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Solutions for thermal stress singularities in finite bonded strips are sought by using
an eigenfunction expansion in the neighborhood of the singulariry. The coefficients
in the resulting series are determined by satisfying the boundary conditions on sur-
Jaces far removed from the singularity either pointwise or in an integrated sense.
The latter of these techniques is found to be more reliable. The accuracy of the
solution is checked by comparing it to a semianalytical solution for thermal stresses
in bonded quarter planes, which is derived by using the Mellin transformation. It
is shown that the eigenfunction approach provides accurate solutions for the leading
term in the series, thus capturing the essence of the thermal stress fields near the
edge of the interface. The far-field solutions, however, are found 10 feature excessive
inaccuracies, which are attributed 10 numerical errors.

INTRODUCTION

[Bonded joints are of interest in many engineering disciplines, including electronics,
lacrospace, and fusion energy. Because of surface and bulk heating associated with
tthe fabrication and operation of such components, thermal stresses are nearly always
lencountered, so efforts to understand the details of the resultant fields is important.
‘A common technique for the analysis of bonded structures utilizes variational prin-
jcip]es to minimize the complementary potential energy of the structure, based on
isome assumed displacement profile. This work began with Weitsmann [1], who in-
icluded an adhesive layer between the two primary layers. The displacements were
'assumed to be quadratic and/or cubic polynomials, and the shear and normal stresses
lwere found to peak at the interface edge. Similar work has been conducted by Chen,
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Cheng, and Gerhardt [2], and H. E. Williams [3]. Williams considered thin layers
by using matched asymptotic expansions for the displacement fields, giving a bound-
ary layer with a width of the order of V1/1 (where 1/l is the thickness-to-length ratio
of the model) at the interface edge. These variational methods require a great deal
of algebra for ﬁven the simplest geometries and offer little advantage over numerical
results from ¢ ercial finite-element codes, which are also based on potential min-
imization and ¢an analyze many geometries and loadings. Unfortunately, neither of
these| two methods has treated the edge singularities predicted by infinitesimal elas-
ticity

Many authors have studied stress singularities in bonded structures. Williams [4)
studied stresses at the base of a crack by using an assumed solution for the stress
function that is of the form (using the notation adopted for this paper) ®(r, 8; 5) =
r~'F(8; s). This led to a solution that consisted of an expansion in terms of the
eigenfunctions rof the problem. Square root singularities were found in the stress
fields at the tiﬂ of the crack. Applying a related technigue to duplex models, Bogy
{5,6] used the Mellin transformation to calculate the asymptotic solutions for stresses
near the edge of the interface. He considered a model consisting of two perfectly
bond%g quarter planes, and the singularity was found to be material dependent (as
opposed to the simple. geometry dependence associated with typical crack singular-
ities), and, in rﬁost cases, of the order of r™%, where 5 lies between 0 and 0.40. For
certain other material parameter combinations, though, the singularity was shown to
be eit.;ter logarithmic or nonexistent. Wang and Choi [7] have made a similar study
of crack-free singularities in anisotropic materials. Whereas Bogy only considered
half spaces, Wang and Choi studied singularities in finite bodies by using boundary
collocation techniques. This work follows earlier work by Fadle [8], who considered
double eigenfunction expansions for the analysis of rectangular bodies. One set of
the coefficients in the expansion was found by minimizing the errors on the boundary

ods has been studied by Bauld and Goree [9] and Whitcomb and Raju [10}. Bauld
and Goaree compared finite-element and finite-difference methods and concluded that
the ﬁn{te-diffe nce method is superior because it “characterizes the stress distri-

in the [least square sense.
In|addition to these analytical and semianalytical methods, a number of analyses
have %en condycted by using standard finite elements. The reliability of these meth-

butions near an linterface comer in a more realistic manner.” Whitcomb and Raju
reviewed the use of finite-element methods for analysis of bonded structures and
found Jhat standard finite elements are accurate to within two or three elements of
the edge of the interface, regardless of the element size, indicating that these methods
are useful for global solutions, but they do not accurately predict the near-edge fields.
Hence, special elements must be used.

Fi
tures/

ally, there are numerous studies of stress singularities in composite struc-
aterials, typified by the work of Pagano and Soni {11]. These structures fea-

ture many very thin layers of orthotropic materials, generally built up from fibers
embedded in a resin matrix. Techniques for analyzing such structures are not gen-
erally applicable in the case of relatively few thick layers, because of the approxi-
mations needed to handle the complex material constitutive equations, the numerous
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layers generally used in such designs, and the very small thickness of the layers.
However, the local fields are quite similar.

In this paper, singular thermal stress fields in finite bonded structures are sought
with the use of eigenfunctions that satisfy the interface and near-edge boundary con-~
ditions. These functions are then combined with a particular solution for uniform
thermal fields to obtain a composite solution in the form of an infinite series with
unknown coefficients. The coefficients are then determined by satisfying an integral
form of the far-field boundary conditions both pointwise and in a least squares sense.
The objective of this paper is to show the applicability of these techniques to the
determination of singular stress fields in finite bonded strips. Thus, the results should
be useful in developing failure criteria in the vicinity of the edge of a bonded struc-

ture under thermal loading.

PROBLEM DESCRIPTION

The problem to be studied in this paper consists of two equal length, perfectly bonded
strips that have different material properties, as shown in Fig. 1. The properties of
the upper strip are denoted by a double prime (e.g., p", "), while those of the lower
strip are denoted by a single prime. The interface is assumed to be perfect, with no
slipping, delamination, or cracking, and the strips are assumed to be in a state of
plane stress or plane strain. Because the strips are assumed to be crack-free, the
analysis presented here represents a study of the initiation of failure at the edge of
the interface of a laminated structure. In bodies (either single- or multi-layered) con-
taining cracks, linear elastic fracture mechanics predicts a stress field of the form

K

- o5+ B

r—0 (1)

g

at the tip of the crack, where r is the distance from the crack tip. (The imaginary
part B of the order of the singularity is zero for single-material cracks.) The stress
intensity factor K is considered to be a measure of the intensity of the stress sin-
gularity and has been shown experimentally to be a useful predictor of crack growth.

4
YL E", v, a” —t'-'
- X

E'Y v, a t

Fig. 1 Model used for analysis of singular stress fields in finite bodies.
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As will be sh(?wn in the following section, the stress field in a crack-free, bonded
structure is generally of the form

r—0 2)

where 0 < & < 0.41. Therefore, crack-free, bonded components exhibit a relatively
we singulanjly analogous to that for the stress field near a crack tip. It is suggested
that the initiation of failure in bonded structures can be predicted by the “stress
inten%ity” assogiated with the edge of a perfect interface, making knowledge of the
characteristics of such stress fields vital to the design of bonded structures. There-
fore, |characterjzation of the near-edge stress fields in crack-free structures is im-
portant. Experimental correlations will be necessary to establish relationships be-
tween edge deiamination failure and the character of the near-edge stress fields in
bonded strips.

GENERAL SINGULAR STRESS FIELDS

The stresses at the edge of the interface between two materials can be sought by
considering bonded semi-infinite quarter planes [5). The model used for this purpose
is shown in Fig. 2. Using the Airy stress function, one can determine a stress field
that satisfies the field equations in the bulk, the interface conditions, and the traction
conditions on the free surfaces adjacent to the interface. This yields an infinite series
with yndetermined coefficients, which are to be determined by considering the finite
extent of the 01Jp'ginal mode! shown in Fig. 1.

free /
surfaces

he T
u, v, a

Fig. 2 Model for semi-infinite quarter planes to determine stresses at the edge of the interface.
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The analysis begins with the two-dimensional, steady state, elastic field equa-
tions in polar coordinates (assuming no body forces are present), along with the
traction-free boundary conditions and the assumed interface conditions:

acrr  ‘ree, bonded

e e e e -

e ' Strain-displacement
Iy
|t
's exhibit a relatively o € = Hrr (3)
:k tip. It is suggested ’ v u
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ree structures is im- 171 Ug
. =-}|- + —_—
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-edge stress fields in
: Stress-strain
i
o, = 2ue, + Ay, — (2u + 3X)aT (6)
Ogo = 21L€g9 + A€y — (2 + 3X)aT (7)
Is can be sought by
used for this purpose T,5 = 2u€,4 (8)
‘ermine a stress field
ons, and the traction Equilibrium
:lds an infinite series
>onsidering the finite o + e I 9 (9)
rr.r r r
o o,
22t 0, +2—=0 (10)
r r

e of the interface.

Boundary conditions: (8 = *7/2)
Ogp =

Interface conditions: (8 = 0)

U

0’,9=0

Ml
q
3

;s

(11

(12)

(13)

(14)

(15)

In these equations, o; represents a stress, €; represents a strain, u, and u, represent
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the radial and azimuthal deflections, respectively, and A and u are the Lamé material
constants. AlsA, a is the thermal expansion coefficient, and T is the difference be-
tween the temperature in the component and some zero-stress reference temperature.

o x-eduanl the problem to determination of a scalar function, the Airy stress
function @ is introduced according to the standard definition:

1 1 .
==, +5P 16
g, r rz .60 ( )
o =0, an
1 1
O = _quG - ®.r8 (18)
r r

Combining these equations with the strain-displacement and stress-strain equations,
the |displacements are found to be

111 1 m\_.
u,=_— —(b.l+ —Z(D‘GO_ (l _—)V—q) + naT (19)
2ulr r 4
an
ug 1 1 /1 1
Ug,——+—ug=~—1- Po— -, (20)
r r w\r r
where
_ )J4/(1 +v) for plane stress 20
4(1 — v)  for plane strain
d
_J1 for plane stress
"= {(l + v) for plane strain 22)

To satisfy the compatibility equation, the stress function must satisfy the fol-
lawing fourth-order partial differential equation (again assuming no body forces):

VP + gEVaT =0 (23)

where g is given by

1 for plane stress 24)
1/(1 — v) for plane strain
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olving for the stress function, subject to the appropriate surface traction and inter-
ce conditions, provides a means for computing the steady state thermal stresses,
strains, and displacements in a planar medium.
In this study, the thermal fields are harmonic (satisfying Fourier's Law of con-
duction for a body in steady state), so the stress function is governed by

V=0 (25)

To reduce this partial differential equation for the Airy stress function to an
ordinary differential equation, the solution is assumed to be of the form

D = rTF(6) (26)

lbnder this transformation, the equation for the stress function (Eq. (25)) becomes

d2 2 d2 2
Ez‘*'s d02+(s+2) F=0 (27)
Also, the stresses are given by
d‘l
g, = (E —_ S)Fr—(s+2) (28)
Ogo = S(s + 1)Fr¢*2 (29)
and
daF _ .,
cr,,=(s+])Er (30)

For s # 0, —2, the general form of the stress function is
F=asins8+bcossf+ csin(s+ 2)0+dcos (s + 2)6 an

where a, b, c, and d are unknown constants.
Given a solution for the stress function in each quarter plane of the model, the
full solution is obtained by using the boundary and interface conditions to determine
e four unknown constants in each strip. This process is begun by rewriting the
stresses and displacements in terms of the unknown constants a, b, ¢, and d. Inserting
. (31) into Eqgs. (28-30), one obtains the following equations for the stresses:

0,, = [—assins0 — bscos s6 — c(s + 4) sin (s + 2)0

— d(s + 4) cos (s + 2)8)(s + 1)r "2
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T = [a sin 56 + b cos 56 + ¢ sin (s + 2)6

+dcos (s + 2)0]s(s + D)r-¢*?
(32)

0o = [ds cos 56 = bs sin 50 + c(s + 2) cos (s + 2)6
—d(s + 2) sin (s + 2)8](s + Dr ¢*?

The displacements can be found by inserting the solution for F into Egs. (19) and
(20), and integrating them. First, though, one requires knowledge of the thermal
field, which is assumed to be constant. This thermal field yields the following dis-

placement fields:

—(s+1)

U, & Upcos 8 + vy sin 68 + naTyr + [sa sin s8 + sb cos s0

+ (s + m)csin (s + 2)8 + (s + m)d cos (s + 2)8]
(33)

—{(s+1)

Uy = —Uysin 0 + vy cos 6 + wor — [sa cos s8 — sb sin 56

uw
+(s+2—m)ccos(s+ 2)8+ (s +2— m)dsin (s + 2)6]
where u; and v, represent rigid body displacements in the x and y directions, re-
spectively, and wy represents a rigid body rotation.
By using these equations for the stresses and displacements, the boundary and
interface conditions can be used to determine the eight unknown constants.
Application of the boundary and interface conditions provides the following sys-
tem of eight equations for the unknown constants:
—a'siné+ b cosé+c'sinf—d cosé=0
a'sinf+b'cosf—c"siné—d"cos{=0
'scosé+ b'ssiné—c'(s+2)cosé—d'(s+2)siné=0
a'scos E=b"'ssiné—c"(s+2)cosé+d"(s+2)siné=0 (34)
b'+d —b"—d" =0

sa +(s+2) —sa"—-(s+2)"=0

sb'+ (s + m')d — ksb” — k(s + m")d" = L,

~sa’ —(s+2—mY +ksa" +k(s+2—-—m)" =

where
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where
k=p'/u
§=sm/2 (35)
L = =2u'(n'a'Ty — n"a"Tg)r**?

HOMOGENEOUS SOLUTION

The homogeneous solution of the problem is found by setting the temperature to
zero. A nontrivial solution to this equation exists only if the determinant of the matrix

implied by the above 8 X 8 system is zero. This leads to a characteristic equation
of the form

A(s)=0 (36)

where A is given by

A = [k, — k) cos” (£) — k(s + 1)’]

+ k3 cos® (&) sin® (§) — Ki(s + 1)} (37)

and
ky =2k - 1) (38)
ko=kml' — m' (39)

and
ky=km" + m’' (40)

The values of s corresponding to the roots of the determinant are discussed in the
next section.

Because the strain energy density is proportional to 0,2, it will be proportional
to r 2“*?, Hence, for the total strain energy to be finite, s must be less than —1.
Therefore, our interest lies in roots of the determinant that have real parts less than
—1. In addition, roots that lie in the region —2 < s < —1 lead to singular stress
fields, so they are of particular interest. For all k,, k,, and &; (i.e., for any combi-
nation of materials), s = 0, —1, and —2 are zeroes.

A material-dependent parameter P, defined as

P = ky(2k; — k3) - (4D

determines the existence of roots on the interval —2 < s < —1. As it turns out, this

T I O O T N WPy Wy Ty T
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parameter is proportional to the derivative with respect to s of the determinant A at
s = =2, so it is an indicator of the slope of the determinant at this point. For P >
0, there is exactly one zero on the interval -2 < s < —1, and ilt is a simple zero.
For all admissible values of the material constants (i.e., 0 < v < 3), this zero occurs
betweep —1.59 and —2.0. As P approaches zero, the zero of the determinant moves

closer to s = —2 until, when P = 0, there are no zeroes on —2 < s < —1 and the
zero at|s = —2 becomes a double root. Finally, for P > 0, there are no zeroes on
—2 <5 < —1 and the zero at s = —2 is simple; also, there is a simple zero between
—2.4 and —2.0.

As| was mentioned previously, this paper will deal exclusively with material
combinations that feature algebraic singularities at the edge of the interface (i.e.,
those for which P = k,(2k, — k,) > 0). For these material combinations, the root
at s = |—1 can be shown to represent the two rigid body translations, while the root
at s = —2 represents a rigid body rotation. It is the other roots that contribute to the
stress fields of interest.

In general, the only integer roots of the determinant are at s = —2, —1, and 0,
but for|certain material property combinations, there are other integer roots. If one
assumes an integer solution, the determinant can be written

2
A= {[kl(s + 1) = (k, — k,) cos’ %ﬁ] — k(s + 1)2} 42)

If s is an odd integer (i.e., s = —(2i — 1),i=1,2,3,...,), then cos s7/2 = 0
and the determinant can be written

k, | k
A= —4(i - 1)2k%[2(i -+ k—J [2(1' -1- k—z] (43)

From this equation, one can see that there are odd integer roots of the determinant
if k5 is |an even multiple of %,.

If 5 is an even integer (i.e., s = —2j,j =1, 2,3, ...,), then cos sw/2 = =1
and the determinant can be written

k, | k
A= 4j(j - 1)/&[20— 1) +k—2J[2j——2] (44)

Again, there are additional integer roots when k, is an even multiple of k,. As
an exarpple, consider the case where k, = 8k,. Equation (43) indicates that there is
aroot for i = 5 (s = —9), while Eq. (44) indicates a root at j = 4 (s = —8). These
eigenvalues must be accounted for when solutions for stresses in finite bodies are
sought.

Besides the real roots on the interval —2 < s < 0, there are an infinite number
of complex roots. A typical example of the spectrum of complex roots, determined
numeri¢ally, is shown in Fig. 3. Several observations can be made regarding these
complex roots:
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. They always appear as complex conjugates.

N b

neighbors.

51

. For large negative real part, the real part of one root is about one unit from its

3. For increasing negative real part, the magnitude of the imaginary part increases
much more slowly than the magnitude of the real part.

These complex roots, combined with the real root on the interval —2 < s < —1 (if
one exists), lead to a solution for the stresses and displacements in the form of an

( infinite series.

I Because the problem being considered in this section is homogeneous, a non-
trivial solution exists only when the determinant of the matrix represented by Eq.

(34) vanishes. Therefore, the solution for the eight unknown constants cannot be

fully determined. Only seven of the constants can be determined in terms of the

\ eighth (in this paper a’ will be taken to be the undetermined constant), so the fol-

lowing ratios are defined:

b’ c’ d’
A =1 B'=— C'=— D'=— (45)
a sa sa
‘ and
a’ b’ fon v
A'=— B"=— C'=— D'=— (46)
a a sa sa
3
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260 4 0
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Q 14 00
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~3 4 — ;
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real part

Fig. 3 Roots of determinant for —15 =< s < 0. The number of roots is doubly infinite and the roots are
symmetric about Re(s) = —1.
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Solving the system:in Eq. (34) for these seven constants, one finds
B’ ='{kysnl2s(s + 1) + ¥] + kysnd — kyny(s + 2)}/h
C' = {—kyy[2s(s + 1) + y] = kyyd — kyn’}/h
D' =‘{—k,11[23(s + 1) + y] — kyné — ksnél/h
A" = {~k,s8[2s(s + 1) + y] — k,;58° = ky(s + 2)0°}/h
B" = {—kysnl2s(s + 1) + y] — kssn8 — ksny(s + 2)}/h
C' = {~kyy[2s(s + 1) + y] — ky¥8 + kyn’}/h
D’ = {kinl2s(s + 1) + y] + k,nd — ksnd}/h
where
h= —ks6{2s(s + 1) + y] — kas8” + ky(s + 2)77°
n = —2sin £cos &
y=2[(s + 1) — cos’ £]

8=2[(s + 1) + cos’ £]

47

(48)
(49)
(50)

(51

The quantity h is proportional to the second derivative of the determinant A, so it
is only zero when the determinant has a double root. This case will not be dealt with

in this paper, so one can proceed assuming h # 0.

Now |that seveh of the constants are known in terms of the eighth, the stresses
and displacements can be expressed in terms of the unknown coefficients a,, where

the subscript k represents the k™ eigenvalue:

x

— ~(5:+2)
g; = 2 a,f,-j(k,r

k=1

1 =
u, = kef. k)"_(’””
2u E ’

x

1

—_ —(sx+1)

Ug = akf;,(k)’ '
2u i
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iy = [—A sin 5,8 — B cos 5,0 — (s, + 4)C sin (s, + 2)8
— (s, + 4)D cos (s, + 2)0)su(s, + 1)
Jrowy = [A cos 5,6 — B sin s, 8 + (s, + 2)C cos (s, + 2)8
— (5; + 2)D sin (s, + 2)0)s,(s, + 1)
Joouy = [A sin 5,0 + B cos 5,8 + 5,C sin (s, + 2)8 (55)
+ s;D cos (s, + 2)8su(s + 1)
Sy = [A sin 5,0 + B cos 5,0 + (5, + m)C sin (s, + 2)0
+ (s, + m)D cos (s, + 2)8]s;
Jfusiy = [A cos 5,8 — B sin 5,0 + (s, + 2 — m)C cos (s, + 2)8
+ (5, + 2 — m)D sin (s, + 2)0]s,
Because the complex roots s, appear as complex conjugates, the stresses and dis-

placements in this series are real. It remains to determine the unknown series coef-
ficients for a particular thermal field.

PARTICULAR SOLUTION FOR A UNIFORM
TEMPERATURE CHANGE

For a uniform temperature change and for 2k, — k, # 0, the particular solution is

' ” ’ "

a=d=c=c=0 (56)
and
_2p/(n"a’Tg — n'a’Ty)
2kl - k:

(57)

b! P bl! = dl o d"
By using these constants, the stresses and displacements are found to be
o.,=0

8u'(n"a"Tg— n'a'Ty)

T

2k|_k2
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0, =0 (58)
[ n"a"Th— n'a'Ty N
U, = | —————(m' - 4) + n'a'Ty |x
L 2ky = k,
[ n"a"Ty — n'a'T, , ,
u,=|——————m' +n'a'Ty|y
L 2k, =k,
This partichlar solution consists of a uniform tension or compression (on the surfaces

parallel to the interface) that is of sufficient magnitude to cause matching displace-

ments in two strips that expand at different rates. This mechanism relies on the fact

that two strips will generally experience different transverse displacements when they

are loaded by equal tension or compression. Hence, the solution breaks down when

the lateral displacements of the two strips are equal (i.e., when 2k, — k, = 0).
This analysis leaves us with a solution of the form

=

T = D @ frr P + 2b(1 — cos 26)

k=1

=

O = 2, Gfaour " + 2b(1 + cos 26)

k=1

x

G =D, Gufrgay ** + 2b sin 20 (59)
k=1
1 ey, Or 5
u, = — afour "+ — (m— 4cos” 6) + naTyr
2u o 2u
1 2kbr
ug=— > afur 0 + ——sin 20
[ 2 g Sustt 2
where
b 2#’ ( ” Tn 3 TI) 60)
=———n'alg—n
2%, — k 0 aly (

The rigid y motions have not been included in this equation, but they are im-
portant in the ensuing analysis of finite bodies. For any value of the series coeffi-
cients a,, this general solution satisfies the equilibrium and compatibility equations
in the interior of each of the two strips, the traction conditions on the free surfaces
adjacent to the interface, and the interface conditions.
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SOLUTIONS FOR FINITE BODIES

The series solution for the stresses and displacements near the edge of the interface
between bonded structures satisfies the equilibrium and compatibility conditions in
the interior of two bonded structures, and it satisfies the boundary conditions on the
free surfaces adjacent to the interface, but it does not satisfy the remaining boundary
conditions. Solutions for finite bodies must account for this deficiency. In this paper
the model shown in Fig. 1 is used to explore the thermal stresses in bilayered struc-
tures. Because the therma) field and mode] geometry are symmetric about x = I,
only half of the model must be considered, leaving only one singularity to accom-
modate. Since there is only one singularity, a single series solution, originating where
the interface intersects the free surface, can be used to model the stresses throughout
the body. The previously unknown coefficients must be determined such that the
remaining boundary conditions are satisfied in some approximate manner. The ad-
ditional stress boundary conditions are zero normal and shear stress on the surfaces
parallel to the interface and zero shear stress along the symmetry line. The final
boundary condition is that, along the symmetry line, the displacements in the axial
(x) direction are uniform, which can be expressed by

ou,
—=0,atx=1 61)
oy

Putting this quantity into the series form used for the stresses and displacements,
one finds

o«

ou, 1 af, Y
= — Z a,(r“"”’{—(sk + 2)f, sin 8 cos 8 + —f—'cos' ]
ay 2p o a0
. 2 I
+ [(sx + 2) sin® 6 — I]f,,‘—sgsm Bcos 6 + o, (62)

The following sections will focus on the various methods for determining the coef-
ficients in the series to satisfy these additional boundary conditions.

POINT COLLOCATION

The first (and simplest) method for determining the unknown series coefficients is
point collocation. This method determines the coefficients such that the boundary
and symmetry conditions are satisfied exactly at discrete points, called collocation
points. Because there are two boundary conditions at each point along the free sur-
face or symmetry line, there must be two unknowns in the solution for each collo-
cation point if the solution for the coefficients is to be uniquely determined. Hence,
if m collocation points are used, the series solution must be truncated at 2m terms.
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This is a drawback of the method, because it forces the use of more terms in the
series as more collocation points are used to improve the resolution of the solution.
One might anticipate that increasing the number of collocation points would always
lead to a more accurate solution, but this is not necessarily the case. The magnitude
of the n lerm in the series increases roughly as 7**', so it can be quite large on the
boundary| Hence, the precision required for accurate analysis increases rapidly as
more terms are used and, for a given computational precision, the accuracy of the
solution will eventually decrease with increasing number of collocation points.

LEAST SQUARES COLLOCATION

An altern ‘tive method for determining the coefficients in the series is called, for lack
of a better term, least squares collocation, following Wang and Choi [7]. This tech-
nique minimizes, in the least squares sense, the integral of the error in the boundary
and symmetry conditions along the outside of the symmetric model. This process is
begun by defining the following integral:

2 2 2 aui
1= (WO o + woo)dx + Wooy + dy
l AB BC ay

+ f (Wo0 2 + woo )dx (63)
D

which represents the integral of the errors in the series solution along the top, sym-

case the integrand is given by the stresses and displacements from the series solution
alone. normalization factors w;; are used to nondimensionalize the stress terms
in this integral, but they also can be adjusted to emphasize a particular boundary
condition/on a particular side in order to optimize the determination of the unknown
series coefficients. For this study, these normalization coefficients were taken to be
the inverse of the square of the shear modulus of the associated strip. For a given
number of terms in the series solution, the minimization of this residual integral gives
the best available solution for the unknown series coefficients. Inserting the series
representations for the stresses and displacements into this integral, including the
particular solution, and taking the partial derivative with respect to each coefficient
yields the following system for the coefficients:

Ma=gq (64)

where vector a is t
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where vector a is the vector of unknown coefficients and the matrix M and the vector

q are given by

and

where

q"=f
4B

WSS +
AB

+f (auxﬁ) Oty jy
sc \ 0y 0y

+ j Wy S Sntiy
cD

Wi, foirfou)dx
+ nyfxy(i)fmj)) dy

+ wx_\'fx_v(i)fx‘_\'(j))dx

W»'a;:n )31i?dX+J’ w.\."o'i:nf;ﬂi)dx

<D

1 1 .
fo= I:E (for + Joo) — 2 (frr — Joo) €OS 26 + fg sin 20:|r"”"

and

1
fo = [5 (frr — foe) 5in 26 + f4 cos 20] rre®

(65)

(66)

(67)

For other loading conditions, only the definition of the forcing vector q changes.
Because of the increase of the magnitude of each term in the series with increasing
number of terms, the matrix in the above equation is ill-conditioned. In general, the
matrix M has a condition number (as defined by Press et al. [12]) which is roughly
double the size of the matrix, so the condition number is greater than 24 when only
12 terms in the series are used. This is greater than the precision of the floating point
calculations on the computers used for this study, so one cannot expect substantial
increases in accuracy when more than 12 terms are used.

COMPARISON OF POINT AND LEAST SQUARES

COLLOCATION

For a given number of terms in the series solution for the stresses and displacements,
the point collocation technique is much faster than the least squares method because
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Table 1| Material properties used for comparison of
solution methods for finite bodies

Material Properties Top Layer Bottom Layer
Elastic modulus (MPa) 20.69 6.89
Expansion coefficient (X™') 13 x 107° 6.5 x 107°
Poisson’s|ratio 0.25 0.33

Thickness (cm) 5 5

it does not require integration. This is an important fact, but the accuracy of the two
techniques must be compared before judgements can be made regarding the appli-
cability| of the two methods. The comparison between the two will be made using
the material properties and dimensions used by Chen, Cheng, and Gerhardt [2], as
given in Table 1. All comparisons will be made assuming plane stress conditions.
For these properties, the first ten roots of the determinant are given in Table 2. The
first root indicates a stress singularity of the order of 0.071, that is,

a;~r®" r-0 (68)
The point collocation analysis was conducted by using an equal number of collo-
cation points on the four boundary segments for which the boundary conditions are
not yet| satisfied. Therefore, multiples of four collocation points were chosen, and
multiples of eight terms in the series were necessary to satisfy the two conditions at
each point. The residual integral in the least squares collocation approach is com-
puted by using Gaussian quadrature (48 Gauss points).
The accuracy of the two collocation methods is checked in two ways:

1. By comparing the calculated stress fields along the boundary to the required
boundary conditions. This is especialy important for the point collocation method,

Table 2 Roots of determinant
for properties used in
comparison of different
solution methods

Imaginary Part

0

0.3605005
0.8169434
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because satisfying the boundary conditions exactly at discrete points allows un-
limited errors elsewhere.

2. By checking the convergence of the coefficients in the series with increasing
number of terms in the series. Because the coefficient of the singular term (if
one exists) may be useful in design, its convergence is necessary if a particular
technique is to be useful.

Unfortunately, the point collocation method does poorly on both tests. Fig. 4 shows
the error in the normal stresses on the top surface, as calculated from both the point
and least squares collocation methods. The errors shown in this figure are the relative
difference between the stress computed by the approximation technique and the
boundary condition, which is zero in this case. This error is normalized to the par-
ticular solution for the normal stress at the surface. The top surface exhibits, in both
cases, the largest discrepancy between the calculated tractions and the traction-free
conditions. As shown in the figure, the point collocation method yields surface stresses
with large oscillations, giving errors that are many times the particular solution. The
extent of these errors are not shown on the figure, because they would expand the
scale to a point where the curves for the least squares collocation results would not
be visible. The least squares collocation method fares much better. As shown in Fig.
4, the error is about 5-7% over most of the surface, and it peaks at about 27%.
The poor performance of the point collocation method is also shown by Fig. 5,
which shows the convergence (or lack thereof) of the first series coefficient with
increasing number of terms. While the least squares method converges quite well,
for two different model lengths, the point collocation method shows almost no con-

150
normal stresses

i\? 100 + Vd
‘: 50 point
o T collocation
| -
() 0 T N~ f
o /
'E -50 4+ least
.g squares
1004

=150 — — 4

0 2 4 6 8

Fig. 4 Relative errors in normal stresses along top surface.
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Fig. 5 Convergence of the first term in the series solution for increasing number of retained terms.

vergence. This latter point is somewhat disturbing, and it precludes further consid-
eration of this technique. The point collocation method could, conceivably, be im-
proved by fortuitous selecton of the collocation points, but this would detract from
the versatility of the method. Hereinafter, only least squares collocation will be con-
sidered.

RESULTS FOR LEAST SQUARES COLLOCATION

As was mentioned in the previous section, the least squares collocation method shows
promise as|a useful technique because it exhibits good convergence of the stress
series coefficients and it provides a reasonable characterization of the boundary con-
ditions. This latter point is further exhibited in Fig. 6, which shows the relative error
in both the| shear and normal stresses along the top surface. This is essentially a
magnified plot of the least squares collocation result for the normal stresses from
Fig. 4, with the shear stresses shown as well. The error in the normal stress is on
the order of 8% over most of the surface, with a peak of about 27% at x = 0, which
represents the intersecton of the top surface with the free edge. This has been shown
previously to be the point of maximum error in a similar study of composites [7].
The peak efror in the shear stress is less than 10%. The relative errors on the other
surfaces are lower than those on the top surface.

One difficulty with these collocation methods is the added precision required
from the computation as more terms are used in the series solution for the stresses
and displacements. Because the size of the terms increase roughly as r**', for n
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terms, the matrix is ill-conditioned, and high precision is needed for accurate solution
of the system. This is shown in Figs. 7 and 8. The first figure shows the peak error
in the normal stress on the top surface as a function of the number of terms in the
series solution. The solid line represents the results of double precision calculations
on a Cray-11 computer (32-bit real number representations), while the circles show
the results of double precision on a VAX 8200 (8-bit reals). The higher precision
calculations show rapid decrease in the error until about 16 terms are used, then
small improvement out to 64 terms. The lower precision calculations, on the other
hand, show identical errors through about 27 terms, then a large error caused by the
addition of just one term. A similar result is shown in Fig. 8, which plots the integral
of the squares of the boundary conditions, as in Eq. 63, normalized by the integral
of the particular solution. This figure also shows a marked increase in the error of
the lower precision calculations past 27 terms. Clearly, high precision is required
for the calculations.

A BENCHMARK PROBLEM

As was discussed, the least squares collocation method shows promise as a tool for
studying singularities in bonded structures, but its utility is limited considering the
errors on the boundary; the method is certainly not useful for calculating stresses in
the bulk. The errors on the boundary come from a number of sources, including

1. Errors in the determination of the characteristic roots of the determinant, which
becomes very important when large numbers of terms are used.
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Fig. 6 Relative errors in shear and normal stresses along top surface for least squares collocation method.
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Fig. 7 Dependence of the peak error in the boundary conditions on the number of retained terms in the
series for difflerem amounts of precison in the numerical analysis.

2. ‘Errors in solving the ill-conditioned linear system produced by the minimization
of the integral around the boundary.
3. Errors in the quadrature.

Wang and Choi [7] used the same collocation technique to study crack-free singu-
larities in anisotropic materials and obtained peak errors on the order of 1% on the
boundary, as compared to the 27% in the calculations presented here. The difference,
though, is that the anisotropic materials in Wang and Choi’s study were identical,
with the only difference between the two layers lying in the different fiber orien-
tations. This case admits an infinite number of integer roots, in addition to an infinite
number of complex roots much like those found in the case of dissimilar isotropic
materials, so there is less error in determination of the eigenvalues (the integer ei-
genvalues are exact) and there are twice as many eigenvalues below a certain value.
This last point is significant because the precision of a particular computer limits the
allowable magnitude of the highest eigenvalue because the stresses are proportional
to r"“*?. Hence, the composite problem provides twice as many terms for a given

precision.

The reduction of the integral of the tractions along the boundary with an in-
creasing number of terms in the stress series, and the convergence of the first series
coefficient,|indicate that the calculations are reliable. This must be verified with a

known solution.
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finite, bonded structures composed of isotropic materials, an analytical solution must
be used to verify the accuracy of the least squares collocation method. The bench-
mark problem chosen to show the usefulness of the least squares collocation method
is one of thermal stresses in bonded quarter planes, which is analogous to the work
of Bogy [6]. In order to benchmark a code for a rectangular, finite body, consider
a half-space problem with a thermal field of the form

=10
r-{I

which represents a uniform temperature rise over a semicircle of radius R,. The
solution of the half-space problem gives the stresses and displacements throughout
the bonded quarter planes. From this half space, one can extract a rectangle from
within the semicircle of uniform temperature for analysis as a finite body. This finite
body will have a uniform temperature change 7, and surface tractions determined
from the half-space solution. The least squares collocation method can then be used
to solve for the boundary-layer stress intensity for this rectangle and compare it to
the semianalytical solution found by using the Mellin transform.

Applying the Mellin transform to the field equations presented in the beginning
of the previous section, and using the transformed boundary conditions, one arrives
at the same system of equations, Eq. (34), as was found for the solution derived for
use in the collocation solution. In this case, though, the solution of the system pro-

r<< Ro
r>R, (69)
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Fig. 8 Dependence of the error in the integral of the boundary and symmetry conditions on the number
of retained terms in the series for different amounts of precision in the pumencal analysis.
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vides sformed stresses, which are given by equations of the form (using g, as
an example):

—(S + l) 14 ’ I—' " r "_ "
T[Q;mEaT + Q.km"E"a"T"] (70)

Tg(0 = 0)

= (1 = cos y)[~(k — 3(¥8 = 7°) + ksn® + k;¥8)

+ msin y[—(k — 1)(y8 — n%) + 2km"y] an

i

!

| 0. = (1 — cos Y)[(k — 18(y8 — 12 + kyn® — kxy8]

, + 7 sin y[(k — D(y8 — 7°) + 2m'y) (72)

where & represents the Mellin transform of o. Inverting this relation gives the stresses
in bonded elastic quarter planes. The Mellin inversion integral is given by

C+ix

or, 6) = — T,(s, Or “*2ds (73)

27

where c lies in a strip of regularity of the integrand. As was mentioned previously,
we are concemed only with s < —1, so ¢ lies between Re(s) = —1 and the first
pole of the integrand associated with the inversion of the transformed stresses.

For plane stress the transformed thermal field is given by

_ T R:+2
- iz o

so, as seen from Eq. (70), there are poles in the transformed azimuthal stress at
s = 0, 12 and at the roots of the determinant. According to the residue theorem,
these poles provide the solution for thermal stress in bonded quarter-planes. Because
the determinant in Eq. (70) is identical to the one derived previously, its roots are
identical to those discussed earlier in this section. For the case studied here, all the

e e

poles are| simple poles, but the one at s = —2 must be treated differently, using
L'Hospital's rule.
At s = —2, the determinant has a double root, the transformed temperature has

a simple |pole, and Q5 and Q, have simple roots, so the transformed stress has a
simple pole. Using the residue theorem and L'Hospital’s theorem, one finds that the
residue at s = —2 provides

which is identica
Other than a:
inversion gives t

oo

This gives the s
infinite sum. The
in a similar man:

To test the u:
for comparison ¢
solve the half-sp:
transform invers:
stress on the sym

8._.-

P

O

o

= 67

S

o o

/4]

L 44

-

0

(1)

(8

o 24

[ Ve,

| .

3

14}
o__
1

Fig. 9 Convergence
of terms obtained fr-




“orm (using oy, as

70)
kayé]

an
28]

(72)

i gives the stresses
given by

(73)

“ioned previously,
—1 and the first
med stresses.

(74)

zimuthal stress at
residue theorem,
r-planes. Because
usly, its roots are
idied here, all the
differently, using

d temperature has
rmed stress has a
one finds that the

AN EIGENFUNCTION APPROACH 825

8/.1.'((1" — al)To
Op(f=0)= ——— (75)
* Zkl - kz

which is identical to the particular solution found in the previous section.
Other than at s = —2, the poles of the transformed stresses are simple and the
inversion gives the azimuthal stress as

(s + 1 1 -
0'00(0 = 0) = 2 ( (Sk )> [Q}m'E'a'T’|J=.u

k=1 Sk (BA)
as

+ Q4km"E uani—- cl"(:h]r—(x.* 2) (76)

s=3

This gives the solution for the azimuthal stresses in bonded quarter planes as an
infinite sum. The solution for the other stresses and displacements can be obtained
in a similar manner.

To test the usefulness of the collocation technique, the material properties chosen
for comparison of the two collocation methods earlier in this section were used to
solve the half-space problem. The convergence of the series obtained from the Mellin
transform inversion is demonstrated in Fig. 9, which plots the azimuthal interface
stress on the symmetry line of the rectangle (at r = I) for increasing number of terms
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Fig. 9 Convergence of stresses at a given distance along the interface, as obtained by varying the number
of terms obtained from the Mellin inversion.
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Fig. 10 Error in the boundary-layer stress intensity for collocation solution as compared to half-space
solution.

in the serigs. This figure shows that the boundary stresses require only about a dozen
terms in the series for accurate representation.

The rectangle extricated from the half-space model was analyzed by the collo-
cation technique for comparison. The half-space solution is computed using 16 terms
from the Mellin inversion, and the number of terms in the collocation solution is
varied to test its convergence. The rectangle to be analyzed features a uniform tem-
perature change and boundary conditions calculated from the half-space solution.
The convergence of the first coefficient of the series with an increasing number of
terms in the series is shown in Fig. 10, which shows the percent error in the col-
location solution as compared to the known solution. This figure shows that the error
is less than 1% when more than 12 terms are used. The peak errors in the surface
stresses, calculated by using nine terms in the series, are roughly 25% of the par-
ticular solution, indicating that the first term in the series can be calculated with
substantially greater accuracy than the surface stresses. Hence, it appears that the
least squares collocation method yields accurate, reliable results for the asymptotic
stresses near the edge of the interface.

CONCLUSIONS

The asynlptotic behavior of singular thermal stress fields in finite bodies can be
studied with the use of eigenfunction expansions. This technique provides acceptable
results for the leading term in the expansion, even using relatively few terms in the

series. The method, however, does not yield sufficiently accurate results for the far-
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field stresses, because of inaccuracies associated with determination of the eigen-
values and because of errors associated with solution of the ill-conditioned system
generated by the collocation procedures. For determining the series coefficients, the
least squares collocation method is superior to the point collocation method, pro-
viding much faster and more accurate convergence. Finally, this expansion technique
is much more reliable when used for the analysis of singularities in composites of
like composition and differing orientaton because, below a given value, there are
twice as many eigenvalues and half of these are known analytically.
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