattering cosine of unity for electronic stop- 
ping. Since the PKA source is spatially isotropic, the 
error in the assumption of isotropic nuclear scattering is 

expected to be very small, as is the case in neutron 
transport calculations [7]. The diffusion approximation 
has the following expression, where the angular depen- 
dence is eliminated from the transport formulation: 

J(r, E) = - & v@(r, E) = -DV@(r, E), (2) 
t 

where D is the diffusion coefficient, and Z, is the total 
cross section. 

D = l/32,. 

By integrating eq. (1) over d0 and substituting eq. (2), 
we obtain 

-Dv2@+&@=Q+&(S@) 

+ 
j 

pdE’Z,(E’ + E)@(r, E’), (3) 
0 

where V* describes spatial diffusion, J is the energy 
current and @ is the energy flux. 

This equation is strictly valid for monoatomic homo- 
geneous media. For an inhomogeneous polyatomic 
medium, coupled diffusion equations must be used. Let 
us consider a precipitate embedded in an infinite ma- 
trix, an example is the carbide precipitate M,,C, in 
steel. In order to simplify the treatment, an average 
atom type will be used to represent the two types of 
atoms, M and C, in the precipitate. Furthermore, we 
expand the self atom inscattering term into deflected 
and recoil terms. We also separate the recoil terms due 
to atoms coming from different spatial regions from 
those due to self atoms. With this coupling between 
different atomic species and different spatial regions, 
the analytical solution of eq. (3) is still a difficult task. 
We will invoke here one more assumption for the sake 
of simplicity, and that is to render the electronic energy 
loss rate zero, but subsume its effect in a modified 
diffusion length as evaluated from the Monte Carlo 
range calculations. The coupled diffusion equations for 
a precipitate in an infinite matrix are then given below 

-DprJ2@r + &,,@p 

= _&,(E’+ E)c&,(E’) dE’ 
/ 

+ Z,,,(E’+E’-E)@p(E’)dE’ 
j 

+ jZ&,,(E’+ E’- E)@,(E’) dE’+S,(E),(4) 
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(5) 

- D,,v*@, + Z,,,@, =/&,,( E’ + E)QP( E’) dE’, 

(6) 

- Dmm~=@m + =,mm@m 

= 
J 

&,,(E’+ E)@,(E’) dE’ 

+ &,,,(E’-*E’-E)@,(E’)dE’ 
J 

+ s.X,,,(E’+E’-E)@,(E’)dE’+S,(E).(7) 
/ 

Two subscripts are used for physical parameters in eqs. 
(d)-(7). “p” stands for precipitate and “m” for matrix. 
The first subscript depicts the region where the equation 
is valid and the second subscript represents the atom 
t\pe being studied. Eq. (4) is for the diffusion of pre- 
cipitate atoms in the precipitate, Eq. (5) is for the 
drffusion of matrix atoms in the precipitate, eq. (6) is 
for precipitate atoms in the matrix, and eq. (7) is for 
matrix atoms in the matrix. Eqs. (5) and (6) cannot be 
neglected due to the fact that foreign recoils in the local 
medium do contribute greatly to the generation of local 
recoils around the interface. Four boundary conditions 
are required to solve for either matrix or precipitate 
atom fluxes; these are: 

@ (oc) = finite, (8) 

@(rb) = @(rb), (9) 

J(%)=J(%), (10) 

J(0) = 0, (11) 

v here r,, is a vector defining the microstructure surface. 
If the mass of precipitate atoms is drastically differ- 

ent from matrix atoms, as is the general case, this can 
lead to different slowing down behaviors for these atoms. 
In order to consider mass differences among the inter- 
acting particles, slowing down energy ranges will have 
to be modified and the solution is more complex, as is 
the case for neutron slowing down in non-hydrogenous 
media (referred to as Plazec’s wiggle) [8]. A good mea- 
sure for the mass disparity among interacting particles 
is the kinetic energy transfer factor, A, which describes 
the maximum fraction of energy that an incident par- 
ticle of mass M, can transfer to a recoil particle with 
mass M2. It is defined as 

A= 4M,M2 

(MI +W2 
(12) 

if the masses are the same, A is unity, and if the masses 
are drastically different, A approaches zero. Also, (Y, 
the minimum fraction of energy that an incident par- 

title can emerge with after a collision, is given as 

(13) 

This factor affects the slowing down energy range; if (Y 
equals zero an incident particle can lose all of its energy 
in a single collision, while for the case (Y approaches 
unity it needs a large number of collisions before the 
incident particle can be slowed down to a small energy. 
Fortunately, for the case of precipitate M,,C,, such a 
pure molybdenum carbide, in steel, the average mass of 
precipitate atoms is about 1.5 times that of iron atoms. 
This gives a A of 0.97 and an (Y of 0.03. These two 
parameters are very close to those of the case when 
precipitate and steel atom have the same mass. There- 
fore, we can use the formulation of equal masses for this 
analysis. This can considerably simplify the problem as 
what is faced in neutron slowing down problem [8]. 

3. Method of solution: Neumann expansion 

We can solve the coupled diffusion equations by 
expanding the energy fluxes for precipitate and matrix 
atoms into a Neumann series of the following form 

@(r, E)= g @,,,(r, E), (14) 
n=O 

where Qn is the successive corrections to the zeroth 
order solution. Each term in the Neumann series expan- 
sion has the analogy of collided flux as from transport 
equations. By applying a Neumann expansion for the 
fluxes, we can decouple the inscattering integral from 
the spatial dependence terms. However, a new series of 
diffusion equations arise as shown below 
zeroth order equations: 

-D,,v*@~,, + =,PP@P,.o = S,(E), 

-Dpm~=Qim,O + ~,pm@m.0 = 0, 

-D,,v~@~,, + -Lmp@P,~ = 0, 

-Dmv*@m,, +~tmm@m.~ = S,(E). 

first order and higher (n > 1): 

-D,,v*@p,” + -%pp@p,n 

(15) 

(16) 

(17) 

(18) 

= / -&,(E’+E)@P,,m,(E’) dE’ 

+ 
/ 

&,,(E’+E’- E)GP,,_,(E’) dE’ 

+ 
/ 

Zspm(E’+ E’- E)@,,.m,(E’) dE’, (19) 

-DpmV2@m.” + ~lpnl@m.” 

= / ~,,,(E’+E)@,,,m,(E’) dE’, (20) 
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-%pv2@p,” + &np@pp,n 

= ~C,,,(E’-,E)~~,,_,(E’)dE’, 
j 

-DmmV2%,” + ~,,,@,,, 

(21) 

ing and diffusional behaviors. Therefore, we have 

,.z = ~‘pp = ztpm = ztmp = _Xtmm = ,.z 
“PP = &pm 

= =smp = ~,lnnl (25) 

and 

= 
/ 

&,,,(E’-tE)@,,,~,(E’) dE’ D=Dpp=Dpm=D,,,p=D,,,m. (26) 

+ Z,,,(E’+E’-E)@,,,_,(E’)dE’, 
j (22) 

with the boundary conditions (8-11) applied to each 
flux component. 

Eqs. (19) to (22) can be further simplified by combining 
the deflected and recoil inscattering terms for self atoms. 
The simplified diffusion slowing down equations are for 
n> 1: 

in precipitate: 

-D v2‘I& + BPpp,, 

In the present analysis, two different geometries for 
precipitate shapes are considered; namely, plane and 
spherical, with the corresponding appropriate expres- 
sion for the operator v2. The operator for spherical 
geometry causes some difficulties. By a change of varia- 
ble such as: 

2 
j 

X(r, E’)Qp,,m,(r, E’) dE’ 
= 

E’ 

+ 

j 

x(r, E’)@,,,_,(r, E’) dE’ 

E’ 

-D v2@,,,, + Z@,,,, 

(27) 

@ = \k/r, (23) 

we obtain similar diffusion equations to those of the 
planar case with \k in place of @. However, the external 
PKA source term is rQ for spherical geometry rather 
than Q as for plane geometry. 

= 
j 

E(r, E’)@,,,_,(r, E’) dE’ 

E’ 

in matrix: 

(28) 

The solution to the previous set of equations still 
requires a numerical approach, if complicated nuclear 
scattering cross-sections are used. Our major objective is 
to obtain a simple analytical approximation, rather than 
involved numerical calculations. For this purpose, we 
will assume the existence of an “equivalent” hard sphere 
cross-section, that is valid over the entire energy range. 
It is known that the interaction potential goes from 
nearly pure Coulomb scattering at high energy to a 
Born-Meyer type interaction potential at low energies. 
In our simplified analysis, the “equivalent” hard-sphere 
cross-section is only a model of the entire interaction 
range. The value of this cross-section is determined such 
that the atomic displacement rate is normalised to the 
more sophisticated Monte Carlo numerical simulations 
of our code TRIPOS [3]. Hence, the results of the 
present calculations give only “relative” values of dis- 
solution to displacement rates. 

-D v2@p,n + -NP.” = j 
E(r, E’)Qp,._,(r, E’) dE’ 

E’ 

(29) 

-D v’@,,,” + X’,., 

=*/ 

-X(r, E’)@,,,_,(r, E’) dE’ 

E’ 

For hard sphere nuclear scattering, we have 

_S’,( E’ -+ E) = Z,( E’),‘E’. (24) 

Also in the process of slowing down for PKA’s, the total 
cross section is essentially the same as the scattering 
cross section, i.e., 8, = Z,, until the energy falls below a 
certain energy limit when the slowing down process is 
terminated and the particle is considered to be ab- 
sorbed. Also from the fact that precipitate atoms have 
similar masses and atomic numbers as those of matrix 
atoms, it follows that they have similar atomic scatter- 

+ 
j 

Z(r, E’)@p,n-,(r, E’) dE’ 

E’ (30) 

For n = 0, we do not have the inscattering terms on the 
right hand side. However, we have a precipitate source 
term for eq. (27) and matrix source term for eq. (30). 

Let all the PKA’s start with energy E,, using the 
following transformations, 

Y=r/L, (31) 

e= E/E,, (32) 

where L = m is the diffusion length, E, is the 
PKA source energy. Eqs. (27)-(30) can be rewritten as 
below (for plane geometry) in dimensionless units, for 
n > 1: 

- v;@p,,(Yl e) + @pp,n(Y, 6) 

=2/t@, (, 
P .-I(UJ 4 dr,+ 1 a,,,-i(Y? e’) dr, 

t / f 6’ 

(33) 

- +%“(Y, 0 + @ln,,(Y? 6) 

zz 
/ 

’ @In,,-i(Y, 6’) 
de’, (34) 

( e’ 
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- V,f@,,“(Y> 6) +@,,,(y, c) =/’ @ PAY. 4 do, 
c, ( 

c 

(35) 

- VPm.,(Y. El-t @,.m(y. 6) 

z? 2 
I 

1 cp,.,-l(V, c’) 

f c’ 
&,+J’ %-$y. c’) dr’. 

< 

(36) 

For n = 0, again we do not have the inscattering terms 
on the right hand side of the above four equations, 
however precipitate source and matrix source terms do 
exist on the right hand side of eqs. (33) and (36), 
respectively. The following solutions are obtained for 
plane and spherical geometries, when the V* operator 
is replaced by its appropriate representation. 

For plane geometry : 

@,.a= (~p.O+ap,O.oe~~Y+~p,o.oe’)~(~-~), 
Q? m.O= tam,O,Oe--” + b,O~Oe’)S(c - I), 

tp,,0 = c,.O,OepYa’S(e - I), 

@J m.o=fd,,o+c,.o.oe-~)~(~-l); 
while for n > 0, the following solution is obtained: 

@pJl = d,,, + i (ap.n.ke-Y + bp,n.keJ’)yk 
k==O I 

X In”-‘(l/r), (41) 

@ “,m =k~*(ap.~.ke-‘ih,,~.ke~‘)ykln”l(l/r), (42) 

Q, 
P.n 

=t cp,n,ke-.Yykln”-‘(l/f), (43) 
k=O 

CJ m,n= tn.” 

I 

d +fC ,,,n.ke-.Yyk In”-‘(l/c). 
I 

(44) 
k-0 

The solution coefficients, a, b, c and d, for both plane 
and spherical geometries, are given in appendix A. 

The total precipitate and matrix atom fluxes and 
currents are the sum of component fluxes and currents 
For each type over the whole PKA slowing down energy 
regime, as defined in eq. (14). 

@,,(r)=/@(r, E’) dE’= E /@Jr: E’) dE’,(45) 
n = 0 

The dissolution rate of the precipitate is proportional to 
the total precipitate atom current that crosses the pre- 
cipitate surface. The dissolution parameter, h, can now 
be calculated as: 

where V and A are the volumes and surface area for the 
precipitate and req is the equivalent radius for the 

precipitate. 

4. Results 

In these calculations, we consider a precipitate of the 
M,,C, type and the steel matrix is considered to con- 
tain iron atoms only. Average atoms are used for the 

representation of precipitate atoms. In other words, an 
average mass and an average atomic number are used to 

characterize precipitate atoms. In the present method, it 
is not possible to calculate preferential dissolution rates 
of precipitate components, as has been accomplished 
using the Monte Carlo method [3]. Average PKA’s are 
used in the solving down-diffusion theory of calcula- 
tions. The cutoff energy is taken to be the bulk displace- 
ment energy which equals 25 eV. By solving the previ- 
ous set of coupled equations, precipitate atom fluxes 

and matrix atom fluxes are obtained throughout the 
medium. Neumann series of up to 45 terms was found 
necessary before fluxes would converge. 

Fig. 1 shows the flux profiles for both matrix and 
precipitate atoms for a plane precipitate with half thick- 
ness of 5 diffusion lengths. For the case considered, 
precipitate and matrix atoms are of similar masses, 
similar atomic numbers, and same source strength. The 
combined flux for precipitate and matrix atoms, that is, 
Gp and @,,, is essentially the same as that for an infinite 
medium. For more detail on the flux in the infinite 
medium, the reader is referred to appendix 3 at the end 

Distance (Diffusion Length) 

Fig. 1. Precipitate (ppt) and matrix fluxes as functions of 
distance from the center of a slab precipitate with half-thick- 
ness equal to 5 diffusion lengths. The sum of precipitate and 

matrix fluxes converges to the flux for an infinite medium. 
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of this paper. Fig. 1 illustrates that the sum of precipi- 

tate and matrix fluxes does converge to the infinite 
medium flux. Figs. 2 and 3 show the fluxes in Neumann 
series terms. Fig. 2 gives the 6th to the 10th term and 
fig. 3 gives the 31st to the 35th terms. A plane precipi- 
tate is considered for the above evaluations. However, it 
is known that generally precipitates have spherical 
shapes. Therefore a question arises regarding the valid- 
ity of plane geometry calculations for spherical precipi- 
tates. An “effective radius” for a planar precipitate is 
calculated by conserving the volume to surface ratio of 
the precipitate. Let t equal half thickness of the planar 
precipitate, then the associated effective radius is 3t/2. 
Fig. 4 shows a comparison of fluxes at the precipitate 
surface between plane and spherical geometries as func- 
tions of equivalent radii. It shows that for large sizes, 
precipitate fluxes for spherical and planar models are 
similar while for small sizes, precipitate fluxes for the 
spherical model are smaller than those for the planar 
models. However, the physical entity that depicts the 

dissolution processes is the current that crosses the 
precipitate surface. The dissolution parameter can be 
evaluated by using eq. (47) along with the current. The 
best way to represent the dissolution parameter is to 
express it as a fraction of the dpa rate. As we know, for 
very small precipitates, the dissolution rate is essentially 
equal to the dpa rate. The dissolution parameter can 
then be normalized to the dpa rate at very small radii. 
Fig. 5 shows a comparison of dissolution parameters 
between plane and spherical model. The results are 

400.0 

300.0 

Gj 

5 

2 
IA : 200.0 

._ 
2 

3 
r 
St too.0 

0 
( 

Distance (Diffusion Length) 

Fig. 2. 6th-10th Neumann expansion collision ffuxes as func- 
tions of distance from the center of a slab precipitate with 

half-thickness equals to 5 diffusion lengths. 

0 5 10 15 20 

Distance (diffusion length) 

Fig. 3. 31st-35th Neumann expansion collision fluxes as func- 

tions of distance from the center of a slab precipitate with 

half-thickness equals to 5 diffusion lengths. 

about the same for large and small radii and within a 
difference of 20% for intermediate radii. 

In the five figures above, the distance is expressed in 
units of diffusion length. In order to make the results 
have experimental significance, it is necessary to mea- 
sure and convert the diffusion length into real units. A 

rule of thumb for the diffusion length is that it is about 
one seventh to one sixth that of the PKA ranges. Our 

10’ I_ 
Id lc? 12 loo Id 11 

Thickness (Diffusion Length) 

Fig. 4. Total fluxes on plane and spherical precipitate surfaces 
as functions of equivalent precipitate thickness in diffusion 

lengths. 
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earlier work on the contribution of direct dissolution 
from the self collision cascade has shown that the direct 
dissolution parameters peaks for planar precipitate with 
half thickness corresponding to 6-7 diffusion lengths. 
The peak corresponds to the ranges of PKA’s. Further- 
more, expansions for Neumann series of up to about 40 
terms are required for the flux calculation to reach 
convergence. This suggests that it takes about 40 colli- 
s ons for PKA to slow down if we remember that the 
n th term in the Neumann series expansion in diffusion 
theory corresponds to the n th collided term from trans- 
port theory. This also suggests that 6-7 diffusion lengths 
correspond to the range of a PKA from random work 
theory. That is, the square of the travel distance is equal 
to the number of jumps (collisions) times the square of 
the jump step (diffusion length). We have therefore 
mken the diffusion lengths as l/6.5 of the ranges of 
PKA’s. The ranges of those PKA’s are calculated by 
using the Monte Carlo computing program, TRIPOS. 

Fig. 5 shows the dissolution rate as a function of the 
equivalent precipitate radius. PKA’s at different en- 
ergies have the same slowing down behavior. A group of 
dissolution parameter curves can be obtained by using 
the real units in place of diffusion lengths for PKA’s at 
different energies, fig. 6. The figure shows five curves 
from left to right with PKA energies of 1 keV, 10 keV, 

1 

Thickness (Diffusion Length) 

Fig. 5. Dissolution parameters for plane and spherical precipi- 
tates as functions of equivalent precipitate thickness in diffu- 

sion lengths. 

215 

100 

Precipitate Radius (Angstrom) 

Fig. 6. Dissolution parameters for different PK.4 energies as a 

function of precipitate radius in bgstrGms. 

37 keV, 0.2 MeV, and 0.5 MeV, respectively. By ex- 
amination of the dissolution parameters plotted on 
log-log scales as in fig. 7, it can be observed that the 
plot has two asymptotic limits, one with zero slope for 
small precipitates and the other with a negative slope. 
The intersection of those two asymptotic lines is at an 
equivalent radius of about 0.6 diffusion length. The 
ranges of PKA’s at different energies calculated by 
using TRIPOS for Fe on Fe can be approximated by 

R(range) = 5.3[ E(keV)]“‘9’1, (48) 

where R is in the units of angstroms and E is the 
average PKA energy. This expression has been found to 
be valid in the energy range of 1 keV to 500 keV. And 
the diffusion length is therefore given by 

L = R(range)/6.5 = 0.815E0.911. (49) 

The dissolution parameter, b, can then be empirically 
found to be 

b-l r < 0.6L, 
Eo.911 

2rb 

r > 0.6L, 

where rb is the radius of the precipitate in angstroms 
and E is the PKA energy in keV. The “escape zone” 
concept proposed by Nelson [4] for resolution of fission 
gas bubbles in fission environments has the expression 
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Fig. ‘7. Empirical dissolution parameter compared with dissolu- 

tion parameters for spherical and plane Precipitates as a func- 

tion of equivalent radius in diffusion lengths. 

as below, 

b=l rb <d, 

where rb is the bubble radius and d is an empirical 
escape distance on the order of 15 A. 

By examination of eqs. (SO) and (51), it is shown that 
the original Nelson concept [4] of an “escape-zone” for 
fission gas bubbles can now be extended to precipitate 
dissolution. The dissolution rate is approximateIy linear 
with incident PKA energy and inversely proportional to 
the precipitate radius. 

The constants a, b, c and d in the Neumann series 
expansion can be solved by using the boundary condi- 
tions as well as the recursive relationship. In table 1, 
solution constants for the zeroth Neumann expansion 
are given for both planar and spherical geometries. For 
higher order Neumann series expansion, the recursive 
relationships are given as below. 

d n = 2dp,n-,/(n - I), (A.1) 

al:...= ~~~~~~~~~~~ +a,,,-,,,-I/Z)/n(n - IL (A.21 

b p,n.n = (bp.n-x.n-I +brn.,-o-,/“J%W~ - 1h (A.3) 

C p,n,n = C p,n-Ln-,/w~ - Xl* (A.4) 

d m.n =2d,,.-An - I>, 

a m,n.n = a m,n-,.n-,/2n(fl- 11, 

(A.51 

(A.61 

b rn,R.iT = m,n-, ,-,/2n(n-- I>? (A.7) 

c m.n.n = ;%~I,._1 + c p.n-,,n-l/q/~(~ - lb 64.8) 

for k < n 

ap+.k = (a,,n-I,,-h + a~,~-~,~-~/2~/k(~ - 11 

+L_Sa 
p.n.k+lt 

p,n.~ = (bp..,:,k-, + br,w-,.,-,/2)/k(~ - 1) 

(A.91 

b 

+k+l 
--y-bp.n,h+lt (A.10) 

‘p,n.k = Cp.n--t,k-i /?k(n-I)+?, p.n-l,k-19 

(A.11) 

am.n.k = am,n-l.k-l /2k(n- l)+y~ m.n.k+ly 

(AX?) 

b m.n.k = brn.,-,,,-,/2k~n - 1) f~b,,n,w 

(A.13) 

Table 1 
Solution constants for zeroth Neumann solution 

Plane geometry 

a p.o.0 0.5 exP( - Yb@, 

~cn.O.o -~.5ex~(-vdQ, 
b p.o.0 * p.o.0 
h m.o.0 * m.~.~ 

Cp,o.o 0.5Qp(exp(- yb)-exp(yb) 

Crn,o,o ~.~Q,&vCO-ev(- Y& 
d 

P.O 
d ItI.0 2 

y, is the radius (half thickness) of the precipitate. 

Spherical geometry 

0.5U + MeW - ,GQm 
-0.5(1+,h,fexp(- YbfQp 

- ap.O,O 

- a m,~,~ 

0.5oQ,(l+ yb)(exp(- h)+ev(h) 

- 0.5Q,(l+ yb)(exp( - _W+ev(.h)) 

Yt,Qp 

Y&in 
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c m,n.k = (Cm,n-l.k-l + Cp.npl.k-1/2)/k(n - 1) 

k+l 
+-a 

2 m.n.k+l’ (A.14) 

Appendix B: Flux in an infinite medium 

For the case of cascade slowing down in an infinite 
medium, there is no space diffusion term. Therefore we 
have 

r,(E)~(E)=2/P,(E’~E)~(E’)dE’ 

+Qs(E-E,), (B.1) 
where the dependence on r has been removed. Let us 
assume constant cross-sections and hard sphere scatter- 
ing, we then have 

&(E)=Z,(E)=Z, 

Z,( E’ + E) = ZS( E’),‘E’ = X/E’. 

Eq. (B.l) can be rewritten as 

Z+(E) = ,jEEu2’(;) dE’ + Q8( E - E,). 

Let Z+(E)=F(E). 

Again eq. (B.4) has the new form 

F(+2jEoF 
E 

dE’+Qs(E-E,). 

Define a new variable, G(E), as 

G(E)=F(E)+Qs(E-E,), 

i.e. 

F(E)=G(E)+Qs(E-E,). 

Substitute eq. (B.7b) in eqs. (B.6), we have 

“(E)+!+jEo$) dE’. 
0 E 

(B.8) 

Equation (B.8) can be simplified by differentiating it 
with respect to E, we have 

(B.2) 
(B.3) 

(B.4) 

(B.5) 

(B.6) 

(B.7a) 

(B.7b) 

The solution for eq. (B.9) is 

G(E) = CE-‘. 

by G( E,) = 2Q/E0, we know 

C=2QE, 

therefore 

(B.10) 

(B.ll) 

Z.+(E)=9 + QS(E-4,) 

+(E)=s +$(E-E,). 

(B.12) 

Therefore, we know that 4(E) has a l/E* dependence 
for E < E,. The total flux is 

s,=J:UO(E)dE=~-!$ 
/ c 

_ 2Q-G 
=4 

if E,, > E,. (B.13) 
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