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the use of the viscoelastic analogy. The order of the singularity is shown to depend
on the material properties, indicating that it will vary with time in viscoelastic
materials. This is studied in detail for Maxwell materials, and it is shown thar the
order of the singularity generally increases with time. This evolution of the singulari-

ty can, for certain combinations of material properties, lead 1o initial increases in the
stress levels near the edge of the interface before relaxation occurs.

1 Introduction

Engineering components often feature disssimilar materials
bonded along planar surfaces. Elastic analyses of such con-
figurations generally exhibit stress singularities of various
types depending on the loadings, geometry, and materials.
Bogy (1968, 1970), for instance, studied stresses in bonded
elastic quarter planes under applied surface tractions and
found, under certain conditions, stress singularities of the
order r~*, where 0 < A < 0.41. Depending on the loadings
and the material combinations, Bogy (1970) also identified
situations in which the edge singularities either were
logarithmic or nonexistent. Two studies (Hein and Erdogan
(1971) and Dempsey and Sinclair (1981)) consider bimaterial
wedges and show that geometries other than quarter planes
can lead to oscillatory stresses near the edge of the interface.
In all cases, the singularity depends on the elastic properties of
the two materials.

In many applications, including energy conversion and
space technology, high temperature operation of bonded
structures is necessary, so time-dependent deformation often
occurs in at least one of the materials. In other applications, a
viscoelastic adhesive is used to bond two elastic materials, thus
forming a pair of interfaces in which one material is elastic
and the other is viscoelastic. The latter problem has been
studied by Delale and Erdogan (1981), who consider a lap
joint composed of two plates bonded by a thin viscoelastic
adhesive. The results exhibit a redistribution of the peak shear
stresses near the edge of the interface, but no singularities are
encountered because of the assumptions associated with plate
theory.

Because elastic stress singularities in crack-free bonded
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structures are a function of the material properties, the order
of the singularity in viscoelastic materials is time-dependent
and the relaxation of the near-edge stress fields depends on its
evolution. In this paper, thermal stress singularities in bonded
quarter planes are analyzed using the viscoelastic analogy. A
rather simple thermal field, consisting of a semicircular disk in
which the temperature changes uniformly, is considered in
order to allow the study to focus on the effects of viscoelastic
behavior on the singular stress field. The elastic thermal
stresses are derived, following Bogy, with the use of the Mellin
transform and the asymptotic solutions for the near-edge
stresses are obtained by application of the residue theorem to
the inversion integral. This result is then used as the Laplace
transform of the time-dependent viscoelastic solution (with
appropriately transformed material properties), whereupon
numerical inversion of this transform leads to the desired
result for the relaxation of singularities in viscoelastic bonded
quarter planes.

This procedure is outlined in Sections 2 and 3, while some
examples of viscoelastic relaxation of the singular fields near
the edge of the interface are given in Section 4. Conclusions
follow in Section 5.

2 Elastic Solution

The model to be studied herein features two quarter planes
bonded along one surface, as shown in Fig. 1. The layers are
assumed to be in perfect contact, with no defects or cracks
anywhere in the structure. Slipping or debonding at the inter-
face is not allowed. The elastic and viscoelastic properties in
the lower quarter plane are referred to with a single prime
(e.g., u’, »', and &), while those of the upper quarter plane
are denoted by a double prime (u*, »“, and «”). The
materials are assumed to be homogeneous, isotropic, and
linear viscoelastic. The free surfaces of the model (at x = 0)
are assumed to be traction-free and the thermal field provides
the only loading.

The well-known equations of small strain elasticity are
solved by way of the Airy stress function &, which is governed
by the following equation:
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Fig. 1 Model tor determination of thermal stresses in bonded quarter
planes

Vi +qaEViT=0, M
where T is the temperature change from the stress-free
reference temperature, « is the thermal expansion coefficient,
and

1 for plane stress
2)

1/(1-»)

By definition, the stresses are found from the stress function ®
in the following manner:

for plane strain

O = q’.r"'? L)
0 =%,
1 1
U= o= 3

and the displacements can be shown to be given by

171 !
0, [—¢,+——q>,,,—(1—-;"—)v2q>]+nar

'=—2—u_ A
u, 1 1 (1 1
RS TNL RV W E R W ’
br T ;s w \P e P 4
where
4/(1+v) for plane stress
m= (5)
4(1—v) for plane strain

and
1 for plane stress
n= . 6)
(1+v) for plane strain

Combining these equations with the traction-free boundary
conditions (at @ = xw/2)

O =0, =0, ™
and the interface conditions (at 6 =0)
045 = Ope
0y =0p
F=uy
ug=ug, ®)

one can solve the problem. Solving for the stress function &,
subject to the appropriate traction or displacement boundary
conditions, provides a means for computing the steady-state
thermal stresses, strains, and displacements in a planar
medium.

The solution of this problem is facilitated by the Mellin
transform, defined as

d(s,0)= S: o(r,0)r-dr, ©)

where & denotes the Mellin transform of & and s is the
transform parameter. Similar transforms are defined for the
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stresses, displacements, and the temperature field, according
to:

0;(s,0)= 5: 0, (r,.80)rs*1dr,
u;(s,0)= S: u; (r,0)rdr,

7(s,0) =ans: T(r,8)r*dr. (10)

For this study, the thermal field is assumed to consist of a
uniform temperature change 7, over a semicircle of radius R,.
This field can be thought of as an initial temperature distribu-
tion that has not yet had a chance to diffuse to a steady field.
By assuming this temperature distribution to be steady, one
can isolate the effects of the viscoelastic relaxation from the
effects of the transient temperature. Also, this simple thermal
field avoids the need to derive complicated solutions for
steady temperature distributions in bonded structures. In-
serting this thermal field into equation (10) leads to a trans-
formed field of the form:

P anTo
T="-1"""Ry*2, 11
s+2 ¢ an
Under the Mellin transformation the equation for the stress
function (equation (1)) becomes
d a? d .
—+s2)<—+ + 2)é>+(—+ +22)T=0 12
(= e (5+2) S (s+2) 12)
and the stresses and displacements are conveniently written as:

. d \.
a,,+w,,+(s+1)(93+u)d> (13)
and
2p(u,+iu,)=—i(%+is)
d d .
m(—d—g——ts)[—ﬂ—x(s+2)] ) mt
1+ $— . (14)
4(s+1)(s+2) 4(s+1)

The solution to equation (12), for 7independent of 6, is:

<§=Ae"‘+.4e""’+Be‘“*z”+l§e""*2”—?T (15)

where 4 and B are unknown complex constants and 4 and B
denote their complex conjugates. The complex notation is
used in order to reduce the algebra involved in the problem, as
demonstrated by Hein and Erdogan (1971).

Given a solution for the stress function in each quarter
plane of the model, the full solution is obtained by using the
boundary and interface conditions to determine A°, B', A°,
and B". The traction-free conditions on the free surfaces can
be used to determine the A’s in terms of the B's, giving

_ 7 s
A's=B'(s+1)-B'e+—— e 2 (16)

and - ¥

- - —

_ T
A°s=B*(s+1)-B’e "+ rad 2, an

’

This allows determination of the stresses in terms of the com-
plex constant B

8+ 100y =2(s+ l){(s+ I)e + €7 D) B’ -

(eit(0+v) +e-ils+20 )B' + (eix(l*'/Z) -1) L}
25
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Gotidg=2(s+ l)[(s+ 1)}(e™ +&/s+D)B” —

. . _ : T
(e.m-.) +e""‘2")B' + (eu(l-:IZ) - 1) 5 } (18)
Using the interface conditions, which require continuous
displacements and shear and normal stresses across the inter-
face, and breaking B’ and B” into real and imaginary parts
according to:

B'=2E+2iF (19)
and
B" =2G+2iH, (20)
the following linear system of four equations is obtained
Y 7 -y ] E
n A ) -A F
y+m' 7 —~k{(y+m") kn G
7 A—m’ kn —k(A—m") H
R,
R, )
.= 21
Ry
R,
where ,
=t
“l
v=2[(s+ 1) —cos?t},
n= —2sinfcost,
A=2[(s + 1) + cos?{],
_3F
E-——z )
i‘l —_— i"
Rl =(] f-'COSS) (—T>,
T+ 7
e-anr (20,
2 sing >
T —kT"
-t (10),
3=(1—cos§) P
T +kT
R,= —sint (—i—) @2

The solution of the steady-state problem now reduces to the
inversion of the matnx in equation (21).

The system represented by equation (21) is similar to
previous solutions for different loadings. Hein and Erdogan
(1971), for instance, considered the same geometric model
with a dislocation at the interface, and came up with the same
matrix on the left side and a different loading vector on the
right side. Bogy (1968), on the other hand, used a different
notation and developed an 8 x 8 system, but the determinant
of the coefficient matrix was identical to that of equation (21).

After extensive algebra, the transformed stresses can be
found by solving equation (21) for the constants E, F, G, and
H and substituting them into equation (18). The resulting in-
terface stresses are given by

—(s+1)

—IXT [Qim' T +Qkm"T") (23)

and
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Fig. 2 Order of the singularity for varlous values of Dundurs’
parameters under (a) plane-strain and (b) plane-stress conditions

—(s+1)
siX1
where the four functions Q, are given by
Q1 =n(1—cost)[(1/2)k, (YN —n?) + 2kAm "]
+sing[(1/2)k,y (YN —n?) + kayh + kyn?),
Q> = (1 —cost) [(1/2)k, (YA —n?) - 2wm’]
+sing[(1/2)k,y (YA = n?) + kpyh~kyn’],
Q5 =(1~cost)[~ (1/2)k, AN (YA =9)) + kYA + kyn?)
+asing[— (1/2)k, (YA ~n?) + 2km " 4],
Q4= (1 ~cosE)[(1/2)k, N (YA~ n?) = kyyA + ky7?]

b (8=0)= [Qsm’T* + Qekm~T"), 29

+7sing[(1/2)k,(yA—1n?) +2m’4), (25)
where
ky=2k—1)
ky=km' —m’
ky=km"+m’. (26)

Also, IX1, the determinant of the matrix in equation (21), is
given by
IX1 = k39? + (k~ DH(yA—92)2 — k29

+hy(k— DA=7) (YA —n?). 2n
This determinant has a profound effect on the solution of the
problem because its zeroes locate the poles of the transformed
stresses in the Mellin domain, so it warrants further
investigation.

Both the number and location of the zeroes of the determi-
nant in equation (27) depend on a parameter P, defined by

P=k,[2k, - k,]. (28)
In order for the transforms of the stresses to exist, the real part
of the transform parameter s must be less than —1, so the
Mellin inversion depends only on the zeroes of the determi-
nant for Re(s) < ~1.Forall k,, k,, and k; (i.e., for any com-

bination of materials), s= —1 and s= ~2 are always zeroes.
Hence, we concern ourselves with roots of the determinant
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thai lie between —2 and — 1. For P>0, there is exactly one
zero on the interval —2 < s < —1, and it is a simple zero. For
all admissible values of the material constants (i.e., 0 < v <
1), this zero occurs between —1.59 and -2.0. As P ap-
proaches zero, the zero of the determinant moves closer to
s= -2 until, when P=0, there are no zeroeson ~2 < s < —1
and the zero at s= —2 becomes a double root. Finally, for
P<O0, there are no zeroes on —2 < s < —1 and the zero at
s= — 2 is simple; there is also a simple zero between — 2.4 and
—2.0. In this paper, only those material combinations which
lead to algebraic singularities (i.e., only those for which P is
positive) will be considered.

As shown by Dundurs (1969), calculation of the roots of the
determinant actually can be reduced to two material
parameters, one possible set of which is:

ky ky—k;
ap k3 and ﬁD kl .
By confining Poisson’s ratios to 0 < » < 0.5, one limits Dun-
durs’ parameters to —1 < ap < 1 and (ap—1)/4 < Bp <
{ap+1)/4 for plane strain and (Bap-1)/8 < Bp <
(ap+1)/8 for plane stress. Typical plots of the order of
singularity for various values of these parameters are shown in
Fig. 2. (See Bogy (1970) for a more detailed discussion of the
roots of this determinant.)
The recovery of the stresses in real space from the
transformed stresses involves inversion of the Mellin
transform, using the following complex integral:

29

1 C+i
"U"'o):’zﬁgr_,-w 8, (5,0)r=15*3ds, (30)

where ¢ lies in a strip of regularity of the integrand. As men-
tioned previously, we are concerned only withs < -1, s0 ¢
lies between Re(s) = —1 and the first pole of the integrand
associated with the inversion of the transformed stresses. In
order to obtain the leading terms in the asymptotic expansions
for the stresses, one can perform the inversion using contour
integration and the residue theorem. It can be shown that for
an appropriately chosen contour, the inversion integral of
equation (30) is asymptotic to the residue as r approaches zero.
Once s,, the first pole of the integrand is found, the asymp-
totic solution follows directly. The form of the stress thus
depends on the nature of the pole and is quite different for the
three types of determinant mentioned earlier in this section.

For the assumed thermal field and for cases where there is
an algebraic singularity, the shear and normal stresses in the
interface are given by

04(0=0)=F(r;s)[Qm'q'E'a’+Q.km"q"E"a"]
o (0=0)=F(r:s)[Qym'q’'E’ o'+ Qukm"q"E"a"], (31)
where

—(5;+1) Ty

S,(Sl+2) d
—axnl,.,,

F(rs)=

(%) (53 +2) ‘ (32)

This elastic solution provides a tool for determining the
response of viscoelastic materials via the viscoelastic analogy.

3 Viscoelastic Solution

In order to determine the stresses and strains in a
viscoelastic body, the constitutive relations must be modified
to account for the time-dependent deformations. In general,
these relations are written as

P,(D)s;=P,(D)e; (33)
and
Py(D)o;=PyD)(e;—3al), (34)
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where

N an
P, (D)= Eckn?t,,_- (39)

n=}

The operator P, (D) is a general, linear, differential operator
of order N, and C,, are appropriate coefficients representing
the material behavior of a viscoelastic solid. A common solu-
tion method for these types of problems is to take the Laplace
transform of the viscoelastic equations and compare the
resulting set of equations to the steady-state formulation (see,
for instance, Lee (1955)). Because the bulk behavior is often
different from the shear behavior in viscoelastic materials, the
stress-strain relations are usually written in terms of the stress
and strain deviators, s; and e;;, defined as

Oy

and
€
eu=fu—‘—3‘l" . (37)

In terms of these quantities, the elastic stress-strain relations
are

55=2pe; (38)
and
a”=3x((”—3017), (39)
where « is the bulk modulus, i.e.,
_E 2p(14w)
“T30-20)  30-2v) “0)
Transforming equations (33) and (34) gives
- Pyp) .
S, = €. 41
YR Y “h
and
. _ Pip) -
L= €. — , 4
d; o) (€;—3aT) (42)

where the Laplace transform of a function f is denoted by f,
and p is the independent variable in the Laplace domain. By
comparing the elastic and viscoelastic constitutive equations,
it is apparent that the solution of the viscoelastic problem in
the Laplace domain is equivalent to the solution of the steady-
state problem, with the elastic properties 2u and 3« replaced by
P,(p)/P,(p) and P,(p)/P;(p), respectively. The time-
dependent behavior of the viscoelastic problem is thus
recovered by substituting the equivalent transformed proper-
ties into the steady-state elastic solution and inverting the
Laplace transform.

The analysis of bonded structures composed of viscoelastic
materials is difficult, even with the use of the analogy de-
scribed in the previous section. The substitution of functions
of the Laplace parameter p for the material properties in
elastic solutions such as those represented by equation (31)
leads to very complicated expressions for the stresses in the
Laplace domain and analytical inversion is not possible. The
primary difficulty is the fact that the eigenvalues s,, which are
functions of the Laplace parameter p, are not known explicitly
because these are determined by solving a transcendental
equation. Hence, numerical inversion is necessary. Unfor-
tunately, numerical inversion of the Laplace transform is dif-
ficult because the operator’s inherent unboundedness prevents
explicit error control. Because a small change in the
transformed function can lead to an arbitrarily large change in
the real function, high precision is needed to obtain accurate
results.

The method adopted for this study solves the Laplace

DECEMBER 1989, Vol. 561759




transform integral definition as an integral equation, with f(¢)
as the unknown, using Gaussian quadrature (Bellman (1966,
p. 32)). Other methods, such as those suggested by Miller and
Guy (1966), Papoulis (1957), and Piessens (1972) may be used
if the accuracy of the quadrature method is insufficient. Each
of these methods are useful because they do not require
evaluation of the transformed function for complex values of
the Laplace parameter p.

The first step is to transform the integral into one with finite
limits, then approximate the integral as a finite sum, using
Nth-order Gaussian quadrature. This can be evaluated for N
arbitrary values of the Laplace parameter p, giving a linear
system represented by

1. > I+7;
f(pk)=_2—2 Wi( 3

v ix0

P!
) ey @

This gives a system of ]V equations for the N unknowns g(7;),
which represent valués of the unknown function g(7) at
discrete locations 7,. The solution from this point is trivial.
For this study, order 15 quadrature (N=15) was used because
it was found to be the most reliable for problems associated
with exponential decay. This is useful for the present study
because the relaxation| of stresses in Maxwell materials tends
to be exponential.

As an example of one type of viscoelastic material, the rest
of this paper will cansider Maxwell materials. For these
materials, the stress-strain equations are

ds; S de;
Gy S0 g, U 44
—BT‘ To i )
and
q,-i=3x(e,~,-—3a7'). (45)
Hence, by comparisonlwith equations (33) and (34),
d 1
P = —
(D) a1

2
PyD) =2p —

P,(D) = 3x. (46)

Taking the Laplace| transform of these operators and
substituting into equation (41) yields the following equivalen-
cies between the elastic materials properties and the
viscoelastic “properti%s” in the Laplace domain:

2up
2p— 47)
1
pt—
To
and
K—X. (48)

This represents 2 material for which the bulk behavior is
elastic, and the stress decays exponentially (with a decay con-
stant of 7,) for a uniaxial fixed-grip test. Substituting equa-
tions (47) and (48) into the elastic stress solutions represented
by equations (31) yields expressions for the stresses in the
Laplace domain. This is then inverted numerically to obtain
the time-dependent behavior of duplex structures.

Using these equivalent properties in the elastic solution for
the interface stresses near the edge of the interface of bonded
quarter planes, one finds transformed viscoelastic solutions of
the form:
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Fig. 3 Relaxation of the boundary layer stress intensity for constant
order of the singularity

1 _
04 (0=0)=—— F(ris))IQ,m’q'E'a’ + Qofm”q"E"a’]

1 _
000(9=0)=7 F(ris)lQym’q'E’'a’ +Q,km”q" E” a"].(49)

If the decay constants are equal (i.e., 7§ = 73), and for plane
stress conditions these equations simplify to:

’

09(0=0)=8F(r;s))[Qia’ +Q,a"]

p+1/7

’

H
p+ /T

05(0=0)=8F(r;s)[0ya’ +Q.,a”] (50)
If the order of the singularity for this problem were in-
dependent of time, then the transformed stresses could be in-

verted analytically, leading to a time dependence of the form:
. —l/rg

where Cj; is the initial value of the stress g;;. In reality, though,
the order of the singularity must be determined from the roots
of the determinant given in equation (27), which becomes a
function of the Laplace transform parameter p when the effec-
tive material properties are used. Hence, the order of
singularity is time-dependent and numerical inversion of the
transformed stresses is required. As an example, the transform
of one of the material parameters, k, can be written:

1

pPt—;
~ ’ 7
k=t 2 (52)
u 1
p+—-
T

0

As the Laplace parameter p ranges from 0 to o, & can take on
virtually any value, depending on the creep constants of the
two materials. This can be shown with the use of the limit
theorems of the Laplace transform, giving the final value of &
(att — o) as:

gt

$ 7o

Therefore, depending on the ratios of the creep constants of
the two materials, k can take on any value during the life of
the component, thus leading to numerous possibilities for the
final order of singularity. For Maxwell materials, the final
value for the effective Poisson’s ratio is 0.5 for any finite
decay rate r. Hence, the material parameter m as defined in
equation (5) has the following limiting values:

. {8/ 3 for plane stress

(53)

(59
2 for plane strain

Given these limiting values for the material properties I?,_ﬁr'.
and m*, one can determine the limiting value for P =
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Fig- 4 Relaxation of the boundary layer stress intensity for a time-
dependent order of the singularity

k,(2k, - k;), which determines whether or not there will be a
singularity for a given set of material properties. This limiting
value is

Po = mg(4— ) (ko — 1) (55)
which is non-negative. Therefore, regardless of whether there
is an initial singularity, there will always be a singularity at

1= oo, unless the limiting value of the shear modulus ratio &,
is 1.

4 Results

The singular stress fields in this study can be characterized
by two parameters: the order of the singularity and the
associated ‘‘boundary layer stress intensity factor.’’ This latter
quantity, as defined by Wang and Choi (1982), is given by

K;=lim r"**5,(6=0).
0

r—

(56)

For this paper, this stress intensity is normalized by the quanti-
—(57+2) . . . .
ty Ry b ), giving it stress units. Hence, results are presented

for 2 new parameter L, given by:

L, =lim 57)

( r )’I +2

—_ 0;(60=0).
r—~0 Ro v

In addition, only those results for the normal stress at the in-
terface o, (6 = 0) will be presented, because it is generally the
largest of the four interface stresses (a,,, 0.7, 0,4, and gg).

As is evident from the previous section, choosing 7/ = 1”
and »* = »” provides a situation in which the order of the
singularity is independent of time. Figure 3 shows the decay of
the stress intensity factor for such a case, where

7'=1"=lhr

v'=p"=0.5
u' =10 GPa
* =100 GPa
a’'=1x10-¢°C-!
a”"=2x10-°C-!
T,=100°C (58)

and plane stress conditions were assumed. As discussed
previously, the relaxation of the stresses for a constant order
should be exponential. This is verified in this figure where the
comparison between the calculated relaxation, from numerical
Laplace transform inversion and a purely exponential decay,
is shown to be excellent. This result provides some verification
of the numerical transform inversion.

Figure 4 shows the results for the relaxation of the stresses
in a case where the order is varying. The properties used in this
case were identical to those given above, except »’ = 0.1 and
v" = 0.3. This figure shows that the order of singularity more
than doubles from its initial value of 0.065. The relaxation of
the stress intensity, in this case, is faster than exponential

Journal of Applied Mechanics
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Fig. 5 Order of the (a) singularity and (b) boundary layer stress intensi-
ty factor for different ratios of the relaxation constant

decay. It is unclear how these competing effects (decreasing
stress intensity and increasing order) will effect failure or
delamination.

In some cases the order of singularity can decrease before
increasing. This behavior is accompanied by a stress intensity
which increases before relaxing. This was explored using the
following properties:

7"=1hr
'=0.3
v"=0.5
#' =10 GPa
p” =100 GPa
a’'=1x10-¢°C-!
a”=2x10"%°C"!
To=100°C (59)

with a varying relaxation constant 7' in the lower quarter
plane and assuming plane-strain conditions. These properties
indicate that the shear modulus in the upper plane is greater
than that in the lower plane, giving & = 0.1 initially, but if the
softer material has a higher relaxation constant (r* >77), the
final value for the shear moduli ratio will be greater than one.
Hence, for some time this ratio will be near one and the
singularity will disappear. As shown in Fig. 5(a), the order of
the singularity decreases faster for increasing 7° (i.c., for
slower relaxation in the lower quarter plane). The subsequent
increase in the order is not shown here. The companion Fig.,
5(b), shows the corresponding relaxation of the boundary
layer stress intensities. As the relaxation constant in the softer
material is increased (and the order of the singularity drops at
an increasing rate), the stress intensity tends to relax more
slowly. In fact, it increases in some cases. Again, there is com-
petition between the relaxation of the stress intensity and the
increase (or decrease) of the order of the singularity.
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5 Conclusions

Thermal stresses in perfectly-bonded dissimilar quarter
planes are often singular, depending on the loading and the
material properties. Because the order of this singularity is
material-dependent, it tends to change with time in viscoelastic
materials. It is apparent from the results in the previous sec-
tion that as the order increases with time, the relaxation of the
boundary layer stress intensity factor tends to be faster than
exponential decay, while the relaxation is relatively slow when
the order decreases. Experimental evidence is required to
assess the impact that this phenomenon has on the onset of
failure in crack-free structures.
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