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DETERMINATION OF THE BIAS FACTOR BY THE MOMENTS SOLUTION 
TO THE FOKKER-PLANCK EQUATION * 
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An important parameter in the rate theory of swelling is the dislocation loop bias factor, Zi, which is a measure of the rate 
of interstitial atom absorption relative to vacancy absorption at interstitial loops. The Fokker-Planck (F-P) equation is used 

to describe interstitial loop evolution, with a kinetic nucleation current boundary condition at di-interstitial atomic clusters. 

The majority of loop nucleation is shown to be finished after one milli-dpa, which allows the shape of the loop distribution 

function to be governed mainly by the drift (F) and dispersion (D) functions in the F-P equation. Since collision cascades 

contribute significantly to D, their effects must be suppressed by using low-energy ions or high-energy electrons to produce 
spatially homogeneous atomic displacements. Under these conditions, both F and D are shown to be proportional to the 
square root of the number of atoms in a loop. The proportionality parameters depend on material and irradiation conditions, 
and are linearly proportional to Z:. The ratio F/D, which resembles the Peclet number in fluid flow, can be used in a unique 

way to determine Z: without the usual complications of uncertainties in material and irradiation conditions. This is shown to 

constitute an internal variable measurement of the bias factor. 

1. Induction 

Interstitial loops form by atomic clustering of self-in- 

terstitials during irradiation. Once a small cluster of a 
few interstitial atoms form, a strain field is set around 

the atomic cluster. The strain field results in a prefer- 
ential attraction of interstitials over vacancies. Swelling 
by vacancy agglomeration into cavities is a consequence 

of this biasing effect of interstitial loops. Of course, 
other factors control the magnitude of swelling rate, 
such as the presence of gas atoms, point defect recornbi- 

nation centers, and other microstructural features (e.g., 
distocation network and precipitates). However, disloca- 
tion loop bias towards interstitials remains as an im- 
portant ingredient determining the swelling rate. 

Important as it is, no experimental method has ever 
been proposed to measure the loop bias factor in a 
direct way. Rate theory has been pursued during the 
past two decades to predict the swelling rates of various 
metals and alloys [l-3]. The large number of parame- 
ters used in the theory of swelling makes the unique 

determination of each one uncertain. It is sometimes 
possible, as is shown in this paper, to discover an 
experimental method that allows the unique determina- 
tion of a specific parameter. The method is based on the 
analysis of the interstitial loop ~crostructure evolution 
using a moments solution to the F-P equation. 

Systems of non-linear ordinary differential equations 

have been used (e.g., Ghoniem [4]) to represent the 
concentrations of hierarchies of atomic clusters of in- 
creasing size. Solutions of these systems of equations 
are not possible without mathematical or numerical 
approximations. For example, grouping methods, where 
a group of equations are assigned the same reaction 
rate, have been introduced by Kiritani [5] and Hayns 
161. In the study of multi-state kinetic transitions, the 
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hierarchy of rate equations is replaced by an equivalent 
parabolic partial differential equation. The resulting 
continuum equation is of the F-P type, and it describes 

a process of particle diffusion in a general drift field. 
This approach was used to describe vacancy and inter- 
stitial atom clustering by Sprague, Russell and Choi [7]. 

Wolfer, Mansur and Sprague [8], and also by Hall [9]. 
Recent efforts by Gurol [lo], Clement and Wood 

[ll], Trinkaus [12], Kitajima and co-workers [13-161, 
and by Ghoniem [17] have considered an interpretation 
of atomic clustering within the framework of statistical 
mechanics. The F-P equation resulting from Taylor 
series expansion of rate equations [7-9] is a representa- 

tion of stochastic size fluctuations produced by single 
atomic additions. When collision cascades are to be 

considered, size fluctuations in atomic clusters are 
dramatically influenced by direct cascade collisions as 
well as by point-defect arrival produced from random 
cascades. 

An equation for the nucleation of interstitial loops is 
developed in section 2 which is used as one of the 

kinetic boundary conditions necessary for the solution 
of the F-P equation. A moments solution to the one-di- 
mensional (I-D) interstitial-loop F-P equation for gen- 
eral drift and diffusion functions is given in section 3. 
This is followed by a specific example illustrating a 
suggested procedure for determining the loop bias fac- 
tor. 

2. Theory and moments solution 

The concentrations of single vacancies, C,, and single 
self-interstitial atoms, C,, are given by [4,17] 

dC 
~=~P-orc”ci-xvc”, 
dt 

2 =<p+ K,(2)C,c,; + 26CZi - 2Ki(f)Ciz 

-aCvCi-Ki(2)C,C,i-XiCi, 

(I) 

(2) 



where P is the point-defect generation rate, e the 
cascade survival efficiency, (Y the recombination rate, 6 

the di-interstitial dissociation rate, and K::(x) is the 

reaction rate constant between a mobile specie (a) and 
an immobile specie (b) containing x atoms. The param- 

eters A, and A, represent effective loss rates to homo- 

geneous microstructural sinks. Equations for hi and A, 

and details of all equations in the paper are given by 

Ghoniem 1171. In eqs. (1) and (2), vacancy clustering is 
assumed to be negligible during the early phase of loop 

formation, and a trapping model is used to describe the 
effective migration of self-interstitials. 

The formation of di-interstitial clusters is governed 

by the following rate equation for their concentration, 

C,,: 

dC,i __ =J, -52. 
dr 

The di-interstitial cluster is assumed to be mobile with a 

homogeneous absorption rate AZi. J, is the net rate of 
transformation of single interstitial atoms to di-intersti- 
tial clusters and J, is the net rate of transformation to 

tri- or tetra-clusters. These are given by 

J, = Ki(l)C’ - 6Czi - X,,CzI, (4) 

J,=Ki(2)CiC?i+2K2,(2)Czz,. (5) 

When the d&interstitial binding energy is large (E,b, 
= 1 ev), the backward reaction rates of clusters with 

x 2 2 are negligibly small 1181. The di-interstitial cluster 
can then be assumed to be the critical nucleus and 
transformations to tri- or tetra-clusters are therefore 

nearly irreversible. With this simplification, eq. (3) can 

be written as 

Eq. (6) is coincident with the F-P equation for any size, 

x, given by 

g+o.J=O, 

where the operator V= a/ax in this case, and the 
current J is only the 1-D component: 

J=J,= FC- &(DC), (8) 

where F is a drift function and D a dispersion function. 
F and D can be estimated to include size fluctuations 
caused by single atomic transitions, and fluctuations 
due to cascades {e.g., Kitajima [13,15]). 

The zeroeth moment of eq. (7) is obtained by direct 
integration over the distribution function, C(x), be- 
tween x * and the maximum loop size. Therefore 

dN _Z 
dt 

J*. 

where 

N(t) = l!C(x) dx, 

Iv is the total loop density. The boundary and initial 
conditions for the unique solution of eq. (7) are given 

by 

C(x, t)=O 

C(x*. t) = CZi(t) = c*(t) 

C(x, 0) = 0 1 

. (11) 

The average size, (x}, is obtained by taking the time 

derivatives of both sides of the equation 

(x)/V= ImxC(x. t> dx, (12) 
.X * 

and substituting eq. (7) in eq. (12), together with the 
conditions expressed by eq. (11). Expanding the drift 
functions, F(x), as a Taylor series and using the defini- 

tion of the rth moment as 

M,= ((-x - (x>)r>. (13) 

where the symbol ( ) is used for averaging over the 
distribution function, we obtain 

D*C* 
+- 

N 
-((x) -x*)z(ln N). (14) 

Performing similar manipulations, and starting from 
eq. (13), we obtain the following equation for the rth 
moment : 

+r i 
= M, dk 

%,F((x)) + A;* k! dXk 

x (x-(x>) [ +I I(X) 
-Mr-1 [ 

m it& dk F((x)) + ,G2 p GF I (x) 
D*C* 

+r- 
N 

(x* - (x))‘_1 -M,,] 

+ &(ln N) 

x [(x* - (x))‘- M,- rMp_l(x* - 

r = 2, 3, 4,. . (15) 

S,, is the usual Dirac-Delta function. The terms en- 
closed by the first pair of brackets are ascribed to the 
effects of the dependence of D on x; those enclosed by 
the second pair represent distortions in the distribution 
functions caused by F(x); the third pair give the effects 
of continuous nucleation on the distribution function. 
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The distribution function, C(x, t), can be formally 
reconstructed, albeit not uniquely, from the infinite set 
of moments. 

3. Determination of loop bias factor 

The F-P equation for loops is linear, hence the 
distribution function can be represented by a small set 
of moment equations. For the purposes of this paper, 
the moments above the second are assumed to be zero. 
If experimental conditions are such that cascade-in- 
duced size fluctuations are negligible, the functions F 

and D can be shown [17] to be of the form 

= gzx1’2, (17) 
where y is the vacancy emission rate from the loop, cu 
and /3 are impingement frequencies for insterstitials and 
vacancies, respectively, and Z/ is the interstitial loop 
bias factor. 

Detailed numerical computations, presented in sec- 
tion 4, show that nucleation effects on the moments are 
small and that quasi-static conditions are quickly estab- 
lished. Inserting F(x) and D(x) given by eqs. (16) and 
(17) into the truncated series [eqs. (14) and (15)] gives 

d(x) g, 11 - (WI 
-z 

dM2 2g,(l-~[l-&z,/g,)l) ’ (18) 

where X = &#J(~(x))~ c 1 and gi/ga e 1. At temper- 
atures where vacancy emission is negligible, an ap- 
proximate quasi-static relationship can be obtained from 
eq. (18), i.e., 

d(x) z! - z 
dMz 

=‘=s. 
z; + z 

Eq. (19) indicates that eventually the rate of increase of 
the average loop size will be proportional to the rate of 
increase of the second moment. The proportionality 
constant, S, is thus an internal va.riable and is indepen- 
dent of all material and irradiation conditions. It should, 
in principle, be insensitive to defect parameters and can 
therefore be used to determine Zl. The bias factor for 
straight dislocations, Z, is close to unity. Hence, once S 
is experimentally measured, Z/ is given by 

z!_l+S 
‘--l_s’ (20) 

The bias factor Zi has been assumed to be size-inde- 
pendent for simplicity. However, its functional depen- 
dence on x can be introduced without loss of gener- 
ality. 

To apply eq. (20) the loop size distribution must be 
experimentally determined at various irradiation doses. 
Since the set of equations [eqs. (14) and (15)] is trun- 
cated beyond the second moment, it can be shown [17] 
that the size distribution is approximately given by a 
propagating Gaussian function of the form 

C(x, t) = (2rJv$2 exp[ - (X ;;))2], (21) 

The loop number density, N, is shown by many experi- 
ments to be nearly independent of the irradiation dose 
after an initial short transient period. The experimental 
procedure is to fit the data to eq. (21), thus determining 
(x) and M, as functions of dpa. Taking an average 
values of S can thus uniquely determine 2; without 
having to know any of the defect parameters! 

4. Numerical application of the theory 

It seems unlikely that the exact experimental condi- 
tions prescribed in this paper have been attempted. 
Therefore, the theory is applied to available experiments 
where cascade fluctuations exist. Comparisons between 
theory and existing experiments are made through para- 
metric variations of defect properties. Hall and Potter 
[19] carried out a series of experiments where 3 MeV 
58Ni+ ions were used to bombard Ni-Si samples at 
465 o C. Their calculated peak displacement rate is 3 x 
10-4dpafs. Eqs. (1) through (3), (9), and (14) through 
(15) were numerically integrated, assuming that all mo- 
ments higher than the second are approximately zero. A 
standard set of defect parameters was used throughout 

the calculations 1191; only the effective migration energy 
of interstitials (EM), the di-interstitial binding energy 
( E,bi)), the interstitial loop bias factor (Zf ), and the ratio 
of cascade to single transition dispersion functions 

(DC/D,) were treated as free parameters. 
An increase in Zt results in a corresponding increase 

in the average loop diameter (fig. 1); however, the total 
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Fig. 1. Effect of Z! on the average diameter of interstitial loops 
(theory: -; experiment (Hall and Potter): l ). 
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Fig. 2. Effect of Z: on the interstitial loops (theory: -: 
experiment (Hall and Potter): 0). 

loop density is insensitive to variations in the bias factor 
(fig. 2). This interesting feature can be used in de- 

termining groups of defect parameters by comparison to 
kinetic data on loop densities. When Ei is increased, 
the loop density increases dramatically (fig. 3) while the 
average loop size decreases because of the near- 
conservation of total number of atoms in loops, Varia- 
tions in Eirn produce opposite effects on the loop den- 

sity and average size. 
Comparison with the experimental data of Hall and 

Potter [19] shows that single-atom transitions may be an 

underestimation of the magnitude of stochastic fluctua- 
tions, and that collision cascade effects must be in- 
cluded. For statistically uncorrelated events, we take 
D = D, + D,, where DC is for cascade fluctuations, and 
Ds for single-atom transitions. By a parametric increase 
of DC/D,, a closer comparison with experiments is 
obtained, as shown in fig. 4. The effects of collision 
cascades on the re-solution of loops and on point-defect 
concentrations can be calculated in a manner similar to 
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Fig. 3. Effect of Eii on the interstitial loop density (theory: 
-; experiment (Hall and Potter: 0). 
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Fig. 4. Effect of cascade-induced fluctuations on the loop 

distribution function (Hall and Potter). 

that done by Kitajima 113-161 and Chou and Ghoniem 
[20,21]. 

5. Conefusions 

The moments solution to the F-P equation, with 
transient nucleation conditions, can be effectively used 
to measure the interstitial loop bias factor Zi. To take 
advantage of this solution, a number of experimental 
conditions must be satisfied. These conditions are: (1) 
Irradiation doses beyond a short transient period of 

- 0.001 dpa and before loop unfa~ting at several dpa’s; 

(2) Sample temperatures low enough such that vacancy 
emission from loops does not significantly contribute to 
their growth (i.e., below 450-500’ C for Ni at a dose 
rate of > 10e4 dps/s); (3) The use of low energy ions 
or high energy electrons to minimize the effects of 
collision cascades on the fluctuations in loop sizes dur- 
ing their growth. 

Comparison between the current theory and experi- 
ments show that a combination of the parameters Zf, 

E,h,, E,“, and DC/D, can produce all observed features 
of interstitial loop evolution in ion-irradiated nickel. 
The best set of these parameters is found to be Zt = 2, 
Ezb, = 1.19 eV, EM = 0.55 eV, and DJDs = 60. 

This work was supported by the US Department of 
Energy, Office of Fusion Energy, Grant #DE-FGOS- 
84ER52110, with UCLA. The excellent editing and 
typing of Joan George is appreciated. 
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