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The formation of inhomogeneous distributions of vacancy loops in irradiated materials is dis-
cussed in the framework of a dynamical model based on the rate theory of radiation damage. Dislo-
cation structures are associated with dynamical instabilities due to the competition between defect
motion and interactions. The dependence of the critical wavelength of the microstructures on ma-
terial variables, such as the displacement-damage rate, network-dislocation density, or temperature,
is obtained. The postbifurcation analysis is performed in the weakly nonlinear regime, where the
selection and stability properties of three-dimensional structures are investigated. ‘

I. INTRODUCTION

Irradiated materials and alloys present several types of
spatial structures such as dislocation microstructures and
void lattices.! These structures, which correspond to the
spatial organization of defect populations, have a strong
influence on the physical and mechanical properties of
the materials. Hence an understanding of the formation,
selection, and stability of defect patterns in irradiated
materials is of primary importance from both practical
and fundamental points of view. Several attempts have
been made to describe these self-organization phenomena
in the framework of kinetic models for defect popula-
tions. These models are based on rate equations describ-
ing the basic elements of the collective behavior of each
defect population. These basic elements are described as
(1) defect motion which is due to diffusion processes in
the case of point defects such as vacancies and intersti-
tials, or due to climb, glide, or cross slipping in the case
of dislocations; (2) defect interactions corresponding to,
for example, recombination of point defects, capture or
emission of point defects by microstructures; and (3)
defect-creation mechanisms induced by the effect of the
external constraint which is the irradiation in the case
discussed here.

Since the dynamics of point defects is much faster than
that of larger microstructural features, and since the mo-
bility of interstitials is much greater than that of vacan-
cies, all the ingredients needed for the occurence of
pattern-forming instabilities are present in this type of
description. Effectively, far-from-equilibrium systems
where several species or fields with different mobilities in-
teract via nonlinear couplings are known to be potentially
able to display patterning phenomena on macroscopic
space scales as extensively shown in a large number of hy-
drodynamical and other physicochemical systems.? Such
instabilities have been investigated by several authors in
the study of irradiated metals and alloys. In some cases,
the critical wavelength of the microstructures has been
determined as well.>* However, questions related to the
postbifurcation behavior of irradiated materials remain
unanswered. It is of interest to investigate the geometry,
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the symmetries, and the stability ranges of the selected
structures. As indicated by Krishan,’ the nature of the
selection mechanisms and how the selected patterns are
influenced by the underlying lattice symmetry, or by oth-
er materials and irradiation conditions, remain largely
unexplored.

Up to now these aspects of radiation-induced micros-
tructural ordering have not been theoretically addressed
despite their practical interest, since current analyses are
restricted to one-dimensional systems. The difficulties of
the postbifurcation analysis lie in the fact that the com-
plexity of the dynamics does not allow, in general, the at-
tainment of analytic solutions for the various concentra-
tions. However, near the instability or bifurcation points,
the dynamics may be reduced to much simpler forms by
taking advantage of the time- and space-scale separation
between stable and unstable modes and by projecting the
dynamics on its unstable manifold.® The resulting slow-
mode dynamics which governs the system evolution on
its longest time scale becomes similar to the time-
dependent Landau-Ginzburg dynamics describing phase
transitions in equilibrium systems. This description leads
then to amplitude equations for the patterns and allows
the derivation of their phase dynamics. Pattern selection
and stability may then be discussed in this framework.
These analyses have been shown to be of wider generality,
relevant to the description of many experimental results
in hydrodynamical, chemical, or biochemical systems. In
this paper, it is our aim to analyze in this framework a
simple model recently proposed by Murphy to describe
the formation of spatially inhomogeneous distributions of
vacancy loops in irradiated metals.* Furthermore, we de-
velop relationships between the shape of the marginal-
stability curve and simple physical properties of the sys-
tem, perform postbifurcation analysis in the weakly non-
linear regime, and investigate the selection and stability
properties of the emerging three-dimensional (3D) struc-
tures. The paper is organized as follows. In Sec. IT we
recall the kinetic model and its properties, while the
linear stability analysis, the location of the first bifurca-
tion, and the properties of marginal stability are dis-
cussed in Sec. III. The postbifurcation regime is analyzed
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in Sec. IV, while Sec. V is devoted to a general discussion
of the model in light of available experimental data.

II. THE DYNAMICAL MODEL

The model proposed by Murphy* is based on the rate
theory of radiation damage and describes the coupled dy-
namics of vacancies, interstitials, and vacancy loops.
This model was originally developed by Bullough, Eyre,
and Krishan,’, and expanded later by Ghoniem and Kul-
cinski® to include the dynamics of point defects in the ful-
ly dynamic rate theory. The network dislocations which
are also present in the material are assumed to have a
constant uniform distribution and interstitial loops are
neglected. The basic mechanisms which are taken into
account correspond to (1) the diffusion of point defects
(the diffusion coefficients will be considered as isotropic
as a first step; anisotropies due to the crystal structure
will also be incorporated at a later stage of the descrip-
tion), (2) the creation of point defects at a constant rate
during irradiation (some of the vacancies are instaneously
trapped into vacancy loops by a cascade effect which is
the dominant creation mechanism of these loops), and (3)
the recombination of point defects, their migration to the
loops and network dislocations, and the thermal emission
of vacancies from loops and network dislocations.

Hence the kinetic equations for the defect concentra-
tions are written as follows, where ¢, corresponds to va-
cancies, c¢; to interstitials, and where p; and py are the
line densities of vacancy loops and network dislocations:

9,¢;=K —ac;c, +DiV2ci_Dici(ZinN+ZinL) >
3,c,=K(1—e€)—ac;c,+D,V,
_Dv[ZvN(cv—zvN)pN—i—ZvL(Cv _EUL )pL] ’ (1)
1

9pL= —O{GK —p[DiZyyc;—D,Z, (c,—T,)]}
|b|"L

where K is the displacement-damage rate and € the
cascade-collapse efficiency. D; and D, are the diffusion

coefficients, a is the recombination coefficient, and b the
J

DANIEL WALGRAEF AND NASR M. GHONIEM 39

Burgers vector. The line density of vacancy loops, p; , is
given by p; =2mF; N, where 7, and N; are the average
radius and the number density of the loops. The average
loop radius is taken to be constant (with 7, =r0 /2,r0 /2
being the initial radius of a vacancy loop). Z;;, Z,y, Z,;,
and Z,y are the bias factors, and ¢,y and ¢,; are the
thermally emitted vacancies from network dislocations
and vacancy loops. The various coefficients appearing in
these rate equations may be computed theoretically or
related to measurable quantities, and for simplicity, the
bias will be approximated by Z;=Z,=1 and
Z,; =Z,y =1+ B (the usual values for B being in the ran-
gle 1-10%).”

III. LINEAR-STABILITY ANALYSIS

In this section we develop a dimensionless form of the
rate equations (1). A characteristic time scale is the time
constant for vacancy diffusion to network dislocations.
Upon using the following definitions:

A'u:'DvZuNpN’ Di(v):Di(v)/)"v’ a/ku:'y’
P=yK/A,, T=At,
2
D, (2)
#=ZiNDi/ZvNDv:(1+B)D_ ’

v
Pr
PN

we obtain

— _ — 5,0
y X =YC X,=YC,, To=bripyv,

9.x; =P —ux;(1+x)—x;x,+D;V; ,
3x, =P(1—€)—(x, —X,y)—x (x, —%,; )

—x;x,+D,V*x, , 3)
700X =€P —x [ux;, —(x,— %, )] .

The linear-evolution matrix of inhomogeneous pertur-
bations of the uniform steady state is given, in Fourier
space, by

o+u(1+x%)+x2+¢2D; x? 0
x2 o+1+x%+x2+q¢?D, x0—x, |, @)
ux® —x° o+A
-
where where

0_—-,0__=
MUX;7 =Xy TXYN

()
6P=xo(fuL _x—uN)szA .

It turns out that the characteristic equation has two
negative roots while the third one may change its sign
and becomes positive when

uA+q*D; |A+1+B —%B(xf—va)

+¢*D,D, <0, (6)

0

X
A=1+x,~°+7"3—+—€£.

A

By taking the ratio of the bias versus the collapse
efficiency as bifurcation parameter, the corresponding
marginal-stability curve of this problem may be written
as (by neglecting contributions of the order of x?/x°,
x0/x°, %,; /x° and X,y /x° which are vanishingly small
in standard experimental situations),
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A —
1+—(1+¢*D,)+
eP( a°D,)

B _ q°D,
L = (7
€ { e(1+q9°D,)
4°D,
and the critical point is defined by
B 17272 p 17212
2=+ |2 = |1+ | = (8)
€ le €P oY
with a critical wavelength given by
D.D, 1/4
A, =2m o 9)
ux

Hence, the uniform steady state may become unstable,
when the dislocation bias overcomes the cascade-collapse
efficiency, i.e.,

17272

1+
)

B >e¢

or, at fixed bias, when the uniform loop density is
sufficiently high, or the network density sufficiently low,
ie.,

PN
> .
(VB/e—1)?

On expressing the critical wavelength in unscaled
units,

oY (10)

_ _ 1/4
Dv(cuL _ch)

A, =2
c T 1 (1+B)eKpy

we see that the wavelength decreases with increasing
network-dislocation density, cascade-collapse efficiency,
and damage rate. On the other hand, its temperature
dependence is more difficult to assess since D, is an in-
creasing function of the temperature while (¢,;, —C,y) is a
decreasing function of the temperature, and its global be-
havior may vary from material to material. As an exam-
ple, we consider the stainless steel (316SS) irradiated at
500°C with a displacement-damage rate of 107° dpas™!
(dpa is the displacement per atom).® The critical wave-
length is nearly 1.24 um for solution-annealed material
with a typical dislocation density of 10> m~2. The wave-
length is smaller for cold-worked material, on the order
of 0.39 um for a dislocation density of 10'> m™2. The
sensitivity of the critical wavelength to temperature vari-
ations is illustrated in Fig. 1, while Fig. 2 shows the
effects of cascade-collapse efficiency € on the wavelength.
Furthermore, patterning phenomena should occur
more readily when the network-dislocation density is
small, and when cascade collapse is not important. From
this analysis it turns out that beyond the critical point
patterns could develop with wave numbers in the range

B_B
€ €

1_(x0)1/4

c

B B

2
<L <14+
€

c

[
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FIG. 1. Dependence of the critical wavelength on tempera-
ture for different values of the network-dislocation density.

However, the orientation and the number of wave vec-
tors underlying the possible structures are not fixed, and
the associated degeneracy may only be partly removed by
a nonlinear analysis in the postbifurcation regime.

IV. THE AMPLITUDE EQUATIONS
FOR THE MICROSTRUCTURES

The nonlinear character of the defect dynamics does
not allow general analytical solutions for defect densities.
However, near the instability points, it is possible to
derive an approximate dynamic scheme able to reproduce
the long-time evolution of the system. Effectively,
around the bifurcation point, the dynamics is based on
two types of modes: unstable ones and linearly stable
ones which evolve on much shorter times scales. As a re-
sult, the stable modes are able to follow quasisteadily the
evolution of the unstable ones and may be adiabatically
eliminated.® The asymptotic behavior of the system is
then described in terms of the unstable modes only. In
fact, in the systems considered here, the fluctuations of
vacancy and interstitial concentrations evolve much more

1000

o COLD-WORKED CONDITIONS AT 500°C
G S
==
7
=z 17 10—6dpa/s
=3
— . 3
m p—
= 10~ 3dpa/s
<
=

10 +

0.001 0.010 0.100

CASCADE-COLLAPSE EFFICIENCY €

FIG. 2. Dependence of the critical wavelength on the
cascade-collapse efficiency for different values of the
displacement-damage rate.
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rapidly than vacancy-loop-density fluctuations. Hence,
the slow mode or order-parameter-like variable will be as-
sociated with the latter and on expanding the point-
defect concentrations as a power series in the vacancy-
loop density we obtain

— 0 - 0
xq—pq+x , x,-,q—p,-,q-i-x,-

xv,q:pv,q_i—xt? ’
Pa= " PaT 7, (HPiaPua
1
T [ dk polppix—pux) an
leading to
pixn=|— < —E2(g2+V2)? |p(x,1)
c
+opi(x,t)—upi(x,t), (12)
where

b=B/e, Eho(xg)™ V2 v=2/(x4)*?,

and u =2/(x,)%"2.

It is known that, for b > b, the stable solutions of this
Landau-Ginzburg type of dynamics correspond to'® the
following. ,

(1) Roll or wall structures associated with spatial
modulations of the order parameter (here the vacancy-
loop density) in one direction. They appear via a
second-order-like transition, or supercritical bifurcation,
and the amplitude equation for a structure of this type
with wave vector q=g_.1, may be written as follows:

i
2g,

2
+7<Vx— V32| A—3ulA4|*4 ,
[4

(13)

where Vf:—Vﬁ +V2. A(x,t) is the slowly varying ampli-
tude of the structure defined by
plx, )= A(x,0)e "+ A*(x,t)e "

The steady-state amplitude of a wall structure of criti-
cal wavelength is then given by | 4|=1/(b —b,)/3ub,.

(2) Rodlike hexagonal or triangular structures appear-
ing via first-order-like transition or subcritical bifurca-
tions, defined by the following amplitude equations:

3 .
p(x,0)="3 A;(x,00e' % +c.c.,

i=1

la;|=¢., q1+q,+q;=0, (14)
. b—b 4£2
TA= | c+%(q,~~V)2 A, +vAX (AX
c c

—3u [lA,.|2+22 |Aj|2]A,. :
i

The steady state is given by (| 4;|= 4)
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b—b,

A+vAr—15uA43=0.

c

(3) bece lattices or filamental structures of cubic symme-
try, also associated with a subcritical bifurcation and
defined similarly to hexagonal structures but with six
pairs of wave vectors. The corresponding steady state is
then given by

(x)=A4 cos—‘ic—xcos—qi— +cosqc cos—qi—z
i V2T VYT e Y
+cos%zcos§%—x
with
" b—b
S A=20A4%2—33uA4’*=0. (15)

b

4

When the bifurcation parameter is increased, the 2d
and 3d structures may in turn become unstable [the hex-
agonal structure for (b —b.)/b,>4v?/3u and the bcc
structure for (b —b,)/b,>3v%/u]. The corresponding
phase diagram for bcc and planar walls is displayed in
Fig. 3.

Hence, between threshold and 3v2/u, bee dislocation
structures should be expected, while above this limit the
structure should consist of regularly spaced planes of
maximum density. Since v?/u =(D,Apy /€K)'’?, the bec
domain is expected to increase either with temperatures
below 1000 °C and with network dislocation densities. In
the example of 316L steel cited above, the reduced dis-
tance above threshold, (b —b,)/b,, is of the order of 2,
for a bias factor of 0.035 and a cascade-collapse efficiency
of 0.012. At irradiation temperatures of 500 °C, and for a
displacement-damage rate of 10~ ¢ dpas ™!, the bcc stabil-
ity limit is about 3.8 for a network dislocation density of

10" m~? and nearly equal to 1.2 for py=10" m~2 In

A WALLS

FIG. 3. Schematic bifurcation diagram associated with the
amplitude equation for the microstructures showing the transi-
tion from bcc to wall structures (solid lines represent stable
states, dashed lines represent unstable states, and heavy lines
correspond to the minimum of the associated Lyapounov func-
tional). ‘
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FIG. 4. Stability domains of bce and planar structures versus
displacement damage rate and temperature for different values
of the network-dislocation density.

fact, under these conditions, a transition between bcc
structures and planar walls should occur for network
dislocation densities around 2.77X10'? m~2, the bcc
structure being selected for higher densities and the pla-
nar structures for lower densities. The stability domains
of bcec and planar structures versus network-dislocation
density, displacement-damage rate, or temperature is
displayed in Fig. 4.

In the case of an anisotropic diffusion of interstitials as
in hcp materials, where the mobility of interstitials is
much larger in the basal planes than between these
planes, it is easy to show with the same method, that the
. stable patterns for vacancy loops correspond to planar ar-
rays with planes of maximum density parallel to the
planes of high-interstitial mobility in agreement with ex-
perimental observations.!!

The result of the present analysis obtained in the weak-
ly nonlinear regime beyond the pattern forming instabili-
ty should, of course, be confronted to detailed experimen-
tal investigations and to at least 2D numerical simula-
tions. It is interesting to note that recent experimental
observations by Jager!? indicate that spatial microstruc-
ture modulation is a general phenomenon under ion-
irradiation conditions where cascade are produced. Over
a limited range of conditions, Jager observed that the
wavelength was insensitive to temperature, dose rate, and
type of primary knock-on atom. Dislocation loops and
tangles were found to be arranged in planar arrangements
(walls), with a wavelength of 0.03-0.06 um. While the
model discussed here is in general agreement with these
experimental observations, it should be viewed as a step
toward a generalized theoretical explanation of the na-
ture of microstructure ordering under irradiation.

‘

V. DISCUSSION

The occurence of pattern-forming instabilities seems
natural for defect populations in irradiated metals and al-
loys. It mainly results from the different mobilities and
bias in the migration of point defects to line defects such
as vacancy loops or network dislocations. We showed

here that structures with different symmetries may be
simultaneously stable beyond the primary bifurcation.
For example, when the diffusion and interactions of point
defects are isotropic, the maxima of the vacancy loop
density may either correspond to bcc lattices or planar
arrays. Hence, these structures could be in nonparallel
orientations, i.e., with a structure different from the
structure of the host lattice. On increasing further the
displacement-damage rate, bcc lattices become unstable,
and a first-order-like transition should occur to planar
structures. In the case of anisotropic interstitial
diffusion, planar structures should be the rule. Hence,
since the symmetry of the defect structures is a crucial is-
sue in irradiated material,'®> the present analysis shows
that a careful study of the postbifurcation regime is need-
ed to test the relevance of particular kinetic models to the
interpretation of experimental observations.

Before we conclude this paper, it is important to dis-
cuss available experimental results and how they relate to
the current model. A number of experimental observa-
tions have been made on the ordering of the dislocation-
loop microstructure under irradiation. Hulett et al.'*
found walls containing clusters of dislocations and dislo-
cation loops about 10 um wide located parallel to the
(111) planes in high-purity-copper neutron irradiated at
about 400°C. The clusters were separated by strained,
but defect-free regions about 100 um wide. Their speci-
mens were well-annealed copper single-crystal wafers,
having dislocation densities varying between 107 and 108
m~2. This experiment shows that for very low disloca-
tion densities and low damage rates, the wavelength can
be very large. On a much finer scale, Kulcinski and
Brimhall'® found an ordered cubic lattice of loops and
stacking fault tetrahedra running along ( 100) directions
in nickel ion bombarded at 280-450°C. Also, Sprague
and Smidt'® found similar rows of loops in nickel ion
bombarded at 350 and 400 °C, but did not detect 3D or-
der to the arrangement. The reported wavelengths for
the ion-irradiated cases of samples containing high-
dislocation densities are generally of the order of
0,03-0.05 um. Planar arrays of loops have already been
observed in a number of noncubic materials such as U
(Ref. 17), BeO (Ref. 18), Ti (Ref. 19), Mg (Ref. 20), and
Zr (Ref. 21). Stiegler and Farrell??> found 3D arrays of
loops in neutron-irradiated nickel and aluminum in the
presence of voids. In their experiments, alignment of
loops occurred in nickel specimens irradiated to fluences
of about 1 dpa. The loops were arranged on a cubic lat-
tice with loop-free isles separating loop clusters about
0.03 pm across.

. Even though some of these experimental observations
on loops date back to the early 1960’s, no physical model
was proposed to explain the dependence of the wave-
length or the merging structure on irradiation and ma-
terial variables. Our current model seems to provide a
simple explanation for the dependence of the wavelength
on the displacement-damage rate, network-dislocation
density, and on temperature. A joint, systematic, experi-
mental, and theoretical effort may provide a complete un-
derstanding of microstructure ordering in irradiated al-
loys.
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