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ABSTRACT

A computer simulation of the behavior of individual dislog
presented. The equations of motion of individual dislocations 4
taneously solved using extensions of dynamical particle simulatig
and the Monte Carlo meth-

[i.e., molecular dynamics, Langevin dynamics,
ods]. The evolution of one- and two-dimensional (2-D) patterns
trated by computer simulation of dislocation dynamiecs. In 1-D
criteria for accurate numerical simulation of dislocation pileup
are established. The potential for using specialized numerical
putational techniques to reduce the demands on existing com
discussed.

1. INTRODUCTION

Recent advances have been made in the field of computational
mechanics and the non-linear science of pattern formation. The ady
speed supercomputers and special architectures has allowed simuls
-time evolution of larger numbers of particles in molecular systems,
and liquid [1]. 1In the field of non-linear science, the last dec
duced a wealth of new concepts and ideas which contributed to a
picture of the nature of science [2]. 1In this paper, we attempt
the marriage of these two fields offers an exciting approach to tH
of dislocation dynamics. This approach is of great significance td
ing the origins of plasticity, creep, fatigue, and fracture of solid
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The earliest significant theoretical model of dislocation cells was devel-

oped by Holt [7]. His analysis, which is an extension of linear spinodal decom-
position theory, attributed the onset of the spatial instability to a global
minimization of the elastic free energy. Since Holt's original work, several

rate theories have been developed which demonstrate specific jaspects of dislo-
cation dynamics in cells (e.g., Argon and Takeuchi [8] and Sanfstrom [9]). More
recently, Prigogine’s stability analysis of chemical kinetics| [2] has been ex-
tended by Walgraef and Aifantis [3,10], Schiller and Walgrae% [11], and Murphy
[12] to analyze dislocation structures. They consider two types of disloca-
tions, mobile and immobile, in a set of reaction-diffusion equations. Their
work shows that the competition between diffusive mobilities and cubic non-
linearities for the pinning of mobile dislocations by immobile dipoles leads to
stable periodic dislocation structures.

Particle simulation has been a major tool in computational physics [13].
When the interaction force between particles is long range, such as the force
due to a charged particle (Coulomb field), the influence of all other particles
must be computed at every timestep. This leads to algorithms with O0(n2) com-
plexity, where n denotes the number of particles. Dislocations, which are es-
sentially 2-D discontinuities in the atomic stacking, will be reégarded as macro-
scopic point particles. Theory of elasticity is used to determine the long-
range interaction forces, and short-range interactions are approximated as
events or processes. A basic feature in dislocation dynamics (DD) is that dis-
locations are limited to motion along the plane of discontinuity (climb) and
perpendicular to the plane of discontinuity (glide). This paper presents a
model for the numerical simulation of dislocation dynamics within the framework
of particle methods. The model is applied to the evolution of 1-D pileup pat-
terns and to 2-D dislocation interactions. Methods to overcome computational
limitations, and the effects of various dislocation processes on pattern forma-
tion will be discussed.

2. THEORETICAL MODEL

Two categories of computational methods have been applied to the simulation
of atomic and molecular systems. In the first category a non-dynamical ap-
proach, the Monte Carlo (MC) method, is used to obtain information on ensemble
averages by using random sampling techniques. In contrast, dynamical methods
yield the trajectories of a number of interacting physical entities. The term
molecular dynamics (MD) has been used to describe the early versions of such
calculations. In 1980, Andersen [14] proposed a mixed MC/MD algorithm for
isothermal simulations where stochastic collisions are treated in accord with
the MC technique. 1In the following, we present a DD model, which is based on
particle simulation ideas used in molecular systems.

In our model, we represent the grain by a 2-D plane enclosed by grain
boundaries. Edge-type dislocations are studied and they are assumed to be
straight, parallel, and perpendicular to the observation plame. Dislocations
can glide only along glide directions, and they can also climb normal to glide
directions. The Peach-Koehler equation for the force per unit length, F/L,
acting normal to the dislocation line, is given by [15]: :

F/L= (B . 3¢, (1)
where $' = stress dyadic (tensor) s
=0y 11 + 0,,15 + a131k +0,,31 + 99,33 + 023Jk
+ 031ki + 032kj + 033kk , (2)

o
and { = unit tangent vector to the dislocation line
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Figure 1 shows a test edge dislocation, t, and a reference dislocation, r, in a
global coordinate system. The position of the test dislocation is given by the
vector R¢, the position of the reference dislocation is given by the vector Ry,
and their connecting vector angle in the global system is é§. The Burgers vec-
tors of the two dislocations are defined by ar (the test dislocation rotation

3ngle) and oy (the reference dislocation rotation angle). The parameters Ry,
Rt, 6§, o, and oy completely define all degrees of freedom of the two dislo-
cations. For example, in the test dislocation system, the comnecting vector
angle is

g =& - at N (3)

and the relative rotation angle of the reference dislocation Burgers vector is
T=(ap - 0) - o, “)

The stress field produced by the test dislocation, in its own cylindrical
reference system, is described by the 2-D tensor

_ rr %xo -sind cosf
3 = = f(R) ) (&)
aor 090 cosf -sind
where
#lgtl 1
f(R) = 71 - "R (6)

reference

Figure 1. Coordinate system for two interacting dislocations.
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and p is the shear modulus, gt the reference dislocation Burgers vector, v is
Poisson’s ratio, and R the inter-dislocation distance. The force on the ref-
erence dislocation is obtained by applying the Peach-Koehler equation (1), to-
gether with equation (5), with £, = £, = k. However, in order to obtain the
climb and glide components of the force, we must describe t%f stress field in
the Cartesian global coordinate system. The stress transformation tensor, T, is
given by

_ cosy siny
T= ) o

-siny cosy

and the stress dyadic, 5, in the global coordinate system is given by

¥ -T.T.%

(-sind + sin2y cos#) (cosf cos2vy)
f(R) . (8)
(cosf# cos2y) -(sin& + sin2vy cosf)

Finally, the glide and climb forces on the reference dislocation are given

by
- -
EE _ plbe||bel (c050 cosZy) 9)
L 2n(l - v) R ’
- -
EE Mlbtllbrl sinf - sin2y cosﬂ) (10)

L ~ 2a(l - v) R

For the case v + § = a; - ar = 0, expressions (9) and (10) are identical to well
known equations for climb and glide forces of two parallel dislocations. The
total glide and climb forces on the reference dislocation are obtained by a
linear scalar summation of each component over the total number of dislocations.

It is found experimentally that the internal glide and climb velocities of
dislocations are simply proportional to the respective force [16-18]. The
proportionality constants are termed mobilities, which are dependent on tempera-
ture, jog concentration, stacking-fault energy, and irradiation conditions. The
addition of an external shear stress to the system results in another added

component of the glide wvelocity. Once the components of velocities are
calculated in the reference dislocation system, they can easily be converted to
the global coordinate system. An explicit integration over a timestep, At,

determines the global coordinates of the reference dislocation. This procedure
has to be repeated for all interacting dislocations in order to describe the
evolution of the set of dislocations.

Short-range forces are also considered in addition to the elastic long-
range inter-dislocation forces. These forces result in highet order non-linear

reactions and the onset of dislocation clustering. The following dislocation
reactions are accounted for during the simulation: (L) Interaction of dis-
locations with grain boundaries; (2) Immobilization reactions due to equilib-
rium long-range elastic fields, precipitates, or attractive junction

formation; (3) Dislocation annihilation; (4) Dislocation dipole formation.
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Production of new dislocations by the Frank-Reed or Bardeen-H
isms will be included in future simulations. It is to be emphasi
short-range interaction forces are treated at a basic level, the
of dislocation dynamics are still revealed by the simulations.
order non-linear reactions, which include di'slocation clustering,
natural consequences of the dynamic system evolution.

Disloacations coming in contact with grain boundaries will e
the boundary, where pileups can occur, or are absorbed into o
through the boundary. The rate of absorption is limited by the c
cations into the boundary. Dislocation absorption, or "spreading
the disappearance of long-range stress fields associated with
This process tends to occur in low stacking-fault energy materi
recrystallization is more likely to occur than dynamic recovery.
appears that absorption is not normally characteristic of mater
dislocation cells form. Dislocations are more likely to be tra
boundaries in materials with high stacking-fault energies. Dislod
unable to re-form the grain boundary front and initiate re-crysts
these materials, subgrains are more likely to form, accounting fox
process which is necessary to relieve the high strains produced
In the present simulations, we consider the grain boundary force
the misorientation of two adjoining grains. This misorientatig
stress P dt a point of distance x from the grain boundary on the ot

&

P = 2upne”"

where
¥ = angle of grain misorientation,

n = 2mp|x| /b,

b = normalized distance, Burgers vector.

Amnihilation events are registered if dislocations of oppos
within a critical inter-dislocation distance. The value of this d
‘the order .of 1.6 nm [20], which is about an order of magnitude
average distance of dislocations within the cell boundary. If the
tions come; within a distance that is slightly larger than this crit
dislocation dipole is formed. Attractive dislocation junctions a
form when the Burgers vectors of the two dislocations are not
opposite sign. Finally, a dislocation is immobilized in one of
cases: (1) If it undergoes 30 to 40 position oscillations due to {
stress field; (2) If it encounters an obstacle (i.e., a junction,
group of dislocations).

3. ONE-DIMENSIONAL SIMULATIONS

The basic numerical procedure employed in DD simulation is th
the equations of motion by an explicit central difference formuls
simulations, it is common to employ the leapfrog method of solut
volves the evaluation of the momentum and position equations at di

instead of at the same time, as is standard for MD simulations [21].

tage of this method is that stable solutions are guaranteed wit
choice of |timestep [22]. We will, however, use an explicit integ
with multiple time scales appropriate to the problem. Engquist
have recently shown that average difference approximations to part
tial equations can result in suppression of important oscillat
because of gridding limitations. Explicit particle methods are t
ferred. Imitial sampling and ergodic mixing result in error cancel
explicit integration particle scheme [24]. In addition, implici
schemes for a large number of equations can be more computationally
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If the timesteps chosen for the advancement of one dislocation with respect
to andther is too large, the dislocations can pass over each other in a given
timestep. This is not favorble for simulating dislocation motion because if one
of these dislocations is locked, the approaching dislocation (of the same
Burgers vector) will in reality slow down as it comes in closer. If it is of
the opposite Burgers vector, it will either annihilate or form a dipole.

The timestep chosen for the system must therefore be limited to the minimum
amount| of time it would take two dislocations to experience a reaction, whether
it be‘collision or annihilation. 1If we consider two dislocations of arbitrary
Burgers vectors coming in close vicinity to one another, this timestep can be
expressed by the following condition:

) Arij
At = min ( ) ) (12)
AVij
where Arij = ]ri - rjl and Avij - |vi - j|.

The consequence of this criterion is extremely crucial to the practical
executiion of a DD simulation. The reason for this is that the computation of
the entire system may be unavoidably determined by the interaction of the two
closesit dislocations. This consequence is the potentially unnecessary reduction
of the global timestep, and hence the escalation of computer costs due to the
necessity of rumning for a longer time to achieve a practical simulation. Of
course the reduction in timestep is necessary for limiting the first encounter
of two dislocations, but what happens after that encounter is significantly more
important in the determination of the ensuing timestep.

If the interacting dislocations which determine the timestep are approach-
ing a'stable configuration, then the timestep may be permanently determined by
those two dislocations for the duration of the simulation. Once dislocations
are immobilized however, they are no longer necessary for the determination of
the s@mulation timescale simulation. Therefore, these dislocations may be
tagged and decoupled from the calculation of the timestep but they still
participate in the determination of the forces.

Simulation of a large number of dislocations would produce a distribution
of dislocations in which the density of dislocations decreases farther away from
the obstacle against which the dislocations are piling up. It is observed in
exper%ments [25] that a pileup of no more than 50 to 100 dislocations actually
occurs in one dimension. If the dislocations are placed uniformly on a line and
a stress is applied in the direction of an obstacle, the group of dislocations
will undergo a dynamic compression. Our results are shown in figure 2 for 50
dislocations. As time proceeds, the pileup shows a progressive concentration of
dislodations toward the obstacle, as is expected from the physics. Comparisons
between the results of the dynamic simulation of 100 dislocations against an
obstagle show good agreement with analytical solutions for the equilibrium
distribution [26].

Figure 3 shows the evolution of the trajectories of the first 7 dislo-
cations from the same 50-dislocation pileup. It is seen in figure 3, however,
that the leading dislocation reaches equilibrium early in the simulation. It
would |be practical to de-couple this dislocation from the overall calculation,
as is|donme in MD [27]). It is found that a dislocation equilibrium position is
achieved after 30 to 40 oscillations. A computational criterion of 30 to 40
oscillations is used to immobilize the dislocation. The immobilization tech-
nique |gives an order of magnitude reduction in computing time without loss of
accuracy.



COMPUTER SIMULATION OF DISLOCATION PATTERN 383

1.00 . ° ° TS —eo
€0.75 | . [ ] [ 2 [ ] [ ] e [ ]
thi . ° ° . ° .
6050 i ° ° ° . .
L ® ° . ° ®
E 0.25 | . ° . ° . ™ .o

‘ e ° .o o ® °° 'y ’... o"
 0.00 B—a - © Sa. e

6.80 6.é5 6.§O 6.95
| POSITION ()

\Figuré 2. Time evolution of a 1-D 50-dislocation pileup.
|

o

0.5 1:0 1.5 2.0
TIME (equil)

Figdre 3. Spatial trajectories of the leading 7 dislocations in
a 50-dislocation pileup (immobilization techmique.

©
O

/i =

S0.7

Z

O

= 0.4

%

O

a

0] - ,
|

|
4. TWO-DIMENSIONAL SIMULATIONS

A computer code, DISLOCAL, is being developed for the dynamic simulation of
mobile disﬂocations. DISLOCAL also keeps track of short-range dislocation

reactions. | Separate vectors are assigned for the positions of immobile dislo-
cations, dislocation dipoles, attractive junctions, clusters, and precipitate
obstacles.‘ Only mobile dislocations have additional velocity vectors.

At eadh timestep, the forces due to all obstacles upon each mobile dislo-
cation are [summed up. If two dislocations are close enough to form a dipole or
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an obstacle, or amnihilate, these dislocations are tagged and decoupled from the
ensuiﬁg timestep calculation. Once all of the dislocation reactions have been
compiled, the timestep criterion [equation (12)] is invoked upon all remaining
mobile dislocations, and dislocations which have undergone reactions are removed
from the mobile dislocation pool.

An additional constraint on the timestep criterion is that if two disloca-
tions are causing a reduction in timestep over a significant period of time,
these dislocations are removed from the mobile pool and the timestep is reset.
This method of dynamic timestepping ensures that dislocation reactions do not
significantly control the overall dynamics of the system.

Immobilization is a process included in the 2-D description in which mobile
dislocations, which are nearly at equilibrium, are fixed and added to an immo-
bile dislocation pool. The criterion for determining sufficient stability for
immobilization is based upon the results for the 1-D simulation. Therefore,
mobile dislocations for which a change of velocity vector is detected are
observed for glide motion in opposite directions. If the total number of changes
in direction is large within 40 timesteps, the dislocation is immobilized.

Savings in the total computational time (CPU and storage I/0 requests) can
be achieved by using the multiple timestep (MTS) method {28]. In this method,
we represent the total force on a dislocation, i, as the sum of two components:
a primary component (Pj) and a secondary component (Sj). The total.force is
given as the linear sum of the two, thus

(i)
Ftot = Pi + Si . (13)
The primary force is taken as that resulting from dislocations within a short
distance from the reference dislocation. The number of dislocations in this
primary region is variable; however, force computations are performed every
timestep. Beyond this primary region, the aggregate force due to all other
dislocations is calculated at a lower frequency than every timestep. During
intervening timesteps, the secondary force can be estimated by a Taylor series
expansion:

$_(t)(mAt)?2

. i
S;(t + mAt) = S (t) + S, (E)mAL + ———F5—— + ... . (14)

Results of dislocation simulations, considering only the long-range elastic
field, indicate that the multiple timestep is beneficial when the total number
of dislocations is large and when the number of dislocations in the primary
region is a small fraction of the total.

Figure 4 shows the CPU time in the MTS method relative to direct calcula-
tions as a function of the fraction of dislocations in the primary region. The
simulation contained 1000 dislocations. Also, the average relative error in
force calculations is shown in the same figure. It is shown that the extra com-
putations associated with the secondary force outweigh the benefit gained from
the MTS method when the number of dislocations in the primary region exceeds
100. An optimal number of 40 results in an error on the order of 10% in force
calculations.
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Figure 4. Relative error and CPU time as functions of the
fraction of dislocations in the primary region.

Results of a simulation of this type are summarized in figure 5, which is a
pictoral representation of a simulation of 50 dislocations over 50 timesteps.
It is seen that dislocations are initially distributed over the entire grain.
Dislocations are designated by the standard upside down "t" symbol, |, which
identifies: the direction of the dislocation and the Burgers vector. After a few
timesteps, two dislocations mnear the top center of figure 5 satisfy the dipole
formation priterion, and are fixed in space as a solid line on the figure. The
symbol "x" is used to mark the dislocation which controls the global timestep
calculations in each timeframe.

After more time has passed, dislocations which are attractive but not of
opposite sign, form junctions (designated by [J ). These dislocations are
removed from the mobile pool and deposited in an obstacle pool of dislocations.
Three such attractive junctions form, and after each one forms the timestep
which previously decreased in value due to junction interactions is increased

over the subsequent iteration (figure 6). This is an example of dynamic time-
stepping, and its effect on the simulation is that non-linear reactions are
removed from the system over a short number of timesteps. The simulation

indicates that clustering is a process which will ultimately lead to a more
efficient use of computer time once it begins to occur.

5. CONCLUSIONS

DisloLation dynamics simulation can be achieved by particle methods.
Unique features of DD are the long-range nature of the elastic interaction field
and the s#rong non-linear short-range dislocation reactions. The long-range
field, which 1is vector and not scalar, results in O(n2) computational
complexityL where n is the number of dislocations.

I
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Two methods which reduce this computational complexity have been applied in
this work. First, the MTS method results in overall savings in computer time.
Secon#, once clustering reactions start to occur, the order of computational
complexity 1is reduced. In 1-D simulations of dislocation pileup, explicit
integration of the EOM is shown to preserve spatial oscillations and is there-
fore preferred over implicit integration schemes. The evolution of the disloca-
tion distribution function for the 1-D pileup shows small amplitude density
fluctuations during the compression phase of the pileup.
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