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Abstract-The dynamical evolution of a one-dimensional dislocation pileup is numerically studied in 
this paper. By extending particle methods of computational statistical mechanics, criteria for accurate 
numerical simulation of the pileup evolution are established. A combination of explicit integration of 
the equations of motion and dislocation freezing after 40 position oscillations gives a maximum error 
of 5% in the trajectory of the leading dislocation. Explicit integration preserves spatially oscillatory 
behavior and is shown to give accurate results. The evolution of the dislocation distribution function 
shows small density wave formation during the compression phase of the pileup. 

1. INTRODUCTION 

The problem of determining the equilibrium position of dislocations in a pileup con~guration 
has been treated analytically for many years. Eshelby et al. [l] developed a general approach 
describing the equilibrium positions of different dislocation configurations, including the pileup. 
Their work was based on the work of Stieltjes [2] who treated a similar problem with 
electrostatic charges. Kanninen and Rosenfeld [3, 41 further developed the work of Eshelby et 
nl. [l] to describe the dynamics of dislocation pileup formation. Head [S] and Head and Wood 
[6] presented a series of papers on dislo~tion group dynamics and determined the equilib~um 
distributions of discrete and continuous sets of dislocations. Their work included a derivation of 
the dynamic evolution of a group of dislocations, and distributions resulting from the formation 
and release of a dislocation pileup. 

Ockendon and Ockendon (71 expanded on the notion of a continuous distribution of 
dislocations and arrived at a more rigorous description of dynamic dislocation pileups. In more 
recent work, Balakrishnan et al. [8] found an exact solution for the equilibrium dislocation 
distribution using a continuum model of interacting parallel dislocations moving in a common 
slip plane. 

In all of these theoretical treatments, the equilibrium positions of the dislocations have been 
accurately determined. The evolution of the dislocation pileup and general movement toward 
equilibrium positions, however, were only treated with approximate analytical formulations. 
The study of dynamic dislocation behavior in response to applied forces has not enjoyed 
enough attention. A mechanistic understanding of time-dependent deformation mechanisms 
requires a detailed analysis of dynamic dislocation behavior. 

The advent of supercomputers has presented alternative ways to study the movement of 
dislocations within a solid medium. Computational statistical mechanics has been used to 
examine the individual and collective motion of particles in several types of media; faster 
computers have allowed the study of increasingly larger numbers of particles. Application of 
these techniques to dislocation mechanics has only recently been found to be effective in 
describing, for example, the motion of a dislocation subboundary under the application of 
stress [9, lo]. 

In this work we demonstrate the use of computational statistical mechanics, in particular 
molecular dynamics (MD) theory, to study the evolution of a one-dimensional (1-D) 
dislocation pileup. In Section 2 we present a general methodology for the solution of the 
equations of motion. Results are given in Section 3, followed by conclusions of the work in 
Section 4. 
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2. NUMERICAL SIMULATION METHODOLOGY 

2.1 One-dimensional equations of motion 

The 1-D equations of motion for each dislocation is based on fundamental force balance and 
the interaction between dislocations. Each dislocation represents a point particle which, in a 
continuum mechanics sense, exhibits a force proportional to l/r, where I is the radial distance 
from the dislocation. Dislocations glide along one crystallographic direction and are not 
assumed to cross-slip onto adajcent slip planes in a pileup. No dislocation climb is considered in 
the present model. 

For edge dislocations, the position of a group of dislocations placed on line, upon reaching 
equilibrium, can be determined by solving the following equations: 

ax,_ 
at - Ma"(xj), j = 1, . . . , n, 

a(xj> = s(xj) + A ZjI ;’ 7 i = 1, . . . , n, 
I I 

(1) 

where 

a(x) = total stress, 

S(x) = applied stress, 

A = @/23d(l- Y), 

Xj = position of jth dislocation, 

xi = position of ith dislocation, 

M = dislocation mobility. 

Solution of this set of equations analytically in a discrete sense is achievable only by letting the 
stress exponent m = 1, and by assuming that the relative positions of the dislocations are 
constant in time [5]. For m # 1, the set of equations must be solved numerically and still the 
solutions only represent an approximation to the exact dynamical behavior of a group of 
dislocations. 

Equation (1) with (2) can be solved exactly, for one dislocation piling up against an obstacle. 
The solution is given by 

x = X,,[l _ eW4(x-x~-K~) l+Xoe , 
(S/A)(X-Xo-Vat) 

(3) 

where 

X0 = initial dislocation position; 

X,, = X’ - (A/S) = equilibrium dislocation position; 

X’ = position of obstacle; 

S = applied stress (constant value); 

V, = applied velocity = M - S. 

This solution (3) will be compared to the solution predicted by the simulation in Section 3 

[eqn WI- 
Equation (1) in the general discrete form can be rewritten in simpler terms to describe the 

motion of a dislocation due to individual forces. The general force one dislocation exerts on 
another is given by 

F = (b - 0)x5, (4) 

where 5 is the dislocation line vector, b is the Burgers vector, F is the net force, and (T is the 
total stress at the dislocation. The velocity is given by 

V=V,+MF (5) 

where M = glide mobility = D,b/kT and Dg = glide diffusion coefficient. 
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2.2 Numerical algorithm 

2.2.1 Equations of motion. The simulation of dislocation motion consists of applying MD 
to the equations of motion. In conventional MD, these equations are represented by an explicit 
central difference formula in molecular positions [ll]. Explicit integration methods are more 
suitable for solving systems of equations for MD. In implicit methods, the savings in 
computational time by using a larger time step than one for explicit methods is overcompen- 
sated by the consumption in time due to the evaluation of the Jacobian for a large number of 
particles for that timestep [12]. Applied to the dislocation system, the position and velocity are 
given by the following equations: 

4 = F(C) = b ,$i o,(q), (6) 

Vi = Mu, (7) 

ri = ri-1 + Vi At. (8) 

This system of equations represents a direct application of the particle method [13, 141 in which 
the numerical algorithm follows the path of the characteristics of the original differential 
equation. For a large number of particles in the system, errors on the order of At are reduced 
by ergodic mixing [15] which guarantees statistical error cancellation due to the application of 
the particle method. 

2.2.2 Timestep. The value of the timestep in (7) must be chosen for the entire system of 
dislocations. This timestep must be limited to the minimum amount of time it would take two 
dislocations to experience a reaction, whether it be collision or annihilation. If we consider two 
dislocations of arbitrary Burgers vectors coming in close vicinity to one another, the timestep 
can be expressed by the following condition: 

At = min( Arij/ Auij), (9) 

where 

Arij = Iri - rj(, (10) 

and 

AU, = 12/i - Vjl. (11) 

In a molecular dynamics simulation (MDS), the balance of forces determines the status of 
the dislocation position. A dislocation can never reach a true state of equilibrium as long as 
there are dynamic forces acting on the dislocation. If we treat the 1-D situation of one mobile 
dislocation piling up against an obstacle as characteristic of a nonequilibrium situation, we can 
represent the physical picture as a description of the effective potentials of the system. 

Figure 1 depicts the potential profile of such a scenario. A locked dislocation is located at the 
far left. The potentials depicted by the solid lines are due to a single mobile dislocation 
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PosItIon C/L) 

Fig. 1. Potential diagram for single dislocation pileup. 



656 R. AMODEO and M. M. GHONIEM 

entering from the right toward the obstacle. The vertical line at position =0.374~ is the 
equilibrium position of the mobile dislocation for a force u = 10’ dyn/cm’ applied from the 
right toward the left direction. The solid line of constant slope entering from the right is the 
potential due to the application of a constant force. The curved solid line at the left starting 
from infinity and decaying to the right is a logarithmic potential due to a l/r force produced by 
the locked dislocation. The dotted line is the total of the two potentials. 

It can be seen that a mobile dislocation entering from the right will essentially be falling into 
a potential well. The computer simulation is a finite system, however, and in a finite system this 
dislocation will never reach an equilibrium position. This matter is complicated by the fact that 
the potential acting on the dislocation due to the obstacle is greater at the same distance away 
from the equilibrium position toward the obstacle than the potential on the opposite side. This 
can be seen in Fig. 1, and it is clear that if an equal timestep is chosen when a dislocation 
passes through the equilibrium point toward the obstacle, the dislocation will be thrust on the 
opposite side of the equilibrium point further away from where it started. This problem sets 
another limitation on the timestep chosen for the calculation. In addition to the timestep being 
naturally limited by the time it takes two dislocations with the most potential for interaction to 
interact, the timestep is limited by the approach of one dislocation to the equilibrium position 
with respect to another. 

Figure 2 is a depiction of the trajectories of a mobile dislocation entering from y = 0.0 p 
toward a locked dislocation at position y = 1.0 ,I.L Rotated 90 deg counterclockwise, this figure 
corresponds to the first 1 - ~1 block of Fig. 1 (the dotted equilibrium line in Fig. 2 
corresponding to the solid vertical line in Fig. 1). The scaled time to is the time it would take a 
dislocation at the origin to arrive at the position of the lock in one timestep. This definition is 
characterized by eqns (9)-( 11). 

In the case of a dislocation interacting with a lock, we define the timestep to be a fraction of 
to (i.e., At =ff,,). The exact trajectory of the mobile dislocation [given in Section 3 by eqn (12)] 
is represented by the solid line in Fig. 2 curving toward the equilibrium position. The discrete 
points are applications of the numerical algorithm eqns (6)-(8), and timestep criterion eqns 
(9)-(11) scaled by various values off It can be seen from the trajectories that if the timestep 
chosen is too large, the dislocation will occupy a position far away from equilibrium on the 
following timestep and take longer to converge to the equilibrium point. The average relative 
error is found to be 36% for f = l/1.5, 9% for f = l/5, and 3% for f = l/15. 

Choosing a scaling factor f = l/5 appears to be sufficient to accurately represent the 
trajectory predicted by the analytical solution, but this factor is an unknown in more 
complicated dislocation configurations. In these cases the equilibrium position is indeter- 
minable analytically, and making the scaling factor arbitrarily small will only serve to escalate 
computer costs. Therefore, in addition to scaling the timestep by a factor the order of l/10, an 
approach to choosing a reasonable timestep based upon methods used in MDS is suggested. 

If a dislocation is approaching an obstacle, and at some point changes direction, then a point 

0751 

Fig. 2. Dislocation trajectory for single dislocation pileup. 
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of equilibrium is potentially near. In some MDSs, the change in velocity is used as a detection 
of an equilibrium point, and the particle is then frozen at its position in place [16]. In 
simulation of dislocation systems, this change in velocity will be used to limit the dislocation’s 
own velocity in the reverse direction. In other words, it is assumed that the dislocation 
reversing its velocity will travel no further than the point from which it started in the initial 
direction before changing velocity. This allows the simulation to proceed without having to 
rescale the timestep, and also prepares the dislocation to be immobilized if it is indeed close to 
an equilibrium position. 

2.2.3 DbZocation freezing. If the interacting dislocations which determine the timestep 
are approaching a stable configuration, then the timestep may be permanently determined by 
those two dislocations for the duration of the simulation. Once dislocations are immobilized 
however, they are no longer necessary for the determination of the timescale for the 
simulation. Therefore, these dislocations may be decoupled from the calculation of timestep, 
but they still participate in the determination of the forces. This technique is termed dislocation 
freezing in reference to a similar treatment of molecular systems in which particles come close 
to equilibrium positions. 

Figure 3 shows the evolution of the trajectories of the first 7 dislocations from a simulation 
of a SO-dislocation pileup. This particular calculation was performed with a timestep limited to 
the time it would take the dislocation with the largest force to react with another dislocation, or 
obstacle, using a scaling factor of f = l/10. For the entire simulation, that dislocation is 
represented by the leading dislocation in the 50-dislocation pileup. It is seen in Fig. 3, however, 
that this dislocation reaches equilibrium early in the simulation. In fact, it is in an equilibrium 
position and, for all practical purposes, it is an immobile dislocation. 

It is therefore not necessary to include this dislocation in the computation of the global 
timestep, and so it would be practical to remove this dislocation from the reaction calculation. 
The difficulty with this, in a general sense, is that there is no way to predict the equilibrium 
position analytically for a pileup of more than one dislocation [5]. In a realistic situation, the 
dislocations which are in the pileup in equilibrium are in fixed positions, because the force 
acting on any one of the dislocations is not sufficient to cause an atom from a lattice site to 
jump to the adjacent lattice position. 

In the previous section, it was suggested that a dislocation close to equilibrium be limited in 
its velocity in the reverse direction. As seen in Fig. 3, the dislocation closest to the obstacle 
oscillates about the equilibrium point, mostly at the beginning of the simulation but also 
throu~out the time evolution of the simulation. When this dislocation first begins oscillating, it 
is not quite at equilibrium because the other dislocations in the pileup are continually moving 
in. It is found that after about 30-40 oscillations, this dislocation eventually reaches 
equilibrium. The average error produced by the deviation of this leading dislocation from the 
true trajectory is less than 5%. For the remaining dislocations, it can be seen that the errors are 
even less than that for the first dislocation. In fact, after about the third dislocation, the 
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Fig. 3. Free position trajectories for first 7 of a SO-dislocation pileup. 
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Fig. 4. Freezing position trajectories for first 7 of a SO-disfocation pileup. 
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Fig. 5. Comparison of freezing and free position trajectories for 3rd and 7th dislocations of a 
50-dislo~tion pileup. 

trajectories are all smooth and there are no significant deviations in the dislocation motion. 
Therefore the error introduced into the system by assuming a fraction f of to = l/10 is small 
enough to accurately reproduce the trajectories in a 50-dislocation pileup. 

Starting from the dislocations nearest the obstacle, each dislocation is successively monitored 
for oscillatory motion. After about 40 oscillations from first detection a change in velocity, the 
position of the dislocation being observed is fixed, and the monitoring process continues for the 
next dislocation outward from the obstacle. The result of this procedure can be seen in Fig. 4 
which shows the trajectories of the first 7 dislocations of a 50-dislocation pileup. A comparison 
of this freezing technique with the standard evaluation of trajectories in Fig. 5 indicates that the 
trajectories are identical for both methods. Considering CPU time, it is found that dislocation 
freezing results in an order of magnitude savings in computer time compared to direct 
calculations. 

3. RESULTS 

3.1 Single dislocation pileup 
Equation (3) rewritten in terms of the time variable to compare the analytical formulation 

with the simulation eqns (6)-(8) yields: 
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As previously discussed, Fig. 2 shows that if the timestep chosen is small enough, the simulated 
dislocation will follow precisely the trajectory predicted by analytical solution to the equation 
of motion. 

3.2 Multiple dislocation motion 

Head postulated that a number of dislocations placed at the origin would follow an evolution 
in time based on the principle that the relative positions of the dislocations would be 
approximately constant in time [5]. Solutions of this nature to eqn (1) are therefore referred to 
as similarity solutions, in which the dislocation position can be represented by the following 
approximation: 

Xj = Xjg(t)* (13) 

The solution to (1) with this substitution yields, for m = 1, a time dependence of the form 

g(t) = (Zt)? (14) 

Figure 6 represents the evolution of the positions of six dislocations with a lock at the origin 
when all six are placed at equal spacings at time t = 0. It can be seen in this figure that the 
dislocations follow parabolic trajectories, as predicted by (14). The relative positions of the 
dislocations reach an equilibrium at t of the order of 3.3 x lo6 s, and this is characterized by 
t = 1 in Figs 6 and 7. The latter figure represents the change in relative positions of the 
dislocations up to the equilibrium spacing as predicted by Head. After equilibrium is achieved, 
the dislocations remain at this spacing for all time. 

3.3 Dislocation distribution evolution 

Eshelby et al. [l], and others [2-61 have determined the equilibrium positions of individual 
dislocations which are piled up against an obstacle. For a small number of dislocations, the 
application of a discrete model such as that proposed by Head provides a computationally 
feasible method for determining equilibrium positions. For a pileup of a large number of 
dislocations however, it is suggested [17] that characterization of a continuous distribution of 
dislocations is as good an approximation as the discrete model. A single pileup of dislocations 
against an obstacle by a shear stress u can thus be represented by the following distribution 
equation [ 171: 

2(1-v)a L-x 1’2 
fcx)= pb (,) 

= probability per unit length of 
finding a dislocation at position x, (15) 

and the number of dislocations in a particular region (AX) along the pileup can be calculated in 
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Fig. 6. Dynamic motion of a 6-dislocation expansion with a lock at the origin. 
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Fig. 7. Dislocation spacing ratios in a 6-dislocation expansion with a lock at the origin. 

the following manner: 

No. of dislocations =f[;\: + (AX/~)] Ax. (16) 

In comparison with a simulation of dislocation motion, it is useful to know the length of the 
pileup, determined by the equation 

L= 
H’b 

/4(1- Y)U’ 
(17) 

where L = pileup length and N = number of dislocations in the pileup. 
Simulation of a group of a large number of dislocations would produce a distribution of 

dislocations in which the density of dislocations decreases further away from the obstacle 
against which the dislocations are piling up. It is found in experiments [18] that a pileup of no 
more than 50-100 dislocations actually occurs in one dimension. Comparisons were therefore 
made between the distribution produced by a simulated 50-dislocation pileup and the 
equilibrium distribution predicted by (15). 

If the dislocations are placed uniformly on a line of length a little less than L, given by (17), 
then if a stress is applied in the direction of the dislocation toward an obstacle, the group of 
dislocations will undergo a dynamic compression. This is shown in Fig. 8 for 50 dislocations. As 
time proceeds, the pileup shows a progressive concentration of dislocations toward the 
obstacle, as is expected from the physics. The dynamic behavior of a 1 - D pileup is similar to 
the behavior of compressible fluids. Local velocity variations are manifested in dislocation 
density variations in a manner similar to compressible fluids described by Euler’s eqn [19]. 
Figure 9 shows a comparison of the stages of the evolution of the dislocation pileup, as shown 
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Fig. 8. Dynamic motion of the first few dislocations of a 50-dislocation pileup. 
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Fig. 9. Evolution of dislocation distribution in a SO-dislocation pileup. 

in Fig. 8, in distribution form. The disturbance density waves are eventually dampened when 
the distribution approaches its equilibrium value, as Fig. 9 shows. It can be seen that the 
equilibrium distribution generated by the simulation closely predicts the distribution calculated 
by (15) for 50 dislocations. 

4. CONCLUSIONS 

It has been shown that methods of computational statistical mechanics can be used 
successfully to model dislocation dynamics. In particular, the phenomenon of a 1 -D 
dislocation pileup has been studied. The physics of motion of dislocations in a pileup is found 
to be similar to the behavior of the motion of a fluid in a dynamic compression. The 
trajectories of the dislocations during pileup illustrate this phenomenon of compression, in 
which a fluid pushed in one direction up against an obstacle exerts a back stress in the reverse 
direction which causes a variation in local fluid density. It is found, however, that the dynamics 
which represent an accurate simulation of the trajectories are sensitive to the choice of timestep 
in an explicit difference numerical solution method. 

The importance of this choice of timestep is evidenced by the results of the 1 - D simulation 
for various dislocation configurations. For the case of one dislocation pushed up against a lock, 
it was found that the timestep criterion dictated by the time to dislocation-dislocation 
interaction is insufficient to accurately characterize the true trajectory of dislocation motion. 
Instead, a scaling factor, f, was introduced to reduce the timestep to allow the dislocation to 
approach the equilibrium position determined analytically by the balance of forces on the 
mobile dislocation with respect to the lock. This factor was determined to be of the order of 
l/10 for an accurate simulation. 

In extending the simulation to the motion of a group of dislocations, the deviations from the 
true trajectories of dislocations in a 50-dislocation pileup produced by using a scaling factor of 
l/10 were found to be significantly less than 5%. This error is only characteristic of the 
dislocation closest to the obstacle, and the error in simulating the trajectories of the remaining 
dislocations is less than this value. The sacrifice in the exact reproduction of the trajectory of 
the first dislocation is justified by the savings in computational time which results from 
assuming a value of the scaling factor, f, which is not too small. 

It is found that the equilibrium configuration of an arbitrary collection of dislocations cannot 
be determined a priori by analytical techniques. Numerical solution of equiibrium positions is 
possible, but under realistic dynamical conditions, it is difficult to predict which set of 
dislocations constitutes a group in an arbitrary configuration. Therefore it is suggested that, in 
addition to scaling the global timestep by a constant factor of the order of 10, a numerical 
algorithm which detects the approach to equilibrium by monitoring changes in dislocation 
velocity be applied to the solution procedure. 

The results of this technique indicate that if a dislocation within a pileup undergoes more 
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than 40 oscillations about an equilibrium point with a timestep chosen as previously suggested, 
the dislocation has essentially attained an equilibrium position. Freezing the dislocation at this 
point provides a savings in computational time of the order of 1 magnitude of CPU time on a 
Cray-1 computer, while preserving the accuracy in the determination of the dislocation 
trajectory. 

The results of these 1-D simulations show that the savings in computational time is 
significant, without sacrificing the accuracy of dislocation trajectories, when the timestep 
criteria as outlined in this paper is applied. Further implications of these results are that in the 
extension to two dimensions, similar timestep criteria can be successfully applied, especially in 
the case of dislocation cell formation. In this event, the number of dislocations which constitute 
a cell wall is of the order of that which is studied in this paper. The simulation criteria 
established in this paper will be helpful in the dynamical simulation of 2-D pattern formation 
for a large number of dislocations (-10,000). 
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