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The flow of conductive fluids in highly conductive curved pipes is studied analytically in this
paper. The flow is assumed to be steady state, laminar, and fully developed. Coupled
continuity, Navier-Stokes, and appropriate Maxwell equations are solved in toroidal
coordinates. The dimensionless parameters of the problem are Dean number K and Hartmann
number Ha. For low Hartmann numbers [Ha?~ #(1)], the solution is expanded in a power
series of K and Ha?. For intermediate Hartmann numbers [ Ha®~ £ (1000) ], the solution is
expressed as a power series of K. The axial velocity contours are shown to be shifted toward
the outer wall. For low Ha, these contours are nearly circular. The effect of a strong transverse
magnetic field is to enhance the compression of fluid toward the outer wall. The secondary
flow field comprises a symmetric pair of counter-rotating vortices. A strong magnetic field is
found to confine the secondary flow streamlines to a thin layer near the tube wall. The
secondary flow rate in the near-wall boundary layer is increased by the magnetic field. This
increase in flow rate raises the possibility of efficient convective cooling of curved first wall
tubes in magnetic confinement fusion reactors (MFCR).

I. INTRODUCTION

A number of magnetic confinement fusion reactor
(MCFR) concepts have been based on the use of liquid lith-
ium or lithium lead for the dual function of tritium breeding
and cooling of first wall/blanket structures. In these “self-
cooled” concepts, the conducting fluid flows in a strong
magnetic field. The applied magnetic field, which is primar-
ily intended for plasma confinement, introduces significant
body forces that can drastically influence fluid motion. Be-
cause of the nature of plasma confinement in a torus, the
fluid can be circulated toroidally or poloidally around the
plasma. The result is that we are faced with a conducting
fluid flowing in a curved pipe in the presence of an imposed
magnetic field. If the imposed magnetic field is parallel to the
flow, no magnetic body force arises. However, when the im-
posed magnetic field is transverse to the flow, the effects of
induced magnetic body forces must be considered.!

A proper understanding of fluid flow in a fusion reactor
involves the solution of magnetohydrodynamic (MHD)
equations. These equations in fluid flow are basically the
fluid continuity, the Navier-Stokes, and the appropriate
Mazxwell equations. To date no numerical code exists that
can solve such MHD equations in three dimensions in their
most general form. In complex geometries, two-dimensional
numerical solutions? are also difficult. In this paper, we pre-
sent analytical approximations to the solution of MHD
equations in curved pipes. These approximate solutions shed
light on fluid motion, and can be used for the benchmarking
of more general numerical solutions.

Many fusion blanket designs, especially in tokamaks,
have complicated flow patterns and straight or curved duct
analysis may not be adequate. However, in tandem mirror or
reversed field pinch designs, circular curved ducts have been
proposed (e.g., the MARS design in Ref. 3).

Flow in curved pipes with no magnetic field is reviewed
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by Berger et al.* As early as 1928, Dean® presented an analy-
tical series solution to the fully developed flow of noncon-
ducting fluids in curved pipes of small curvatures. The solu-
tion was given in terms of the Dean number K which is
defined as the ratio of the square root of the product of the
inertia and centrifugal forces to the viscous force. Since cen-
trifugal forces and their interaction with viscous forces in-
duce secondary flows, X is a measure of the magnitude of the
secondary flow. The Navier-Stokes equation in curved pipes
has been solved numerically by McConalogue and Srivas-
tava® for intermediate Dean numbers, and by Collins and
Dennis’ for high Dean numbers.

The effects of the magnetic field on fluid flow have been
studied primarily for straight pipes.®!" The pressure gradi-
ent of the laminar flow regime depends upon three param-
eters: (1) the ratio of magnetic body force to viscous force
(Hartmann number, Ha); (2) the ratio of magnetic body
force to inertia force (interaction number, N); and (3) the
ratio of the wall to liquid flow conductivity (conductance
ratio, ¢). Shercliff ® solved the problem of flow in circular
pipes under transverse magnetic fields in an approximate
manner for large Hartmann numbers assuming walls of zero
and small conductivity. The effect of wall conductivity was
also studied by Chang and Lundgren.® Pressure drop in thin-
walled circular straight ducts was studied by Holroyd and
Walker,'® neglecting the inertial effects and induced mag-
netic field. Recently, Walker developed solutions to MHD
flow equations by asymptotic analysis for circular straight
ducts under strong transverse magnetic fields.!! In the pres-
ent work we consider the flow of conductive fluids in highly
conductive curved pipes with low [Ha?~#(1)] and inter-
mediate [ Ha?~ ¢ (1000) ] Hartmann numbers.

Il. PROBLEM FORMULATION

Considering steady-state laminar flow in a curved pipe,
we introduce the toroidal coordinate system (#',a,68) shown
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in Fig. 1. Here, ' denotes the distance from the center of the
circular cross section of the pipe, a the angle between the
radius vector and the plane of symmetry, and 6 the angular
distance of the cross section from the entry of the pipe. The
corresponding velocity components are (u',v",w').

A. Governing equations
The basic equations for steady-state laminar flow are
Continuity: Vv’ =0,
Momentum: (v-V)y' = — (1/p)Vp’

+ vV + (1/p)J' X B,
where p is the fluid density and v is its kinematic viscosity.
The last term on the right-hand side of the above equation,
J X B, is the body force introduced by the magnetic field. By
Ohm’s law we have

J=0,(E +VXB), (1)
where the convectional electric current is neglected and o, is
the fluid conductivity. The electric field E’ is related to the
conductance ratio ¢ as

E~1/(1+4¢).

For a highly conducting wall, E’ can be assumed to be zero.’
Neglecting the force introduced by E’, the magnetic field
body force is written as

JI'XB =0, (vVXB XB').
Thus the momentum equation is
(V' VIV = (= 1/p)Vp' + vV
+ (0./p) (v"XB'XB').

From Maxwell’s equations, and using Eq. (1), the in-
duction equation is written as

9B _ o (vXB) —vx[( 1 )vx( 1 )B’]. 2)

2

ar o, Ke
Since

VXVXB =V(V-B') — V°B’, 3
and

V-B' =0, 4)

FIG. 1. Toroidal coordinate system (7,a,8).
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Egs. (2)-(4) yield, at steady state, the induction equation,
which is given by

VX (VXB') + (1/0,u,)V?B' = 0.

B. Toroidal coordinates
Let us define the following nondimensional variables:
r=r'/a, s=R0/a,
8=a/R, p=p/(pw*), B(B.B°B° =B'/B,,
where B, is the applied transverse magnetic field, wis a char-

acteristic average axial flow velocity, and we introduce a
scaling transformation as follows:

(wo,w) — (8u,6v,6~*w),

(B r,B ayB 0) i (B rrB a,51/ZB 0),

s=RO/a=56""1.
The scaling transformations of velocities are different from
those employed in the work of Berger et al.* The motivation
behind this specific scaling transformation stems from the
coupling of the induction equation and the Navier-Stokes

equation. With this scaling, the governing equations [(1)-
(4)] take the following form:

v(up,w) =v'/w,

u,+u(1+26rc°sa)+v—"— S(sin a)v +&=O,
rh r h h
(5)
vu, | wu, (cos a)w?
, +—
ut, + r h r h
P, 1 [5sma 1 8)( v ua)
= - +—— —— ) +=——=
5 O6Re h r da 3 r r
+i(5uz__u_1r__600saw)]
dz \h? h h?
Ha2 -] r ] a a r
+—[B®wB"—6uB®) —B*(uB*—vB")],
S Re
(6)
v wy, i 2
v, + 2% 4 +£g (sin a)w
r h r h
_ _Pa L(i Qﬁ‘i‘.)( 2_“_a)
- 62r+5Re 8r+ h v'+r r
a(avz w, 5Sina )]
N AVERr T
Haz r a r 6 ] a
+—[B"(uB®*—vB") —B°(6vB° — wB*)],
& Re
N
v .
uw, + W, +wwz +6(cosa)uw_6(s1na)vw
r h h h
P, 1 [(a 1)( 8 cos a 6u,)
= "o TRl TN\ YT

+_@_(_uia__6sinaw_5vz)]
da \ P rh rh

Ha2 a ] a r r e
+ [B*(6vB° — wB*) — B (wB" — 8uB%)],
d Re
¢
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d(sin a)
h
+i(B"ua +uB% —vB., —B'v,)
r

(vVB” —uB*?)

——% (B'w, + wB — 6B%, — 6uB?)

+;[£5(£_M_B_f)
SRm ldz \A? h? h
a B;
+(6s‘““—ii)(3':+3—— )]=0, 9)
h r da r r
Seosa) (,pr_ gy

h
+711— (6B°, + 6vB? — B°w, —wB?)

—(B°, +uB?—B"v, —vB)

otal 2
SRm Loz h2 h2 rh
a BT
+(6cosa+_a_)(B +_l_3__ a)]=()’ (10)
h ar r r

i(wB’—éuB”) + (B'w, +wB’ — 5B%, — 6uB?)
r

_L (6B%, + 6vBY —B°w, —wB*%)
,

_L[_i(ﬂ_M_E)
Rm Lda \ 2 rh rh

d , 1\ 6(cosa)B"_B;)]_
(2 r)(B,+——-—h )| =0, ()
where & = 1 4 87 cos a. The subscripts denote derivatives
and the nondimensional parameters are defined as Re
=wa/v, Ha’ = 0B2a*/(pv), Rm = o, u,ia.

For fully developed flow, the velocity field is indepen-
dent of z and Eq. (8) shows that the pressure gradient P, is
independent of z. The major component of the pressure P is
provided by fluid motion in the axial direction and the sec-
ondary flows introduce small contributions to this compo-
nent. Thus for 6 €1 the total pressure may be written as

P=P,(z) + &P, (ra) + -, (12)

and P, = - Gz, where G is a constant.

For the case where the pipe has only slight curvature,
i.e.,, 6 =a/R <1, Eqgs. (5)-(11) can be rewritten using Eq.
(12) as

u Vy
u,+—+—=0, (13)
r r
v2
uu, (cos a)w?
r
v Uy,
O
K [ r da ( r r
Ha 'B® — uB°B* 4 vB'B %), (14)
67 Phys. Fluids, Vol. 31, No. 1, January 1988

w, uy .
w, + — 4 = + (sin a)w?
r

B2
r8a+ ar + r

+ B2 BB« BB BaBYy (15)
ww,
uw, +
"
S LAY
632+K rzw“"‘+ar+ Wr
Ha
aBey B'B’ 16
X + )1, (16)

i(B"‘u,, +uB, —vB, —B'v,)
’

1 1 a( B* B;)]
—_— | ——— B — =0, 17
+5Rm r da r r r an
— (B, +uB?—vB! —B'v,)
3 B,
+——[ (B"+——— )]=O, (18)
or r r

LB +Bw, +wB’ +-L (Bw, +wB*®)
r r

1 [BE (a 1) ]
—|Zoa B°| =0, 19
tra = Ry (19)

where K, the Dean number, is defined as
K =58Re= (a/R)(Wa/v).

This definition of the Dean number is different from that of
Ref. 4 because of the different scaling transformation. The
boundary conditions for Egs. (13)-(19) are, for r = 1

u=v=w=0,
B'=cosa, B*=

(20)

—sina, BY=B=const.

The nondimensional parameters appearing in these
equations are K, Ha, and Rm. The magnetic Reynolds num-
ber Rm is the ratio of the induced current to the net current.

Define a streamfunction for the secondary flow # as

1w W

r da’ or

and a magnetic potential 4 as
1 aA Be— 6A
r 5a ar

Equation (13) is satisfied and Eqs. (14)—(19), after substi-
tution and cross differentiation of Eqs. (14) and (15) and
elimination of the pressure, yield

b

B = (21)

V%w+C = (K/r)(¢awr —'¢rwa)
+ KN {w[(B")*+ (B*)*]}, (22)
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1 1 d a
—V4 _( r - a—)v2
X 1¢+r ¥, 3 ( o ¥
=—2w(s1na wr_l_cosa a)
r
a ap 6 rpr
+N[(— )(wBB +¢,B'B")
ar

—wB’B9+¢,B'B“+—1—¢aB“B")] ,
r

(23)
(}B“zﬁm +L 9,82 +9, B, +B'¢m)
+_1-(_"_ V24 ) 0, (24)
da

1
(——-B% +L1Bey, + LBy, +BY, +B:¢,)
r r r

1 (2
_— V2A> 25
+Km(8 (25)
—B’+Bw + wB’ + (B w, +wB%)
——(V2B?%) =0, 26
+Rm( 1 ) (26)
where
a? 14 1 9*
Vie— g —————,
T ar + rdr P da?

and N = Ha?/K is the modified magnetic interaction param-
eter, Km = § Rm and C = G Re. The boundary conditions
at r = 1 are given by

w=0, ¢,=0, ¢,=0,

A, =sina,

(27a)

A, =cosa, B°=B=const. (27b)

Equations (22)-(26), together with boundary condi-
tions (27), describe completely the problem for the fully
developed flow through a loosely coiled pipe.

I1i. SOLUTION
A. Low Hartmann number

In some fusion reactor applications [e.g.,, UWMAK-III
(Ref. 2) ], the magnetic Reynolds number, Rm, is very small
[£(107%)]. For Rm«]1, Egs. (24)-(26) may be approxi-
mated as

(28)
(29)

V24 ~const,
V2B °=0.

With boundary conditions (27b), Eq. (28) will result in
A = rsin @ which gives [see Eq. (21)] B"=cos @ and B*
= — sin a. Equation (29), using the boundary condition
(20), gives B? = B. Substituting the above results in Egs.
(22) and (23), we get

Viw+C=

(30)

K/r)y(Y,w, — ¢w,) + KNw,
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_V4¢+

R (=~ 20

= —2w([sina w, + (cos a/r)w, ]

+N[(2+

: (-
_— ——| —B
ra(smacosa ¥,) e cosa w

)(cos a Y, —Bsina w)

—sin @ cos @ ¢,+—1—sin2a ¢a)] . (31)
r

The above equations with boundary conditions (27a) can be

solved for w and ¢.

Equations (30) and (31) have been solved numerically
for the case of no magnetic field, N = 0, by McConalogue
and Srivastava® for small and intermediate values of the
Dean number, and by Collins and Dennis’ for large Dean
numbers.

For small values of the Dean number, Dean? solved ana-
lytically Egs. (30) and (31) for the case of no magnetic field.
He expanded the solution in a power series of the Dean num-
ber, i.e.,

w=§"0K2nw,,(r,a), ¢=Kn20[(2n¢n(r,a), (32)

The objective of this work is to find an analytic solution
for Egs. (30) and (31), for small values of the Dean number.
By doing so, the solution is expanded in a similar way to that
seen in Eq. (32), but in two parameters K and W, i.e.,

©Q o

W= Wyy + z 2 K'N’w,l, (33)
i=1/=0
Y= z EK‘NWU (34)

i=1jj=

Substituting the above series solutions in Egs. (30) and
(31) and equating the like power terms yield the weighting
functions w,; and ¢;;, which are given in the Appendix.

The onglnal Dean solution was expanded in the param-
eter K, defined as

K =25(Re)2

The size of the coefficients in the Dean solution indicate that
the series solution is valid for values of X up to K = 576.
The analytic solutions in the form of Egs. (33) and (34)
are even more restricted to the values of Ha of order unity.
Thus this solution is not applicable in practical conditions
where the Ha number is large (e.g., in magnetic fusion reac-
tors). In the next section, we present another expansion
which is valid in the intermediate Hartmann number range.

B. Intermediate Hartmann number

In the last section, the solution of the governing equa-
tions assumed a series solution defined by Egs. (33) and
(34). The zeroth order of this solution, tw, is the axial ve-
locity in a straight pipe, i.e., Poiseuille flow. The higher or-
ders then show the effects of the curvature and magnetic
body force. This solution, as mentioned above, is valid for
the Hartmann number of order unity.

For the case of the intermediate Hartmann number, the
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solution may be cast in a form in which the zeroth order
reveals the flow in a straight pipe in a magnetic field. The
effect of curvature will appear in higher-order solutions.
These series solutions are defined as

w=w,+ i K'w;,

j=1
Y= E K j¢j-
j=1
The governing equations [ (30) and (31)] are written in a
more convenient form:

(Vi —Ha)w= — C+ (K/r)(Yw, — Yw,),
4 !S( 9 _ i) 2
V1¢+ ’ ¢r aa ¢a ar Vl¢

= —2Kw[sina w, + (cos a/r)w, ]

+ HaZ[(i+i)(¢,B'B y+L9 (4 BB
da r r or

(35

(36)

+ii(.1_¢a3a3a+¢,3'3')] :
ror\r

Upon substituting the series solutions (35) and (36) into the
above equations and equating the like power terms, the dif-
ferential equation for the leading order solution is

(V2 —Ha®)w,= — C,
which yields the zeroth-order solutions as

wy = C2 (1 _ Iy(Har) ) ,

Ha I,(Ha)

where I, is the zeroth-order modified Bessel function.

The above solution for w, in the limit when Ha—0 is

we=(C/4)(1 —r?),

which is the Poiseuille flow solution. Here, w, is rescaled
with respect to the mean velocity and written as

_ I,(Ha) — I,(Har)
I,(Ha) — (2/Ha)I,(Ha) ’

(37)

Wo

where 1, is the first-order modified Bessel function. Calcula-
tions based on Eq. (37) give the zeroth-order velocity pro-
file, which has the well established characteristics for MHD
flow in straight ducts.

The higher-order solutions for the velocity and second-
ary flow streamline which reveal the curvature effects are

¥, = Psin a( i (C — C,?’)(Har)”‘“), (38)
k=0

and
Pcosa >
w, = (e(l)_e(Z))
>" I,(Ha) — (2/Ha)I,(Ha) kzq koo
2k +1
x(———Ha Li(Har) g, py2es ‘), (39)
I,(Har)
where
P=2Ha[l,(Ha) — (2/Ha)I,(Ha)] ™2,
bV = 1I,(Ha) )
2X+ 1k + 1))
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1
b(2)= ,
, ,Z'o 22+ 1INk — Ik — 1 + 1)}
co= 5 LHDb
n=0 f(n)

= (n+2)b

Ha™+4, j=12,

C’g]) _ Ha2"+2, j= 1,2’
n=0 f(n)
Cll.=bi/flk), j=12,
© C;J)

d(j)= ’ .=1’2’
, IZ’O 2D+ Dl(k—141)! J

e§? =0, j=1.2,
d;cj)+e§cj)

T 4k+1)(k+2)

Sk) =192 + 448k + 368k > + 128k 3 + 16k *.

()]
€rr1

s j=1y2;

IV. RESULTS AND CONCLUSIONS

The present analytical solution is valid over a limited
range of parameters [up to Ha’~#(1000) and Rm
~@(107%)]. However, in many fusion reactor applica-
tions, both the Hartmann and Reynolds magnetic numbers
can exceed these limitations. The results presented in this
section are indicative of expected behavior, particularly for
the secondary flow, although numerical work may be re-
quired to extend the range of application.

The axial velocity contours for the low Hartmann num-
ber (Ha? = 1) and a Dean number (K = 96) are shown in
Fig. 2(a). A relative convergence criterion of 107> was
adopted to evaluate the velocity contours using the infinite
series [Eqgs. (38) and (39)]. The number of terms to achieve
this criterion was found to be between 2 (low Hartmann
numbers) and 20 (intermediate Hartmann numbers). The
contours are nearly circular and are eccentric with their
centers shifted toward the outer wall of the tube. The second-
ary flow streamlines for the same case are shown in Fig.
2(b). The results are very similar to Dean’s solution,’ show-
ing a small effect of the magnetic body forces on the nature of
the secondary flow.

At intermediate values of the Hartmann number and
the same Dean number, the axial velocity contours are dis-
torted in a nonaxisymmetric fashion as shown in Fig. 3(a).
The effect of the transverse magnetic field is to enhance the
compression of fluid towards the outer wall. The conven-
tionally symmetric Hartmann layer for fluid flow in a
straight pipe is now quite asymmetric with respect to the
pipe’s toroidal center. Figure 3(b) shows the corresponding
streamlines for the induced secondary flow at Ha? = 1024
and the same Dean number. It is interesting to note the ef-
fects of the magnetic field on the secondary flow field by
comparing Figs. 2(b) and 3(b) when the same streamline
contours are represented. The secondary flow field com-
prises the usual symmetric pair of counter-rotating vortices.
The transverse magnetic field does not inhibit vortex forma-
tion, as one might intuitively think. One interesting effect of
the magnetic field is that the flow streamlines are confined to
a thin layer near the tube wall. The secondary flow rate in the
near-wall boundary layer is increased by the magnetic field.
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This phenomenon may have significant implications on con- wy=4(=3+47—1), (A4)

vective heat transport in curved pipes used in the first walls _ 2

and blankets of fusion reactors. w,, = (B cos a/48°)f;, (AS)
wy, = 1/(2"3-3%-52-7) (14 f; cos a + f;o cos® a
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- 19,
APPENDIX: WEIGHTING FUNCTIONS w3 = 1/ (279 (A9)
The approximate solutions for the velocity and second- Yro= (sTn a/288)/, (A10)
ary flow streamlines are in a series form [Eqgs. (31) and P30 = (sina cos a)/(2'*-3*-52-7)f,, (A1l)
(32)]. The weighting functions for these solutions, namely ¥, = (Bsin a/96)f,, (A12)
w;; and ¥, ;, are listed below. All functions not listed below in 1
are equal to zero: Yo =—nl ft
21045 7° 7 21375
Woo = 1-— ’.2’ (Al) : 2 in3
0 = (008 @/ 2 45)S, (A) X ( f5 sin @ cos® @ + fi sin” a), (A13)
i 1/(218-36.52 722;( 20 foo +sin @ fi5) Y5 = (Bsina cos @)/ (2-3*-5%-7)f,,, (A14)
Wao = +36-52-7%) (cos? sin? e fis), .
40 # *7 (A3) ¥ =B/(2'°45)(10 fyysina
W/W = 000

0.25
0.50
075
(Xele]

FIG. 2. (a) Axial velocity contours and (b) secondary flow streamlines, for FIG. 3. (a) Axial velocity contours and (b) secondary flow streamlines, for
the low Hartmann number (Ha? = 1). the intermediate Hartmann number (Ha? = 1024).
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+ f;s sin @ cos® a + f,¢ sin® ), (A15)

. 5 .
U= SRE foot T f
+ —————214.331.52.7 ( f5, Sin @ cos® @ + f53 sin® @)
1 . 4
+—217—.3§?7(f2451nacos a
+ f>s5 sin® @ cos® @ + fo sin’ ), (A16)
Y33 =€%% Sas + "“——215_1;.5
X ( fyo sin @ cos® @ + f5 sin® )
+ '2?3'%7 ( f3, sin @ cos* a
+ f3, 5in’ @ cos? a + f;; sin’ @), (A17)
where f; (r) functions are
fi=4r—97 4 6r —r', (A18)
£, =197 — 407 4 307 — 10r" 4 7°, (A19)
[ = 49797 — 12 7507 + 11 340r° — 44807°
+ 1050° — 14472 4 5714, (A20)
fi=r—2°7 47, (A21)
fs=3r—6r+4r —r, (A22)
fo= —247r + 576r° — 420° + 100" — 97°,  (A23)
o= —39r+ 1447 — 1807 + 847" — 97°, (A24)
fo= —39r+ 887 — 607° + 12¢" — 7%, (A25)
fo= — 3056r + 66757° — 54807° + 225077
— 420/ + 3111, (A26)
fi0= — 602r 4+ 1665 — 19257° + 1155+
— 3157 + 22¢11, (A27)
fil = — 6027 + 4657 + 101575 — 1365/
+ 5257° — 381, (A28)
fip = 311177 — 74507 + ST75¢°
— 16807° + 280r'° — 3672, (A29)
S1s =19 =272+ 9 — 15, (A30)
fiu= —10r+21° —12F° + 7/, (A31)
s= —Sr+ 177 —197° 4+ 77, (A32)
fie= —5r+11°P =77 + 7, (A33)
fiy= — 1787 + 375 — 285/° + 1007 — 12/°,
(A34)
fio= — 1357 4 3577 — 385/° + 208" — 45/,
(A35)
fio = — 1357 4+ 1297° + 1557° — 22477 + 75/,

(A36)
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fao = 4037r — 95807° + 7300/° — 202577

+285° — 177, (A37)
Jfor = 1777 — 36r* + 200° — ', (A38)
o2 = 41797 — 15 7957 4 20 430r° — 10 2907’

+ 1575/° — 997", (A39)
fos = 41797 — 9505/ + 66307° — 147077

+ 175¢° — 9", (A40)
Jfra = 10087 — 51707 + 90107° — 6685r7

+ 19807° — 143r11, (A41)
fos = 20167 — 74607 + 9820F° — 539077

+ 10807 — 667!, (A42)

fre = 1008r — 22907 + 16107° — 385¢" 4 607° — 37",

(A43)
frr= — 211 + 30472 — 1087* + 1675 — /%, (A44)
fop = 1437 — 3047 4 1807° — 20" + 7, (A45)
Fro = 997 — 3487 + 4087° — 1687 + 97, (A46)
Fro= 997 — 220 + 144° — 247" + /°, (A47)
for = 3857 — 18767 + 30927° — 209617 + 4951°,

(A48)
foa = T70r — 27447 + 34487° — 17447 + 270/°,

(A49)
fis = 3857 — 8687 + 596r° — 128" + 15/°,  (AS50)

fia= — 259497 + 1632020 — 3 691212/
14322 43075 — 2 999 682/ + 1287 132*°

— 344908712 4 46 24271 — 252575,  (AS1)
fis = — 259497 + 1 049 2607* — 2 147 628+

+2 663 0107° — 2 018 8987° + 928 452r'°

— 247212F'2 + 343987 — 1885F'S,  (A52)
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