NORTH-HOLLAND

1 ON THE STOCHASTIC THEORY OF POINT DEFECT DIFFUSION DURING IRRADIATION:
CASCADE SIZE AND SHAPE EFFECTS

Philip CHOU and Nasr M. GHONIEM

Fusion Engineering Group, Mechanical, Aerospace and Nuclear Engineering Department, University of California at Los Angeles,
Los Angeles, CA 90024, USA

Received 31 March 1985; accepted 9 August 1985

Collison cascade size and shape effects on point defect diffusion during irradiation are studied in this papgr. In contrast to
the point cascade model of the cascade-diffusion theory of Mansur et al, where cascades are mathematically modeled as
8-functions, we represent cascades as spheres and spherical shells. The dimensions of the vacancy cascade sphere, or the
interstitial cascade shell correspond to the energy of the PKA. Subcascades are also studied at high PKA energies. It is shown
that the &-function representation of collision cascades overestimates the RMS value of the magnitude of point defect
fluctuation by a factor of 2-5, for large size cascades typical of fusion reactor conditions.

; Reprinted from JOURNAL OF NUCLEAR MATERIALS

§5




Journal of Nuclear Materials 137 (1985) 63-72
North-Holland, Amsterdam

63

ON THE STOCHASTIC THEORY OF POINT DEFECT DIFFUSION DURING IRRADIATION:

CASCADE SIZE AND SHAPE EFFECTS

Philip CHOU and Nasr M. GHONIEM

Fusion Engineering Group, Mechanical, Aerospace and Nuclear Engineering Department, University of California at Los Angeles,

Los Angeles, CA 90024, USA

Received 31 March 1985; accepted 9 August 1985

Collison cascade size and shape effects on point defect diffusion during irradiation are studied in this paper. In contrast to
the point cascade model of the cascade-diffusion theory of Mansur et al., where cascades are mathematically modeled as
d-functions, we represent cascades as spheres and spherical shells. The dimensions of the vacancy ¢ascade sphere, or the
interstitial cascade shell correspond to the energy of the PKA. Subcascades are also studied at high PKA energies. It is shown
that the &-function representation of collision cascades overestimates the RMS value of the magpitude of point defect

fluctuation by a factor of 2-5, for large size cascades typical of fusion reactor conditions.

1. Introduction

During the past two decades, rate theory has been
applied to the interaction of point defects with micro-
structural features. In this approach, both vacancies and
interstitials are assumed to be produced uniformly in
time and homogeneously in space. Based upon this
concept of point defect generation, rate equations have
been developed for the description of diffusion, recom-
bination and interaction of point defects with disloca-
tions, grain boundaries, cavities, and precipitates.

Under neutron or ion irradiation conditions, point
defects are produced in ensembles resulting from a
sequence of collisions in cascades. As such, primary
knock-on atoms (PKAs) generate a series of displace-
ments that are closely situated. The generation of
cascades is random in space and time. Therefore, a
microstructural feature will see and interact with a
fluctuating concentration of point defects. Rate theory
fails to account for the fluctuations in point defect
concentrations, since the theory is formulated for the
average behavior of defects. In some non-linear material
phenomena, such as irradiation creep and defect nuclea-
tion, it is expected that rate theory gives less accurate
results. Mansur, Coghlan and Brailsford [1] formulated
a cascade diffusion theory for the description of point
defect concentrations in irradiated solids. They repre-
sented defect cascades as points (8-functions) in space
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2. Theory

Diffusion of point defects in irradiated materials is
governed by the space—time continuity equations. These
equations have the form [6]

dC,/de=P(r, t),—aC,C,—divJ,, (1)
and
dC,/dt=P(r, t);—aC,C,—divl], )

where subscripts v and i stand for vacancy and intersti-
tial respectively. C is the point defect concentration, J
denotes the point defect flux, and « is the point defect
thermal mutual recombination coefficient. The produc-
tion rate of point defects by irradiation in egs. (1) and
(2) is represented by a time-space function P(r, ?)
where r is the vector position of defect generation, and
t is the time of defect generation.

Production of point defects is random both in space
and time. However, for ion and neutron irradiation, this
“randomness” is not complete, since ensembles of de-
fects are produced in close spatial proximity. Moreover,
the time interval for the generation of such ensembles of
defects is extremely short, on the order of 107! 5. This
is typically 5-6 orders of magnitude shorter than the
diffusion time of the fastest moving species (self inter-
stitials). During this time interval, a major fraction of
the point defects generated in ensembles is lost due to
defect quenching within the cascade (instantaneous
recombination). This effect can be separated from the
thermal mutual recombination terms in egs. (1) and (2)
because of the time scale involved. Therefore, it is
possible to separate point defect generation from their
subsequent diffusion and interaction, if one is only
interested in the behavior of the contents of one cascade.
Needless to say, it is quite formidable to solve egs. (1)
and (2) for an arbitrary random source of point defects
P(r, t). In order to obtain an analytic solution, simplifi-
cations in eqs. (1) and (2) are needed. In this regard the
non-linear point defect mutual recombination term
aC;C, is neglected in both equations. Furthermore, it is
assumed that the point defect diffusion coefficient is
space independent and that the flux divergence (div J)
is considered as an effective absorption rate. By the
application of Fick’s Law in an effective lossy medium,
the flux divergence can be written as [1,6]:

diV Jv.i = _Dv,ivzcv,i + Dv.iSv,in.i’ (3)

where S,; are effective homogenized sink strengths
(cm™2), and D,; are spatially independent diffusion
coefficients (cmz/s), for vacancies and interstitials, re-
spectively.
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The relative RMS (RRMS) value is defined as

RRMS = 0/(C). (8¢)

RRMS is a measure of the relative fluctuation of the
point defect concentration. For vacancies under various
irradiation conditions within typical temperature ranges,
this value is 2-20; while for interstitials, it is around
104-2 X 10°. It has also been discussed [2,3] that non-
linear irradiation phenomena are very sensitive to this
parameter. It is important, therefore, to assess the de-
pendence of this value on cascade properties, such as
cascade size, cascade strength (defect content) and PKA
energy.

In order to take account of cascade size effects in the
present analysis, we consider a cascade produced at
time ¢, and position », with an initial point defect
distribution P(r, ¢.),; where v and i stand for vacan-
cies and interstitials, respectively. The solution to egs.
(1) and (2) with defect source P(r,t.),; by using
Green’s function for ¢’ > ¢, is given by

Coi(x, t)=fVG(x, 1)P(r, t.),dr. )

The above integration is performed over the cascade
volume V.

Experimental observations have concluded that de-
pleted zones are mainly composed of vacancies, while
the near outer cascade regions contain self-interstitials
[8,9]. Therefore, vacancies and interstitials are assumed
to separate into two distinct regions within the cascade
volume, after initial instantaneous recombination. For
further simplicity, we represent the vacancy cascade as a
uniform distribution inside a sphere of radius r,. The
interstitial cascade is then represented as a uniform
distribution inside a spherical shell of inner radius r,
and shell thickness Ar. Solution to eqs. (1) and (2) are
then directly obtained by incorporation of eq. (4) into

(9), with the appropriate form of P(r, t.). For the

vacancy cascade the concentration C,(x, t) is given by:

— DSt +
C,(x, t)=3ve 3 {erf X :/2
8w, (4Dy)
—erf| — 5| - 4D1
@pt)? | x(=)?

2
X [e-(""’s)z/(“'D’)— e—-(x+r>) /(4Dt)] }, (10)

where erf stands for error function, and the concentra-
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Table 1
Dependence of relative concentration and relative variance on sampling volume for 8-function cascade model
Sampling volume radius C/C,, from C/C, from Relative concentration? Relative variance
in absorption inside of outside of contribution contributipn
mean free path sampling volume  sampling volume  outside of sampling volume  outside of|sampling volume
0 0.0 1.0 1.359 o0
1 0.2642 0.7358 1.0 1.0
3 0.8009 0.1991 0.2707 8.247x 103
7 0.9927 0.07295 0.09915 1.667x10[ ¢
10 0.9995 4.994x1074 6.787x107% 3.372x107°
20 1.0000 4328x1078 5.883x107% 4,766 x 1018
30 1.0000 2.901x 10712 3.943x10° 12 7.935x10[" 7
50 1.0000 9.837x10% 1.337x10™ % 2,588 x 10 *
) 1.0000 0.0 0.0 0.0

C,, is theoretical concentration from rate theory.

* Relative concentration and variance contributions are normalized to the case when sampling volume has a rad|

mean free path.

cascades generated within radii of 1, 3, 7, 10, 30, and oo
absorption mean free paths are 26.42%, 80.09%, 99.27%,
99.95%, 100.0%, and 100.0% of theoretical point defect
concentration, respectively. In other words, the con-
centration contributions from the é-function cascades
generated outside of radii 1, 3, 7, 10, 30, and oo absorp-
tion mean free paths are 0.7358, 0.1992, 0.07295, 2.901
x 1072, and 0.0, respectively, of theoretical concentra-
tion. Therefore, for the purpose of reducing computa-
tion time in evaluating point defect concentrations, it is
justified to consider all the cascades generated within a
radius of 7, from the point of observation. However,
this is only true for defect concentration calculations for
the 8-function cascade model.

For defect concentration fluctuations, Marwick’s for-
mulation [4] suggests that the average fluctuation is
divergent for 8-function cascades. The formulation by
Gurol et al. [3] also supports the divergence of con-
centration fluctuation for §-function cascades. We have
analytically evaluated the relative variance for the
d-function representation of point cascades. Table 1
gives the relative variance contribution from outside the
sampling volume as a function of the sampling volume
radius. Also shown is the relative concentration contri-
bution from outside of the sampling volume as a func-
tion of the sampling volume radius. The variance contri-
butions are weighted heavily by cascades generated
close to the point of interest as compared to the con-
centration contribution. Furthermore, the variance con-
tribution goes to infinity for point cascades generated at
the point of interest, if the observation time is the same
as cascade generation time. The fluctuation singularity
can not be practically shown by the Monte Carlo

method, since an infinitely large
studied for events to be generated exg
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that cascades can be generated between radii r, and
r,+r, from the observation point. Those cascades
physically overlap with the unit cell. Therefore, they
have to be considered in order to obtain the same
degree of accuracy for the analysis. In other words, the
actual sampling volume has a radius of r,+ r, for the
case of spherical cascades. The position of generation
for any defect cascade which can contribute to the point
defect concentration at the point of observation is given
as follows:

x=(T+r)E7 (16)

where £ is generated random number with value be-
tween 0 and 1. And r, is the cascade radius.

The time of generation is determined by using a
Poisson’s distribution, which has the form

P(N, R)=e RRV /N1, 17)

where R is the average number of cascades generated
per unit time within a sphere of radius r,. N is the
actual number of cascades generated within a given unit
time. Let us define a cumulative distribution function
P.(n) as

pc(n)=é0p(zv, R). (18)

First, a random number £, is generated. Then it is
compared to P,(n). If P(n)<§, <P, (n+1), it is as-
sumed that »n cascades are generated in the time interval
of interest. Then a series of n random numbers are
generated in order to distribute cascades randomly
within the time interval.

For the cases of very large cascades, a homogeneous
distribution of defects within the cascade, as used here,
may not be an adequate representation. Heinisch [10]
has investigated the formation of lobes and subcascades
within a large cascade by using Monte Carlo simula-
tions. It 1s shown that high energy cascades have tree-like
structures for point defect distribution. We will ap-
proximate such structures by considering two specific
cases; a tree subcascade model and a uniform sub-
cascade model. For the tree subcascade model we as-
sume that all subcascades are generated along a given
vector whose length is the diameter of the large cascade.
For the uniform subcascade model, on the other hand,
we assume that all subcascades are generated randomly
within the volume of the large cascade. Fig. 1a is a
schematic representation of the homogeneous sub-
cascade model, while fig. 1b illustrates the tree sub-
cascade model. Both models do not exactly duplicate
the cascade structures produced by Monte Carlo simu-
lations. Nevertheless, the two models bound the ex-

0 GCADES

CASCADE

TREE SUBCASCADE MODEL

Fig. 1la. Schematic for tree subcasdade within a high energy
cascade.

SUBCASCADES——-(D

CASCADE

UNIFORM SUBCASCADE MODEL

Fig. 1b. Schematic for uniform subcascade within a high energy
cascade.

tremes of actual defect generation distributions; namely,
highly anisotropic and homogen¢ous. Therefore, we ex-
pect the results for defect concentration fluctuations of
subcascade structures to lie in bpetween these two ex-
treme cases.

4. Results

In this analysis, the following parameters for either
nickel or stainless steel are used [1,2]: Dy = 0.014 cm?/s,
EY=14¢V, §,=10" cm/cm?, | Di = 0.008 cm?/s, EL
=0.15 eV and S, =1.1 X 10" cm/cm’. The defect gen-
eration rate is 10~ % dpa/s and the temperature is 500°C.
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The cascade rate used corresponds to a unit cell of a
radius r,, as defined earlier. As we discussed in the
previous section, it is found that the §-function cascade
model is not valid for concentration fluctuation analysis
based on the RMS value. We therefore assume that the
size of the point model cascade corresponds to a radius
of 50 A.

Generally, it is observed that larger cascades result in
less fiuctuations in vacancy concentration as compared
to point cascades. A statistical sampling on the order of
a few thousand cascades is needed for vacancy cascades
before agreement between rate theory and cascade dif-
fusion theory is achieved. On the other hand, it is found
that a smaller sample size of interstitial cascades is
needed before rate theory and cascade diffusion theory
reach agreement.

We will first discuss the results of analysis for a
homogeneous distribution of defects within the cascade
volume. Then, we will show the implications of sub-
cascade formation. Fig. 2 shows the relative RMS value
as a function of vacancy cascade radius. It is shown for
large cascade sizes, the relative RMS value is small, and
rate theory is expected to be a good approximation for
vacangcies. In fig. 3, the relative RMS value is shown as
a function of the interstitial inner radius. The behavior
for interstitial cascades is comparable to that of vacancy
cascades with the exception that the value of the relative
RMS value is four orders of magnitude higher than that
for vacancy cascades. The interstitial cascade shell
thickness, Ar, is assumed to be 15 A.

In the preceeding analysis, a cascade strength of 100
defects is used. However, larger size cascades generally
contain more point defects. Under a constant damage
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rate, the arrival rate of larger size cascades will be lower.
This increases the fluctuation in defect concentrations
due to the lower frequency of occurance. In order to
make a more realistic picture of the effects of cascades
on fluctuations, an investigation of the effects of PKA
energy, cascade size and cascade strength on fluctua-
tions is necessary. For this purpose, PKA transport
analysis using the TRIPOS code [6] is performed. Fig. 4
shows the average diameter of cascades generated as a
function of PKA energy using the TRIPOS code. Fig. 5
shows cascade quenching survival efficiency (fraction)
as a function of PKA energy, as determined by Heinisch
[11]. The cascade strength is obtained by multiplying
the number of freshly produced defects in each cascade
by the quenching survival efficiency. The relationship
between the cascade strength and cascade radius is
finally shown in fig. 6. Fig. 7 shows the vacancy relative
RMS value for both point cascades with radii fixed at
50 A and spherical cascades as functions of the “actual”
cascade radius. It shows that for a larger cascade radius
and higher cascade strength, point cascade model tends
to overestimate the magnitude of fluctuations in vacancy
concentration. On the other hand, the spherical cascade
model predicts that the fluctuations increase first, then
level off, and eventually decrease as a function of the
cascades size and cascade strength. This can be ex-
plained by the fact that a larger cascade size inherently
causes less fluctuation due to the assumption that de-
fects are homogeneously distributed within the cascade
spherical volume. This effect dominates the increases in
fluctuations due to the lower arrival frequency of large
size cascades. Fig. 8 shows the interstitial relative RMS
value for both point cascades with radii of 50 A and
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than that for vacancy cascades. However, it can be
easily observed from figs. 7 and 8 that the results from
the point cascade model with a radius of 50 A give an
agreement within a factor of 4 with those from the
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homogeneous cascade model. One point of caution is
that the point cascade model results are very sensitive to
‘the selection of the cascade radius. For instance, by
taking a radius of zero, the results from the point
cascade model diverge.

The decrease in the magnitude of fluctuation for
larger-size cascades is in part due to the increase in the
chances for large cascades to overlap with the point of
observation in the homogenous model. In order to take
account of this effect, simulations are performed for
larger cascades breaking up into several subcascades.
Such subcascades are considered to have an initially
uniform point distribution. The number of subcascades
within each high energy cascade can be approximated
by using results from copper cascade computer simula-
tion by Heinisch [10]. The relationship between the
average number of subcascades per cascade and PKA
energy is approximately linear from Heinisch’s calcula-
tions. Since it is not possible to simulate a fraction of a
subcascade by using the analog Monte Carlo method,
we truncate the non-integer part of the number of
subcascades in a cascade in this analysis. We further
assume that the cascade energy is distributed equally
among its subcascades and those subcascades have sizes
corresponding to their energies. We can fit the figure of
the number of subcascades per cascade from Heinisch’s
work by the following formula

N, = Integer[1 + E(keV) /125 .0], (19)

where N, is the number of subcascades per cascade
and E is the cascade energy content. Fig. 9 shows the
dependence of the relative RMS on cascade size for the
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Fig. 9. Vacancy relative RMS values for 20 A point cascades,
tree subcascades, homogeneous subcascades are and homoge-
neous spherical cascades as function of cascade strength.

following cases: (1) Point Cascade Model, where the
cascade radius is fixed at 20 A; (2) Homogeneous
Cascade Model, where point defects are initially ho-
mogeneous within the cascade spherical volume; (3)
Uniform Subcascade Model, where subcascades are ran-
domly distributed within the cascade sphere; (4) Tree
Subcascade Model, where subcascades are produced
along the diameter of the cascade sphere. It can be
easily observed that results from the linear and homoge-
neous subcascade models fall between those of the point
and homogeneous cascade models. Point defect con-
centration fluctuation for subcascade models increase
first for smaller cascade size, then level off and remain
relatively constant as the cascade size increases.

The leveling off can be further attributed to the fact
that the fluctuation reduction due to the high spatial
incoherence for subcascade generation is offset by an
increase in fluctuation due to a high time coherence for
subcascade generation.

An important question arises in conjunction with the
analysis of pulsed or transient irradiation; and that is,
how is point defect concentration influenced by fluctua-
tions in this case? A number of Monte Carlo computer
runs were performed for an irradiation pulse with an
on-time of 10 s. In fig. 10, the Monte Carlo results are
represented by the vertical bars to indicate the statistics
due to cascades, while the solid line is the average rate
theory solution. It is interesting to note that while the
magnitude of fluctuation is significant during the on-
time, it is less so during the off-time. This is primarily
due to diffusional spreading of cascades retained during
the on-time. It is therefore suggested that whenever the
on-time is less than the average time between cascades
(inter-cascade time), transient fluctuations may play an
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Fig. 10. Transient vacancy relative RMS value as a function of
time for pulsed irradiation which is turned on at ¢ = 0.0 and
turned off at 1 =10.0 s.
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important role. Also, for off-times greater than several
intercascade diffusion times, the role of fluctuations is
diminished.

5. Conclusions

It is concluded here that the d-function cascade
model is only accurate for the analysis of point defect
concentrations. For the evaluation of point defect con-
centration fluctuations, time singularities cause the
fluctuation magnitude to become infinite. Therefore, a
cascade with a non-zero equivalent size as defined by
eq. (14) is required for this type of calculation, as was
suggested by Marwick [4].

However, our results show that fluctuations in point
defect concentrations are sharply reduced as compared
to the point cascade model if the cascade size effect is
taken into account. For larger size cascades, the spherical
cascade model predicts a lower magnitude of fluctua-
tion in point defect concentration. However, for cases
where the damage rate is fixed and cascade strength and
size are increasing, the decrease in point defect con-
centration fluctuations is partly due to an increase in
the probability of cascade overlap with the point of
observation and partly due to the homogeneous distri-
bution of point defects within the cascade. Tree-like
point defect distributions in large cascades can be ap-
proximated either by a linear subcascade model or by a
homogeneous subcascade model. These two models de-
pict extreme configurations observed in Monte Carlo
simulations of defect structures in large cascades. De-
fect concentration fluctuations based on these two sub-
cascade models fall in between those based on the point
and homogeneous cascade models. For the same condi-
tions, the point defect model gives a sharp increase in
the magnitude of the defect concentration fluctuation,
while the homogeneous cascade model actually predicts
a decrease in the magnitude of this fluctuation. The
actual concentration fluctuation behavior is expected to
fall in between the results from the two subcascade
models. For an anticipated fusion reactor neutron spec-
trum, cascades tend to have sizes that correspond to
defect concentration fluctuations around the plateau
region for the subcascade models.

A major conclusion of the present work is that
cascade size and shape have important effects on point

defect fluctuations. The work indicates that a more
realistic representation of cascades will tend to reduce
the magnitude of the fluctuation by a factor of 2-4 at
high PKA energies.

A number of effects which can potentially contribute
to the magnitude of fluctuations are undoubtedly left
out. For instance, thermal recombination of vacancies
and interstitials, distributions of cascade size and
strength in a real irradiation environment, the heteroge-
neous distribution of local sink strength, and the local
variation in point defect diffusion coefficients have to
be considered. The present work indicates that there is a
natural limit to the magnitude of concentration fluctua-
tions, and that rate theory may be adequate for treating
vacancies. It appears, though, that the great mobility of
interstitials leads to a large degree of coherence and
hence substantial fluctuations. Interstitial loop nuclea-
tion may be particularly sensitive to this behavior.
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