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The Monte Carlo ion-transport code TRIPOS is extended to a new version, TRIPOS-E, for model-
ing secondary-electron generation and transport along ion tracks. Energy deposition and radial
electron--hole (e-h) pair profiles in silicon are evaluated for several energetic heavy ions. These
profiles reflect a Gaussian-like central core which decreases exponentially at increasing radial
distance. Analytical expressions for radial charge-density profiles at several depths of penetration
are obtained. The excess charge density remains above background dopant concentrations beyond
0.25 um radius from the ion path. This detailed evaluation of track structure should enhance
modeling of charge collection from jon tracks in semiconductor devices.

Der Monte-Carlo-Ion-Transport-Code TRIPOS wird zu einer neuen Fassung, TRIPOS-E, fiir die
Modellierang von Erzeugung und Transport von Sekundirelektronen entlang lonenspuren, er-
weitert. Fir mehrere energetisch schwere Tonen in Silizium werden die Energieablagerung und
die radislen Elektron-Loch-Paar-Profile abgeschitzt. Diese Profile widerspiegeln einen gauf3-
artigen zentralen Kern, der mit zunehmender radialer Entfernung exponentiell abfallt. Fiir mehrere
Profile der radialen Ladungsdichten werden fiir verschiedene Eindringtiefen analytische Ausdriicke
gefunden. Fir Radien groBer als 0,25 um hat die UberschuB-Ladungsdichte einen hoheren Wert
als den ,,Doptierungs‘‘-Hintergrundwert. Die ausfiihrliche Bewertung der Spurenstruktur kann
fir die Modellierung der Ladungssammlung von Ionenspuren in Halbleitern genutzt werden.

1. Introduction

During the past several years, interest in the effects of radiation on semiconductors
has grown significantly because of the increase .in space and defense applications.
Transient charge collection from cosmic ion tracks passing through integrated circuit
junctions is known to produce logic upset and memory change. These events are refer-
ed to single event upsets (SEUs), and are of two types: (i) soft errors, which involve
inversion of the logic state without permanent damage to the circuitry; (ii) latch-up
(or bard) errors which permanently fix the logic state of the junction.

The free electrons produced along an ion track within an integrated circuit either
recombine with the holes or are collected at the p-n junction as a transient current
spike. The high density of these charge carriers significantly alters equilibrium charge
carrier distributions and can distort the junction potential such that the current spike
causes more damage.

Very high-energy iron ions within the cosmic spectrum are of greatest concern for
microelectronic circuitry in space. Generation of such ions is difficult and expansive
in earth-based testing. Cyclotron damage simulation frequently uses energetic argon

1) Los Angeles, CA 90024, USA.
2) Research supported by the State of California through the MICRO Project, Gran_t No. UC-
86-101, and the matching funds by TRW Corporation, Grant No. TRW-AN2700AL6S1, with UCLA.



744 R. C. Mammin and N. M. GBONIEM

and krypton ions having linear energy transfer characteristics similar to cosmic iron.
Modeling and comparison of charge generation profiles for these ions is important for
damage analyses and interpretation.

Previous efforts in modeling charge collection after production of these tracks have
used assumptions for track width and density which have not been definitively
established. Grubin et al. {1] assume an initial cylindrical track of radius 0.1 um, an
excess charge density of 1017 to 10'® per cm® constant across the track width, and a
time of one ps for track production. A radially symmetric expression given by Jaffe
[2] is used in an analysis by Messenger [3]
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5p :’7—[2)5 eXp(""z)‘i B (1)

Here, 0, is the volumetric electron-hole (e-h) pair generation along the ion path, b is
the assumed track radius at ¢ =0, and N is typically 107 to 101 e~h pairsjem. It was
concluded that field motion typically starts after the ion track has expanded from an
initial radius of 0.1 pm to about 1 pm, and that the track is created in about 500 ps.

Since the above models are derived from phenomenological and analytical ap-
proaches using unverified assumptions, a Monte Carlo-based analysis of electron genera-
tion and transport along ion tracks is useful in testing these assumptions. For this
purpose, the ion transport code TRIPOS [4, 5] was extended to simulate secondary-
electron generation and transport, with the transport mechanisms derived from the
work of Fitting and Reinhardt [6].

1
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2. Background

s

TRIPOS was developed by Chou and Ghoniem [4, 5] to study ion transport in solids
using the Monte Carlo technique for the solution of the transport equation. TRIPOS
is distinguished from other ion transport codes by its use of the power-law approxima-
tion to the Thomas-Fermi potential in the region between high ion energy (pure
Coulombic interaction) and low ion energy (represented by a Born-Mayer interaction
potential). TRIPOS also uses a number of variance reduction techniques and encom-
passes a variety of applications.

The slowing down of ions within the target material consists of two components:
interaction with the target electrons and interaction with the nuclei. Electronic stop-
ping is the dominant mechanism. At high ion velocities v > 1, Z3/° (where v, = ¢/137
with ¢ the speed of light) the electronic stopping power can be represented by the
Bethe-Bloch formula

AE  aZ3Z,e'N T nax
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Z, and Zy are the atomlc numbers of the incident and target atoms respectively, e is the
elecbromc charge, N is the target atom density, F is the incident ion energy, Tmin
corresponds to the mean ionization energy of the target atoms, and 7'y, represents
the maximum kinetic eriergy transferable to a target particle - X
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In the Bethe-Bloch regime, the cross section for electronic energy transfer is re-
presented by the Rutherford cross section
b r 7 AT
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where b is the impact parameter and T represents the kinetic energy transferred to the
target particle. The probability of energy transfer is inversely proportional to the
square of the amount of kinetic energy transferred to the secondary electron (Fig. 1).
The Bethe-Bloch equation for electronic stopping can be modified to give

_c fw} [T_t] 5
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where C is the collection of constants in (2). TRIPOS calculates S, for each ion path.
By choosing an arbitrary cutoff energy Ty, energy transfers of magnitude greater
than 7T, can be viewed as discrete energy transfers to high-energy secondary elec-
trons. These electrons represent non-localized energy transfers because they can travel
a significant distance away from the ion path before their kinetic energy is dissipated.
By modeling transport of these high-energy secondaries, a computational model
relevant to charged particle tracks in semiconductors can be developed and compared
with the assumptions used in previous analyses. An analogous electronic stopping
can also be calculated which represents all energy transfers to electrons of magnitude
less than 7'y This component represents a continuous energy transfer, localized to
e-h pairs close to the ion path. ‘
- The Monte Carlo approach is used for both generation and transport of these high-
energy secondary electrons. The probability distribution function f, for kinetic energy
transfer to electrons is given by (4) and Fig. 1. Integration between T,y and Ty
gives the cumulative distribution function f,

ToaxTeut 1 1 ‘
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where 7' is the kinetic energy transferred to the electron. By choosing a random num-
ber between zero and one and equating it with{the f,, the corresponding energy transfer
is calculated directly. Another random number is generated to represent the position
of secondary-electron generation along the ion path. The kinetic energy of the gene-
rated electron is compared to the magnitude of the discrete component of the elec-
tronic energy loss between the successive nuclear scatterings. If the discrete com-
ponent 1s less than the electron’s kinetic energy, this discrete component is not suffi-
cient for secondary-electron generation and this electron is discarded. If sufficient
discrete energy exists for generation of additional electrons, they are created based
on the conservation of discrete energy transfer.
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3. Electron Transport

The previously mentioned Bethe-Bloch theory accurately accounts for the transport
of electrons with kinetic energies above 10 keV. At lower energies, better results are
obtained by modeling electron transport using individual interaction mechanisms
rather than a continuous energy-loss process.

Electron transport interaction mechanisms are divided into elastic and inelastic
collisions. Elastic collisions involve scattering of the electron by nuclei with no change
in kinetic energy. Inelastic interactions reduce the electron’s energy, and consist of
either ionization of core electrons or dielectric interaction with the valence electrons.
The dielectric energy loss can be further divided into individual or collective electron—
electron interactions (i.e. generation of either e~h pairs or plasmons). This is schemati-
cally shown in Fig. 2.

3.1 Elastic scattering

Two standard approaches are applied to the elastic scattering of electrons: Rutherford
scattering and the partial waves method (PWM). For electrons with energies of 10 keV
and above, elastic scattering can be modeled using the screened Rutherford interaction
potential given by [6]

Ze 1 [

V(r) = — 1;% 76X

r
—— 7
a1 .
with Z the atomic number of the target nucleus and 7, a sereening radius. This poten-
tial incorporates a screening parameter representative of the screening of the nuclear
charge by the surrounding bound electrons. The elastic scattering cross section is
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given by
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with E the incident energy and the screening parameter a, given by
/A |

a, == m— ‘,’—g. ) (9)
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Different expressions for the screening parameter o, are available (e.g. Nigam et al.
[7])- Although calculations are straightforward, these equations give increasing error
as electron energies decrease below 10 keV.

The PWM employs a quantum mechanical approximation for elastic scattering
[8, 9]. The concept of wave-particle duality allows the incident particles to be con-
sidered as waves, and the scattering center acts as a perturbation. The magnitude of
initial propagation constant k is the same, but the wave has a different direction and
a different phase shift §, after scattering. The problem becomes that of determining
the first several phase shifts using Schrédinger’s equation with appropriate boundary
conditions and interatomic potentials.

Several PWM analyses have been employed in modeling electron transport in
a variety of materials (e.g. [10]). Fitting and Reinhardt [6] performed PWM analyses
for several materials including silicon, but then compared the results to those of
Rutherford scattering using the screening parameter

t(#) = 0.9 + exp ( —E’E) , (10)
which is related to the screening radius 7, of (7) and (9) by:
ag [0.885 ,
Ts :W[T__ R (11)

where ay is the Bohr radius. By choosing appropriate values of K., good agreement was
obtained between the two methods of calculation. Because of their simplicity, the
formulas of Fitting et al. for elastic scattering cross sections were employed in this
work to reduce computational effort.

3.2 Core electron ionization

Tonization of core electrons within a material is a significant energy loss mechanism
for an energetic electron. A semiclassical approach for core ionization cross sections
given by Gryzinski [11] was used by Akkerman et al. [10] and others. Fitting et al. [6]
note that the core ionization stopping power can be represented in a form similar
to the Bethe-Bloch equation, and the effective mean-free path for core ionization is
then given by

AE,
= . 12
Ae dE/d= (12)
By ignoring any kinetic energy transfer to the ionized core electrons, A is approxi-
mately equal to the mean core-ionization energy, 7. Equation (12) can then be con-
verted to the form:
I.E '
Ae - (13)
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For silicon, Fitting et al. give values of 100eV for 7, and 3000 eV?/nm for the con--
stant A4, allowing direct calculation of the mean-free path for core ionization.
The polar scattering angle is approximated by a free collision momentum transfer

)
in2x ~ ¢ ‘
sin?x ~-—=. (14)

3.3 Dielectric energy losses

An energetic electron can transfer energy to valence-band electrons by either plasmon
production or creation of e-h pairs. Some previous modeling of electron transport
uses detailed analytical expressions for dielectric energy loss by both mechanisms
(e.g. [10]). As in [6], this work uses a simple scheme based on an empirical expression
for inelastic mean-free path and on the previously defined core ionization mean-free
path to calculate the mean-free path for dielectric interaction, 4,. The equality

T =t 4+ 29t (15)

gives the value for 2; once 4;, and 4, are known.

Ashley and Tung [12] obtained equations for inclastic mean-free paths in silicon by
analyzmg expemmental data. Rather than using the material-independent equatlon
for Ay given in [6], the equations in [12] are used in this work. -

4, Monte Carlo Scheme

The Monte Carlo technique is based on a random determination of interaction par-
ameters as defined by the governing equations. A sufficiently large collection of simu-
lated particles should give a statistically valid average which is representative of
actual behavior.

This work employs a random number determination for both path length and
interaction mechanism. The path length is given by [10]

= —hot 10 (§) = — (X 477)* In (&), (16)

with & some random number between 0 and 1. The type of interaction ¢ is determined

from
P, =& Py, (17)

where Py = 0, P; = Awifde, Po = hiot(Aal -+ 27"), and Py = Ag(Aei’ + 43" + A1) = 1.

For each elastic or dielectric interaction, the polar scattering angle x; and. any:
energy lost by the electron must be determmed The elastic scattering angle is deberﬂ
mined by a random number, & [6] T

2a el
g = 08| 1 T7a, Eel] (18)

Core ionizations involve an energy loss of 100 eV and an angle of scattering given, by
(14). Dielectric energy loss and scattering angle determinations require evaluation of
the dielectric loss function, which for silicon is given in [6]. This loss function is evalu-
ated from the complex dielectric constant of the material, which gives the experimental
response of a system of atoms to an electromagnetic wave or in this case to the Coulom-
bic force of a passing electron. A random number gives the dielectric energy loss AE
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where the denominator represents the area under the curve of the dielectric energy
loss function. This integrated area is evaluated as a function of AE, and a fit of this
data allows use of the random number scheme. After AE is evaluated, another random
number can be directly related to the dielectric scattering angle x4 by an approach
given in [6]. '

For each scattering event, the azimuthal scattering angle is also determined random-
ly between 0 and 27.

To test the validity of the electron transport scheme used in TRIPOS-E, the code
was used to model electron penetration at a surface with normal angle of incidence,
and the mean range of all non-backscattered electrons was compared to an empirical
formula for mean projected range of electrons in silicon as a function of energy given
by [13] |

R = 18E1.5¢ (20)

with B given in nm and ¥ in keV. Fig. 3 shows good agreement between TRIPOS-E
and (20), giving confidence in the approach used.

Different energy minima at which tracking of the electron was halted were com-
pared. A minimum of 200 eV gives satisfactory agreement with (20), so this minimum
energy value is used. This choice also adheres to the lower limit of validity for 2;, used
in [12].

An additional routine is included for secondary electrons with energies above
10 keV, similar to the Bethe-Bloch formulation for ions represented by (2). A contin-
uous energy-loss mechanism to the bulk electrons between elastic scatterings is
assumed. The elastic scattering cross section is again given by (8), but now the screen-
ing parameter t of (10) is set equal to 1. The Bethe-Bloch energy-loss equation is the
same as that used by Shimizu et al. [14].

5. Seecondary Electron Distributions

Four different incident high-energy ions of current interest are studied: 100 MeV
proton, 180 MeV argon, 270 MeV krypton, and 1 GeV iron. Fig. 4 a and b shows 2D
profiles of typical tracks for proton and krypton ions, respectively, where the end-
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Fig. 4. Two-dimensional profile of secondary electron ranges in silicon as a function of track
depth for: a) 100 MeV proton, b) 270 MeV kryptor

point of each generated secondary electron (i.e. the point where the kinetic energy
falls below 200 eV) is plotted with respect to the ion path. Changes in the direction
of the ion path because of collisions are not shown; a straight line path is simulated.

The minimum energy of generated secondary electrons is assumed to be 1 keV. As
the ion loses energy it reaches a point toward the end of its track where it can no
longer generate 1 keV secondaries, in agreement with (3). This behavior is particularly
evident for heavier ions, as in Fig. 4b.

The secondaries arising from protons and other light ions have a higher average
energy at creation than those from heavy ions, and tend to travel further. This fact is
representative of better energy coupling between the electrons and the light ion, as
expected from (3). The initial energy of the secondaries at creation decreases as an ion
loses energy, resulting in a shorter range for the electrons generated further along the
track. This behavior 1s most notable for heavy ions, resulting in the funnel-shaped
tracks apparent in Fig. 4b.

An evaluation was made of the average time spent by the electrons between genera-
tion and reduction of energy below 200 eV. For all ions, the average time is in the
order of 1071 s, indicating very rapid track generation.

6. Electron-Hole Pair Distribution

Each secondary electron undergoes many inelastic collisions between generation and
thermalization. To evaluate this energy deposition radially from the track, a series of
concentric zones are set up around the track and energy losses within each zone are
tabulated. These losses are considered to be deposited locally, and the radial e-h
pair densities can be obtained by dividing the total energy deposition within each
zone by the energy required to produce an e-h pair (i.e. 3.6 eV in silicon). Results for
the radial distributions of e~h pairs can be fit to an equation to express the distribution
in a convenient form. As some track widths change with depth into the medium,
several positions along the track are evaluated in terms of the energy deposition
within a slice of the silicon material (e.g. a 1 um-thick slice perpendicular to the direc-
tion of ion penetration).

Results of this analysis are shown in Fig. 5 a and b for 270 MeV krypton and 1 GeV
iron ions. These figures indicate an exponential tail for the charge distribution away
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Fig. 5. Radial volumetric charge density in silicon due to high-energy secondary electrons u.sing
Teut = 1000 eV for: a) 270 MeV krypton (depth: o 5, 0110, A 15, & 20 pm), b) 1 GeV jron
(depht: 0 5, A 10 pm)

from the central core of the ion path, suggestive of penetration by the high-energy
secondary electrons. A cutoff energy of 1 keV for secondary generation is used for
these figures. The narrowing of the charge-density profiles in Fig. 5a for the krypton
ion at increasing depth reflects the reduced probability of generation of high-energy
secondaries as the ion loses energy.

Fig. 5a and b reflect charge generation arising only from the secondary electrons.
The low-energy transfer to electrons below the cutoff energy must also be accounted
for in a total charge-density profile. For this low-cnergy deposition, a Gaussian pI‘Oi.lle
can be postulated similar to that of (1) which can also account for the non-exponeni?lal
behavior of Fig. 5 a and b at small values of radial distance. Combining the Gaussian
and exponential components in an expression for charge-density profile gives

—01 _r + £ ex —i) (21)

77("') - 7 exp b% 1Y b2l ’
where C is some constant, b, and b, are analogous to track widths for the Gaussian and
exponential regions, respectively (as in (1)), £ is a correlation factor between !Jhe two
components, and the 1/r dependency reflects the cylindrical geometry. Equatxor} §21)
can be integrated over r from zero to infinity to obtain the total charge deposition.
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which in turn provides an expression for the constant ¢ and gives

o N, . r2 T
) = i, 3 iy |70 —75) + e (= )| %)

where N, is the total charge deposition along a unit path length of the ion. Fig. 6a
is a conversion of Fig. 5a (5 um depth) to a graph of In [r5(r)] versus r, in which the
exponential tail is still apparent. Note that the exponential portion of (22) can be
expressed in the form

N r

(23)
The slope along the linear portion of Fig. 6a provides a value for b,, and extrapolation
of the linear portion to r = 0 and comparison with (23) gives an expression for
& = £(b,). The Gaussian component reflected by b, accounts for both the curved
region of Fig. 6a at small values of r and an additional enhancement within that region
due to the low energy transfers. Equation (22) can be converted into a form dependent
only on 7 and b;, which should give good agreement throughout the linear portion of
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Fig. 6. 270 MeV krypton incident on silicon, at 5 um depth, using T'¢yt = 1000 eV : a) comparison
of the analytical formula to the computational results from TRIPOS-E for radial charge surface
density (O Monte Carlo, fast electrons, analytical, all electrons), b) radial volumetric
density profile, given by the analytical formula
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Table 1
Parameters for analytical track profiles

270 MeV krypton
T.(eV) 5 pm depth

10 pm depth

b (nm) by (nm) £

b (nm) by (nm) &
26.5 63.9 0.0695 22.5 43.7

500 0.0874

1000 295 446  0.0622 225 276 0.104
1500 190 314 0135 175 248  0.158
180 MeV argon - S
200 380 1037  0.0879 3.0 872 00822
500  30.5 91.9  0.0732 430 956  0.0671
1000 355 85.0  0.0606 365 707 0.0643

2000 29.0 50.9 0.123 28.0 61.2 0.109

Fig. 6a. Thus, a least-squares comparison of this equation to the data throughout the
linear regime can provide the “‘best’” value of b,. With b, determined, a value for the
parameter £ is obtained directly from the expression & = &(b,).

The results from one of these analyses are also shown in Fig. 6a, where the analytical
expression with evaluated values of b, by, and & are compared with the output of
TRIPOS-E. Good agreement is apparent throughout the exponential regime, and the
higher density core contains all low-energy transfers. This data is replotted in Fig. 6b
as 7(r) versus r, to show the relative magnitude of the charge core more clearly.

To evaluate the effect of the choice of cutoff energy on the values of these param-
eters, several analyses are performed using cutoff energies ranging from 200 eV to
2 keV. Results for b, and b, for 270 MeV krypton and 180 MeV argon are listed in
Table 1. For krypton, b, extrapolates to about 80 nm for a depth in silicon of 5 pm
and drops off rapidly as the depth of penetration increases. For argon, b, extrapolates
to approximately 100 nm. Both ions give similar values for b,: approximately 30 nm
for krypton and 40 nm for argon. Values for & range between 0.06 and 0.16 for both
ions. These values for b, and b, approach a plateau at lower values of cutoff energy.
Low values of T, should give more accurate results, but with greater computing
costs. The above results indicate a choice of Ty in the range of 0.5 to 1.0 keV should
give satisfactory accuracy.

7. Significance of Results

The radial distance over which the excess charge carrier concentrations remain above
background dopant levels (typically 1016 cm™3) is important for analysis of transient
behavior. Fig. 5a shows this distance to exceed 0.25 um for 270 MeV krypton. The
corresponding value for 180 MeV argon was found to be greater than 0.33 pm. Fig. 5b
shows this distance to excced 0.5 um for 1 GeV iron. These values are greater than
the previously mentioned assumptions for track width in [1] and [3]. The larger track
widths and faster generation times indicated by TRIPOS-E are important for modeling
the transient current spikes arising from ion passage. Results from TRIPOS-E indicate
an exponential charge generation profile extending hundreds of nanometers from the
ion path; such a profile has never been postulated in previous models of track struc-
ture.

48 physica (a) 104/2
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Different results for the radial extent of the tracks of cosmie iron and those arising
from cyclotron simulations also raise issues relating to the accuracy of cyclotron simu-
lation of cosmic damage of microelectronic circuitry. The axial charge-generation
profile apparent in Fig. 5a for krypton will not be apparent over microelectronic
device dimensions for ions of such high energy as cosmic iron, possibly affecting
quantitative analyses using c¢yclotron simulation.

Parameters have been evaluated to provide analytical expressions for the charge-
density profiles along heavy ion paths. These expressions provide much more detail
than previous assumptions for radial charge profiles, and should prove useful and
convenient in future modeling of charge transport along ion tracks in semiconductor
devices.
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