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Thermal and swelling stress fields in bonded structures are sought using a model consisting of two thin, rectangular strips
perfectly bonded along one surface. Existing results for stresses in the bulk, based on beam theory, are presented and their
limitations are discussed. Plane elasticity is used to derive general solutions for the stress fields near the edge of the structure,
in many cases yielding logarithmic or algebraic singularities. Methods for coupling these general edge ficlds to the stresses:im.
the bulk are discussed, and the techniques are applied to materials and loading conditions relevant to fusion oompm

impact of swelling and creep on both the order of the singularity and on its intensity is shown.

1. Introduction

Layered structures are characteristic of many com-
ponents in both near-term and commercial fusion ma-
chines. Limiters, divertors, and first walls must be able
to withstand increasing particle and heat fluxes without
failure and without degrading the plasma, while main-
taining reasonable peak temperatures. These concerns
have led many designers to employ duplex structures to
allow the use of different materials, thus satisfying the
often conflicting requirements of low sputtering rate
and high strength. These structures typicaily use either a
low-Z or very low sputtering plasma-facing material
(graphite and tungsten are common), bonded to a metal
substrate (typically copper, steel, or Incaloy). The bond-
ing of these layers leads to complicated stress fields
which must be understood in order to evaluate the
probability of failure for the device.

Thermal and swelling stresses in bonded structures
arise from two sources. The first is the self-constraint of
differential expansion, caused by differing thermal ex-
pansion coefficients or differential swelling. The second
source of stress is the self-constraint of thermal or
swelling gradients, which can occur both in bonded and
single-material components. In either case, the stress in
the bulk of the component is generally a uniform,

uniaxial stress field consisting only of axial.stressess:.
which vary over the thickness. Only near the ends of the
strips, where edge effects must be considered, are the-
stress fields multiaxial. These edge fields, though they
typically make up only a small part of the total compo-
nent volume, are significant because bond failureseftons:-
begins where an interface intersects a free surfaceykesas:
the end of the strips. Hence, this paper will calculase:thes-
edge stress fields in a variety of idealized fusion compes-
nents.
Stresses in the bulk of bonded structures can be
analyzed using beam theory, giving stress fields that
depend only on the distance from the neutral axis of the
composite. This has been done previously for many
applications other than fusion, so this paper will mexely -
present a summary of the typical stress fields: fowmsdimi:.
bonded strips. The solutions based on beam theory
(assuming that plane sections remain planc): are-walick.
only at points which are sufficiently removed from:-the
ends of the beam, so a more detailed two-dimensional:
analysis is needed if one wants to capture the stresses:
near the edge of the interface. Elastic solutions for-edges:
fields in bonded structures yield singularities at the edge:.
of the interface, thus violating the small strain assumps.-.
tions of the linearized elasticity equations. These: singwes
larities complicate. the analysis of bonded structuses;:
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making such convenient techniques as finite element
methods very difficult. One technique for dealing with
these singularities will be presented here for fusion
reactor applications.

This paper presents an overview of the various types
of stress singularities found in bonded structures. It
begins with a brief discussion of stresses in the bulk of
such structures, then follows with a treatment of singu-
larities at the edge. The final section considers applica-
tions to fusion. including stresses induced by swelling
and relaxed by irradiation creep.

2. Analysis of bulk stresses in bonded structures

In this section. solutions for the bulk stresses in two
laminated strips are given, drawing from previous work
hv Timoshenko [1]. Additional discussion of the topic
can be found in Boley and Weiner [2]. The model used
for this analysis. shown in fig. 1, consists of two per-
fectly bonded strips of different materials. The proper-
ties of the top stn’p are denoted by a double prime (i.e.,
E”, »”, and a”), while those of the lower strip are
denoted by a singie prime (E’, »’, and a’). There are
no imperfections in this model, and there is no con-
straint of bending of the composite.

A critical outcome of the analysis is the curvature of
the composite. For a uniform temperature change from
the undeformed configuration. Timoshenko finds the
final curvature to be:

1_ 6(a’ —a")T(l+£)
P+ 3O+ 8+ (L) (84 1 /8m)]

(1

where p is the radius of curvature of the composite, ¢ is
the strip thickness, a is the thermal expansion coeffi-
cient. T is the temperature change (positive for an

YL E", V", (!“ .I.n
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Fig. 1. Model for analysis of stresses in two-dimensional duplex
structures.

increase form the undeformed configurations), and ¢
and n are given by:

$=’l’/l/ (2)
and
T,=EII/EI. (3)

The maximum stress in the composite (ignoring stress
fields near the edge), which occurs at the interfaces is. ..
given by:

VW2AEI"+ETY |,
o | Ty T )
where [ is the moment of inertia of the individual strips
(i.e. I=13/12).

Two simplified cases provide examples of the rela-
tive importance of the material properties to the stresses
in duplex structures. If the two strips are of equal
thickness (¢ =" =), then the curvature is given by:

1 129(a’'—a”)T

S e P 1 *)

) t(n*+14n+1)

and the peak stress is given by:

1+7 v s '
nax = %nl—)lﬁ' («' —a”)T. (6}
It is obvious that the peak stresses in the. bulks of .
bonded strips are proportional to the difference in-the.
thermal expansion coefficients, but it is perhaps-less
obvious that the deformations are only weakly depen-
dent on the ratio of the moduli of the two materials.
Timoshenko shows that doubling (or haiving) thesratio- -
of the elastic moduli of the two materials leads to-only &
3% difference in the curvature of the composite. .

As will be seen later in this paper, the simplicity: of-
the above analysis is misleading. Rigorous, two-dimen-
sional analysis of the edge fields in bonded structures:
yields complicated stress fields which require extensive
analysis for an accurate determination. It is tempting to
argue that the edges constitute only a small part of a
typically thin bonded component, but the propeasity of
such devices to fail near the edge (by debondimgror
cracking) makes this small region critical. The followings
section discusses the types of stress fields that: one
might encounter in performing an elastic analysis-inthe~
vicinity of the intersection between an interface-and a
free surface.

3. Stress singularities at interface edges

The shortfall of the beam theory approach prescindedds:
in the previous section is the absence of any analysis-of-




Rk

AN e

36 J.P. Blanchard, N.M. Ghoniem / Analysis of singular stress fields

edge effects. Beam theories assume that plane sections
remain plane as the structure deforms, but this breaks
down at the ends of the beam due to the presence of the
free surface. Hence, the beam theory breaks down at
distances less than the order of the beam thickness from
the end (according to Saint-Venant’s Principle) and
more detailed modeling is required to accurately cap-
ture the stress fields near the edge. In general these
stress fields feature substantial contributions from all
three relevant stress components (o,,, o,,. and o, ), as
vpposed to the 1-D field (o, ) encountered in the bulk
of the bonded strips. An additional complication of
these edge fields arises from the tendency of the stresses
to be singular at the point where the interface intersects
a free surface.

Tvpically. the stresses along the interface of two
honded strips (such as the model shown in fig. 1) can be
dJivided into two regions: a bulk region consisting of all
the matenal a sufficient distance from the edges and
1wo edge regions. In the bulk of the strips, the shear and
normal stresses (o,, and ¢,,) are essentially zero, while
the axial stress (o, ) is non-zero and can be calculated
with simple beam theory. Near the edge, though, ali
three stresses are non-zero, indicating the existence of a
boundary layer near the free surfaces. According to
Williams {3], the thickness of this layer is of the order
‘/I/—L , where ¢ is the model thickness and L is the
model length. These edge fields can be represented
reasonably well using a variational approach (see, for
instance. refs. [3-5]), but these techniques require ex-
tremely complicated algebraic manipulation for even
the simplest loadings and geometries and they are not
useful for edge singularities, which are of particular
interest for this study. Hence, other techniques are
needed for studying edge fields in bonded structures.

This section, then, deals with the nature of edge
stresses in perfectly bonded strips. No cracks, slippage,
or debonding will be considered. In this sense, the
«nalysis presented here represents a study of the ini-
tiation of failure at the edge of the interface of a
laminated structure. In bodies (either single- or multi-
layered) containing cracks, linear elastic fracture mecha-
nics predicts a stress field of the form

o,,~—= for r—>0 7

at the tip of the crack, where  is the distance from the
crack tip. The stress intensity factor X is considered to
be a measure of the intensity of the stress singularity,
and has been shown to be a useful predictor of crack
growth. As will be shown in the following section, the
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Fig. 2. Model for semi-infinite quarter planes to determine
stresses at the edge of the interface.

stress field in a crack-free, bonded structure is generaily
of the form:

o..~;§ for r—0, (8)

(¥

where 0 <8 <0.41 for structures composed of bondedwss. |
rectangles. (The order of the singularity depends boths::-

on geometry and material properties.) Therefore, cracles-
free, bonded components exhibit a relatively weak sin-

gularity analogous to that for the stress field near a

crack tip. This paper assumes that the initiation of

failure in bonded structures can be predicted by the

“stress intensity” associated with the edge of a perfect.
interface, making knowledge of the characteristics. of:
such stress fields vital to the design of bonded struce
tures. This assumption, of course, requires experimental-
verification.

The stresses at the edge of the interface between two
materials can be sought by considering bonded semi-in-
finite quarter-planes. The model used for this purpose is
shown in fig. 2. Using the Airy stress function, one can
determine a stress field that satisfies the field equations..

in the bulk, the interface conditions, and the tractiom=-. -

conditions on the free-surfaces adjacent to the interface:
This yields an infinite series with undetermined coeffi-
cients, which can be determined by considering the
finite extent of the original model shown in fig. 1. An.
outline of the procedures required for this analysis.
follows: details can be found in a recent paper by the
authors [6].

The analysis begins with the two-dimensional,
steady-state, elastic field equations in polar coordinates.
(assuming no body forces are present), along with the-
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traction-free boundary conditions and the assumed in-
terface conditions:

strain—displacement:

Crp = U, s (9)
L X}
€9 = P + r (10)
171 Ug
€r0=§(7ur,ﬂ+u0.r__r—); (11)
Stress—strain:
0”=2‘U.€,,.+A€[, (2“+3A)Em, (12)
oo = 21€gp + A€y — (210 + 3X )€y, (13)
09 =20€,,,; (14)
equilibrium:
g L/
(,ﬂr+ﬂ+u=0' (15)
. r r

g o

2L oy, +22 =0 (16)
boundarv conditions:

(0= tm/2),

09 = 0,9 = 03 (17)
interface conditions:

(6=0),

e = %a» (18)
arlﬂ= r;’ (19)
u =u/, (20)
U=y . (21)

In these equations, ¢;; represents a stress, ¢;; represents
a strain, u, and u, represent the radial and azimuthal
deflections., respectively, and A and p are the Lamé
material constants. The inelastic strain ¢;, is the sum of
the thermal and swelling strains, each representing an
isotropic volume change, i.e.
€,=alT +AV/3V, (22)
where a is the thermal expansion coefficient, T is the
difference between the temperature in the component
and some zero-stress reference temperature, and 4V /3V
is the swelling strain. Also o' denota a stress in the
lower of the two strips, while o;; denotes stress in the
upper strip. A similar notation will-be used for-displace~-
ments and material properties as well.

In order to reduce the problem to determination of a
scalar function, the Airy stress function @ is introduced
according to the standard definition:

(23)
(29)
(25

Stress fields determined from a stress function of this
type automatically satisfy the equilibrium equations.

If the displacements u, and u,, determined from a
known stress field, are to be single-valued, then -the
stresses must satisfy the compatibility equation:

Vz( O, + 600) + QEVZ(in = 0’ (26)
where Q is given by RS

1 for plane stress, .
0= { 1/(1 —v) for plane strain. @

Finally, in terms of the stress function, the displace-
ments are given by:

u, = 21#[1115 + 1415,,, ( %)V2¢]+nein
(28)
and
”0.r"#+ }. U, 9= %(%q’,a"‘l“p.ra)’ (29)
where
4/(1+») for plane stress,
"= {4(1 —») for plane strain,
and
1 for plane stress,
"= { (1+») for plane strain.

Inserting eqs. (23) and (24) into the companbky
equation yields the following fourth order partial dif-
ferential equation for the stress function (agmmw
ing no body forces):
V@4 QEv%,, =0.
Solving for the stress function, subject to theaps-
propriate surface traction and interface conditions; pro=. .
vides a means for computing the steady-state stresses,
strains, and displacements in a planar medium.

In this study, the thermal and swelling fields are
harmonic (satisfying Fourier's Law of conduction: foga. -
body in a steady-state) and the swelling stmmm:
assumed: to- be uniform: The assumption of lineasy :
mal fields is generally valid, but the swelling mayess -
uniform for three: reasons:- L5
1. Gradients in the damage rate, due to flux.atﬁ—m

tion, can lead to swelling gradients. This-is a-smallé-

effect in the thin structures generally founémm

heat-flux fusion components. T
2. The temperature dependence of the swellingerateicames-- =~

lead to swelling gradients in the presence of thermmsls -

gradients. No measurements:of- this effewm 3

conducted.
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3. The stress dependence of swelling could lead to
swelling gradients in the presence of stress gradients.
Swelling is thought to be increased slightly by posi-
tive hydrostatic stresses.

These effects are all presumed to be small, but further

testing is required to substantiate the uniform swelling

assumption. Assuming that the inelastic strain fields are
harmonic, the stress function is governed by:

™o =0. (33)

In order to reduce this partial differential equation
for the Airy stress function to an ordinary differential
cquation. the sotution is assumed to be of the form:

b =rF(8). (34)

U'nder this transformation the equation for the stress
function (eq. (33)) becomes

o d® >
' — ~f-,\‘_)
b de*

Also. the stresses are given by:

R

e (s+z)) (39)

8 :
o, = (? +s? )Fr"‘”z), (36)
Ogp=5(s+ 1) Fr s+, 37
and

g,=(s+ 1)3—5}'"”2). (38)

For s+ 0, —2 the general form of the stress func-
tion, from eq. (35) is:

F=asin 58 + b cos 58 + ¢ sin(s + 2)8
+d cos(s + 2)8, (39)

where a, b, ¢, and d are unknown constants.

Given a solution for the stress function in each
quarter-plane of the model. the full solution is obtained
bv using the boundary and interface conditions to de-
termine the four unknown constants in each strip. This
leads to a system of eight linear equations, which can be
written in the following form:

[X]{a}={/}, (40)

where [ X] is an 8 X 8 coefficient matrix depending on
the Mellin parameter s and the material properties. { a }
15 an 8 element vector of unknown constants, and { 1}
is an 8 element forcing vector depending on the load-
ings. The solution of this system provides the stresses
and dispiacements in bonded, semi-infinite quarter-
planes.

The homogeneous solution of the problem is found
by setting the forcing vector in eq. (40) to zero. A

nontriviai solution to this equation only exists if the
determinant of the matrix is zero. This leads to a
characteristic equation of the form:

I X1l =0, (41)

where || X|| is the determinant of the matrix in eq. 40
and is given by:

2
Il X Q) =kin® + 3ki(¥8 —n*)" — k2yé

+ikyk (8 =) (v8 —77). (42)
where 7, v, and & are given by:
n= —2sin § cos &, (43)
y=2(s+1)—2cos 2¢, (44)
8=2(s+1)+ 2 cos 2¢, (45)

and k,, k,, and k, are material constants determined
by:

ky=2(k—1). (46)
ky=km" —m’, (47)
ky=hkm" +m’, (48).
and

k=p'/u”. (49)

The values of s corresponding to the roots of thes -

determinant are discussed in the next section.

3.1. Roots of the determinant

Because the strain energy density is proportional to
o3, it will be proportional to r~%**? Hence, for: thew:
total strain energy to be finite, s must be less than —13;.
Therefore, only roots of the determinant that have reak’
parts less than —1 are admissible. In addition, roots
that lie in the region —2<s< —1 lead to singular
stress fields, so they are of particular interest. For all k,,
k, and k, (ie. for any combination of materials),
s=0, ~1, and -2 are always zeroes. As has been
demonstrated by the authors [6], the root at s= —1
provides rigid body translations, u, and v, and the root-

at.s = —2 provides a rigid body rotation and, in certaims, -

cases [those for which k,(2k, — k;) =0}, a particular
solution that must be used to form a solution for finites
bodies.

Because the stresses are proportional to r~ ¢+, they
will be singular when thereisarooton —2 <s< —1.It"
can be shown using eq. (42), that the parameter P =
k3(2ky — k,) determines the existence of roots on the:
interval —2 < x < —1. As it turns out, the parameter P*
is proportional to the derivative of the determinans:ofi: -
the matrix in eq. (40) at s = —2, 50 it is an indicator of:

L A vl

order of singularity
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Fig. 3. Order of singularity for various material combinations.

the slope of the determinant at this point. For P > 0,
there is exactly one zero on the interval -2 <s < —1,
and 1t is a simple zero. For all admissible values of the
material constants (i.e. 0 < » < 1), this zero occurs be-
teeen —1.59 and —2.0. As P approaches zero, the zero

ol the determinant moves closer to s = —2 until, when
P =0, there are no zeroes on —2 <s < —1 and the zero
ai s = —2 becomes a double root. Finally, for P >0,

there are no zeroes on —2 <s< —1 and the zero at
s= —2 is simple; also, there is a simple zero between
—2.4 and -2.0.

As one might expect, singularities tend to occur
when the elastic properties of the two materials differ
significantly. This is shown in fig. 3, which shows the
order of singularity as a function of the ratio of the
shear moduli of the two layers for various values of m’
and m”. The curves all peak at k = 0, which models a
situation in which one material has zero shear stiffness.
In this case, the singularity is of order 0.41, which is still
smaller than the 0.5 associated with linear elastic frac-
ture problems. As k increases, the order decreases until
it reaches zero somewhere between k = 0.5 and &k =0.9.
Above these transition values, the shear moduli of the
two materials are closely matched (k — 1) and the alge-
braic singularity disappears. The stresses then exhibit
either a logarithmic singularity or the stresses. are of
order one.

The order of singularity is presented for a variety of
material combinations in table 1. It is tempting to make
Jjudgements about the viability of certain material com-
binations using the resuits of this table, but one must
avoid this trap for two reasons. First, the order of
singularity does not depend on the thermal expansion
coefficients, so the concept of géod matching of this
important property does not influence the values given
in the table. This will be pursued further when the

Table 1
Order of singularity at ez of interface
Plane stress Plane stress

Graphite/copper 0.065 0.069
Tungsten /copper 0.085 0.118
Graphite/vanadium 0.064 0.068
Tungsten /vanadium 0.089 0.124
Graphite/316 SS 0.084 0.092
Tungsten/316 SS 0.035 0.047

particular solutions are sought. The second factor not
considered here is fabricability. Some material combina--
tions form better bonds with each other, and this higher-
strength can lead to larger allowable loads. Experimen-
tal evidence is required to determine the importance of
the order of the singularity in determining the propen-
sity of a particular material combination to fail.
In order to determine the stresses in a finite bonded .
stcture, all the roots of the determinant in eq. (42)
r- st be determined. ' r certain material combinations
vwaoen k, is an even multiple of k,) there are othes
integer roots, but the remaining roots are generallyw::
complex. A typical example of the spectrum of conyphesiis-: -
roots, determined numerically using Muller's meshigis:
[7], is shown in fig. 4. Several observations can be made:-
regarding these complex roots: -
® they always appear as complex conjugates;
® for large negative real part. the real part of one root
1s about one unit from its neighbors;
@ for increasing negative real part, the magnitude-of
the imaginary part increases much more slowly than:-
the magnitude of the real part.

3
k=0.1, m‘=m"=3
250 450
* o o
o © o0 o0
[= 9 1 (e 3]
g
£ [+ ]
g' 1 o0
E 0a°%o0 o
-2 0 0o o
-3 + -
-15 -10 -5 o
real part

Fig. 4. Roots vi determinant for —15 <s <0. The numberrof e
roots is doubly infinite and the roots are symmetric M_ L )
Re(s) = —1. .
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These complex roots, combined with the real root on
the interval -2 <x < —1 (if one exists), lead to a
~olution for the stresses and displacements in the form
of an infinite series. represented by:

<

- {5, +2)
01/— Z akf:/(k)r * - (50)
k=1
1 w
_ — (5 +2)
U= 50 2 @Sy r TP, (51)
7
ps
up=5- 3% Ay Sginyr T (52)
-+
where

Cosy=[—Asin 5.8 — B cos(s, +2)8
=5, +4)C sin(s, +2)8
= (s, + ) D cos(s, +2)8]s, (s, + 1).
lpesy = [ A cos(s, +2)8 — B sin(s, +2)8
+ (s, +2)C cos(s, +2)8
= (s, +2) D sin(s, +2)9] 5. (5, + 1),
foacky=[ A sin(s, +2)8 + B cos(s, +2)8
+5,C sin(s, +2)8 + 5, D cos(s, +2)8]
X5 (s, +1),
fuiiy=1[4sin(s, +2)8+ B cos(s, +2)8
+ (s, +m)C sin(s, +2)8
+ (s +m)D cos(s, +2)0]s,,
fugiir =4 cos(s, +2)8 — B sin(s, +2)8
+(s,+2~m)C cos(s, +2)8
+ (s, +2—m)D sin(s, +2)0] (53)

Because the complex roots s, appear as complex con-
Jugates the stresses and displacements in this series are
real.

3.2. Other geomerries

The above discussion presented a thorough analysis
of the possible stress fields encountered in bonded
structures in which the bonded strips meet at right
angles. Other geometries, though, can exhibit drastically
different stress fields. An excellent discussion of other
geometries can be found in an article by Hein and
Erdogan [8]. They consider bonded wedges of various
opening angles and plot the order of the singularity for
several geometries versus the ratio of the materials’
elastic moduli. Because some of these cases produce no

singularity, these results can, in theory, be used to
eliminate singularities for a particular set of materials
(by choosing appropriate geometries), or for a particular
geometry (by appropriate material choice). It has not
been shown experimentally that the singularities are
harmful (given that they don’t exist in nature), but the
success of fracture mechanics, which is based on singu-
lar stress fields, indicates that singularities are indeed
important and provide useful design information. The
elimination of a singularity by design, though, won’t
eliminate stress concentrations at the edge. so one must
be careful in assuming that this is advantageous. In any
event, it provides an interesting problem for future
research. Another interesting aspect of the work by
Hein and Erdogan is that many of the singularities (for
various geometries and material combinations) are oscil-
latory, i.e. the order of the singularity is complex. In
this case the stress fields near the edge of the interface
are of the form:

o, ~r*sin(bInr), (54)

where a and b are the real and imaginary parts of the
order of the singularity. One important example of this
type of singularity occurs when an edge crack exists. at
the interface of two materials. In this case, the ordes.of -
the singularity is given by:

8=05+b/-1, (55)
where b ranges from 0 to 0.33, depending on the

materials making up the bonded structure. The stresses,
then, are of the form:

o, ~Vr sin(b In r). (56)

One problem with this stress field is that the oscillations:
in the displacements along the surface of the crack lead-
to a predicted overlap of the crack surface, which is a
physical impossibility. Comninou [9], though, consid-
ered the effects of interfacial pressure in the presence of
such overlap, and found that the oscillations disap-
peared.

3.3. Particular solutions

As shown in the previous section. the solution for the

near-edge stress fields in bonded structures can be de-
scribed by the following equation:
[(XI{a}={S}. (57)
where the matrix and vectors are defined in eq. (40). A
solution to this equation exists if and onlyv if the vector
{ /} is orthogonal to all vector solutions of the equation
[10}:

[X]'{a) =o0. (s8)

it L
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If no solution exists, then the following solution for the
Airy stress function is adopted:

= %{r“[a sin 50 + b cos s8 + ¢ sin(s + 2)8

+d cos(s +2)81}, (59)

which can also be written as

&= ,—s(% -1In r)[a sin 568 + b cos s@

+e sin(s +2)0 + d cos(s +2)0]. (60)
This leads to a matrix equation of the form:
P55 - X1(a) = (1), (61)
which has a solution of the form:
[Xl{
(62)

a;(m{ a})={f).

When the material properties and loadings are such that
this type of solution holds, then a logarithmic stress
singularity exists at the edge of the interface. The condi-
tions for which such singularities are expected for ther-
mal stresses in bonded structures will be mentioned in
this section, but the analysis will not be carried further.
Detailed analyses of logarithmic singularities in com-
posites experiencing externally applied loads are dis-
cussed by Dempsey and Sinclair [11] and Zwiers et al.
[12}.

For bonded rectangles, the existence of a solution
depends on the parameter 2k, — k,. If this parameter is
zero, there is a solution vector to the associated homo-
geneous equation (eq. (58)), given by:

{a}={m O0m 04-m" 020)}. (63)
This is not orthogonal to the forcing vector, so a loga-

rithmic singularity is expected. For most materials,
though. the only solution to equation 58 is:

{a}={010-10100}, (64)

which is orthogonal to { f }. Hence, there is no logarith-
mic singularity and the particular solution to eq. (40) is:

a’=a"=c"=¢"=0 _ (65)
and

2 ” '/ _ ’-’
b’ =b”=d’=d”— I (n n EmO) . (66)

4(k— 1) ky

This particular solution provides a mechanism for re-
ducing thermal stresses in bonded structures. For com-
ponents in a state of plane stress, the stresses can be
reduced by matching the the thermal expansion coeffi-
cients of the two materials, but for plane strain; the

quantity:
(1+r"ja —(L+»)a (67)
shouid be minimized.

3.4. Solutions for finite bodies

The series solution for the stresses and displacements
near the edge of the interface between bonded struc-
tures satisfies the equilibrium and compatibility: comdis:
tions in the interior of two bonded structures, and it
satisfies the boundary conditions on the free surface
adjacent to the interface, but it does not satisfy the
other boundary conditions. Solutions for finite bodies
must account for this deficiency. The model shown in
fig. 1 is used to explore the thermal and swelling stresses:
in bi-layered structures. Because the thermal and swell-
ing fields and model geometry are symmetric about
x =, only half of the model must be considered, leav-
ing only one singularity to accommodate. Since there is
only one singularity, a single series solution, originating
vhere the interface intersects the free surface, can be
used to model ‘ae stresses :hroughou: the body: The
previously unknown coefficients mus: be determimed:.
such that the remaining boundary conditions aressistiss-:
fied in some approximate manner. These addiifias.
stress boundary conditions are zero normalrm
stress on the surface parallel to the interface andézero:
shear stress along the symmetry line. The final bowndary: - .
condition is that the displacements along the symmetry
line in the axial (x) direction are uniform, which can be
expressed by:
du,

_3730 at x=1.

the coefficients in the series to satisfy these: adm
boundary conditions.

The method used here to determine the coefﬁaens“
in the series is called, for lack of a better term, least
squares collocation, following Wang and Choi [13]..This
technique minimizes, in the least squares sense;.the
integral of the error in the boundary and sm
conditions along the outside of the symmetric ‘
discussion. of the. merits of this. &' “hod,.
various others, can be found in a re: ‘nt pape
authors [6).) This process is begun + d
following integral:

I= /; wyyoyy +w, yaxzy) dx + fBC( W, 0, _3; i*;

+ j;: (w}')‘o}'y + nyo’xy)

e i et + e rg——p < < 12
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which represents the integral of the errors in the series
solution along the top. symmetry line and bottom.
respectively. This residual integrand is given by the
square of the difference between the prescribed
boundary conditions and boundary values calculated
from the approximate series solution. In most thermal
and swelling stress problems the boundaries are trac-
tion-free, providing homogeneous boundary conditions.
In this case the integrand is given by the stresses and
displacements from the series solution alone. The nor-
malization factors w,, are used to non-dimensionalize
the terms in this integral, but they also can be adjusted
to emphasize a particular boundary condition on a
particular side. in order to optimize the calculation of
the unknown series coefficients. For this study, these
normalization coefficients were taken to be the shear
modulus of the associated strip. For a given number of
erms in the series solution, the minimization of the
residual integral gives the best available solution for the
unknown series coefficients. Inserting the series repre-
sentations for the stresses and displacements into this
integral, including the particular solution. and taking
the partial derivative with respect to each coefficient
vields a linear system in the unknown coefficients.
Because of the increase of the magnitude of each term
in the series with increasing n, the resulting matrix is
ill-conditioned. Hence, as before, higher precision is
required for cases where extra terms are used in the
series. This technique, then, can be used to study the
stress fields in finite bonded structures. Applications of
the method to fusion components follow in the next
section.

4. Effects of swelling and irradiation creep

+.1. Nature of irradiation-induced strains

In the fusion environment, deformation of structural
components in the radiation environment is generally
described as inelastic. Inelastic strains are generated in
solids which are subjected to a combination of external
fields (e.g., applied stress, temperature, and irradiation).
Such stresses may be of an elastic or non-elastic nature,
depending on the material’s behavior when the external
field is removed. For example, moderate temperature
excursions are usually associated with recoverable elas-
tic strains, while the combination of an applied stress
and high temperature usually produces nonrecoverable
creep strains. In the event of irradiation at high temper-
atures, additional modes of deformation are introduced

in the solid as a consequence of atomic displacements
and subsequent microstructural rearrangements.
Neutron irradiation has been shown to resuit in two
major deformation mechanisms, swelling and irradia-
tion creep. While swelling is always accompanied by
volume increases, which are sometimes substantial,
irradiation creep is considered to be volume-conserva-
tive following the rules of plasticity. Irradiation strains,.
whether swelling or creep, are non-recoverable except:
for short transients on the order of point-defect mean
lifetimes. so it is assumed that such strains are perma-
nent and independent. Experimental and theoretical
work have pointed out the interdependence of these two
modes of deformation only through the mediation of
the local stress. The stress dependence of swelling is
generally weak. and that of irradiation creep is close to
linear [14). Since both irradiation creep and swelling are
induced by a net point-defect flux to either dislocations
or voids, they must, in some sense. be proportional to
each other. This has been shown in many experiments.
In this paper both the sweiling strain ¢, and the
irradiation creep strain €5, are assumed to be linear
functions of fluence, except for graphite in which
densification usually occurs at the start of irradiations: .
Moreover, the swelling is assumed to be stress-indepemps::
dent and the creep strain rate is assumed to be lineasly:
proportional to the applied stress. Nonlinear effects:
may indeed be important, but at this preliminary stage
of analysis and with the unavailability of a large data.
base. little knowledge will be gained by investigating
nonlinear effects. The irradiation swelling strain rate ¢,
will therefore be mostly constant (except for the densifp--
cation of graphite), and the irradiation creep straimis
assumed to obey the simple rule:
des

52 = Béo, (m)

where B is termed the creep compliance coefficient, ¢ is
the accumulated neutron fluence ( proportional to time),
and o is the local stress. It is interesting to note that the
creep rate is linearly proportional to the stress in a
manner reminiscent of viscous Newtonian fluids. ]

Viscoelastic materials undergo time-dependentdes
formations, which are generally described by an cquge:
tion of the form [15}:

Ec(z)=a(t)+fo’x(z—f)a(¢)dr, 712)

where x(1—7) is a material-dependent kernel repre-
senting the viscoelastic constitutive behavior and is the:
source of differences between creep and linear viscoetass -
ticity. In many fusion applications, irradiation creepe:
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rates dominate thermal creep rates, and the creep com-
pliance. b. is nearly temperature independent. Because
the form of creep strain relationship represented by eq
(71) makes the kernel in eq. (72) constant, linear viscoe-
lastic theory can be used to study the effects of swelling
and irradiation creep on stress evolution in fusion de-
vices.

In order to determine the stresses and strains in a
viscoelastic body, the constitutive (stress—strain) rela-
tions must be modified to account for the time-depen-
dent deformations. In general these relations are writ-
ten:

P(D)s, = P,(D)e, (73)
and
P(D)Yo,=P,(D) (e, — 3¢, ), (74)
where

x® a,,
P(D)= ¥ Ciny (75)

n=1

A common solution method for these types of problems
is to take the Laplace transform of the viscoelastic
equations and compare the resuiting set of equations to
the steady-state formulation. Because the bulk behavior
is often different from the shear behavior in viscoelastic
materials, the stress—strain relations are usually written
in terms of the stress and strain deviators S;; and e,
defined as:

S:/ = oi/ - 011/3 (76)
and
€, =€;—€/3 (77)

In terms of these quantities, the stress—strain relations
are

S, =2pe,,, (78)
and
0, = 3Kkey, (79)

where « is the bulk modulus. Transforming eqs. (73)
and (74) gives

T P(p) .

%= Pp) ©0
and

. _ P(p)y. _

%= P(p) (cij 3€in)’ (81)

where the Laplace transform of a function f is denoted
by f. By comparing the elastic and viscoelastic constitu-

tive equations, it is apparent that the solution of the
viscoelastic problem in the Laplace domain is equiv-
alent to the solution of the steady-state problem, with
the elastic properties 2pu and 3« replaced by P,(p)/
P(p) and P,(p)/P;( p). respectively. The time-depen-
dent behavior of the viscoelastic problem is thus re-
covered by substituting the equivalent transformed
properties into the steady-state, elastic solution and
inverting the Laplace transform.

The primary difficulty in obtaining the inverse
Laplace transform is that the eigenvalues s, are not
explicitly known because they are determined by solv-
ing a transcendental equation. The integral operator is
unbounded, hence a small change in the transformed
function can be lead to an arbitrarily large change in
the desired time-dependent function. Therefore high
precision is needed.

The method adopted in this work solves the Laplace
transform as an integral equation. with f(z) as the
unknown function, using Gaussian quadrature. Other
methods, such as those suggested by Miller and Guy
{16] and Papoulis [17], may be used if the accuracy of
the quadrature method is insufficient. The integeak:is

approximated as a finite sum, using Nth ordesxGans-

sian quadrature. This can be evaluated for N arbitrary:

values of the Laplace parameter p, giving-ssheas:

system represented by

7 =+ £ 250) " e, (82)

This gives a system of N equations for the N unkmowns--

g(7;), which represent values of the unknown=fonction:-
g(r) at discrete locations i. Also, the accusasy.of.the.
method depends on the order of the quadratureand:on .
where the p,’s are chosen. Excellent agreement:was
found for exponential relaxation benchmark: calcula~
tions with p, =k and N =15. These values were
adopted for Maxwell materials.

4.2. Viscoelastic creep models

Viscoelastic material behavior was recogmdavun»—

century ago [18]. Earlier modeling efforts considesed--

various combinations of springs and dashpots: WM‘

sent viscoelastic responses. In the Maxweil: clement:
model, the displacement rate/stress relationship-is ob-
tained by a serial combination of an elastic spring:and:-a
viscous dashpot. A Kelvin model, on the other-hand,
considers a parallel combination of the two clements:

Various other representations of viscoelastic solide¢eg:,..
the standard linear solid, the Burger model; and:gener

DA%~ oy
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alized forms of the Maxwell or Kelvin models) are
available as rearrangements of spring and dashpot ele-
ments. Only the Maxwell model will be used here.

In uniaxial tension/compression, the total strain, e,
which is composed of the elastic component, ¢.. and the
inelastic component. ¢;,, can be described by the con-
stitutive relationship:

de 3

— = + — .
£ =(8E 8t)o (83)
where the first term on the night-hand side represents an
inelastic strain rate and the second term accounts for
additive elastic strain rates. Extending eq. (83) to muiti-
axial deformauon, one obtains:

iy
S, =2 (84)

Jo1 de

P

Ny

and
a,=3x(e, = 3e, ). (85)

where 1/7y=2uB. Now eqgs. (84) and (85) can be
rewritten in the general operator form of the viscoelastic
constitutive equations (73) and (74), with the following
definitions:

9 1
Pl(D)=§+;(;’

P.(D) = 2um, (86)
P(D)=1,
Py(D) =«.

Taking the Laplace transform of the operators in equa-
tion 86 and substituting into equation 80 yields the
following equivalencies between the elastic material
properties and the viscoelastic *properties” in the
Laplace domain:

2up
2p - ——=— 87
R V2 (87)
and
K~ K. (88)

Using this equivalency, the elastic solution can be used
to develop an equivalent solution in the Laplace domain
by using the effective material properties:

s _ PP
‘u_p-I-l/'r0 (89)

and

1[3x(p+1/7) = 2pu

i=x

20 3x(p+1/m) +pp |

(%0)

4.3. Relaxation of inelastic stresses Table
Mater

For illustrative purposes, the thermal and swelling
inelastic strains are represented by _

Elastic
6n = G+ (it (91) Expan
L Poissc
where (; and C, are constants and ¢ is time. The . TH
Laplace transform of this inelastic strain is given by: Meltir
g
~ 1 G ) T
€. =—1Co+—|. 92
in p( ] P ‘ ( )
If the characteristic values of the matrix in eq. (40) take
are constants, the time dependence of the total solution
. . . const
depends only on the particular solution, which, for the f;
plane stress and a uniform temperature change can be in dicA
written: limit
—_ € —€; =
U.".V= ~tr '—:;; -nl S (93) kw
7/ET -V /E Henc
or, in terms of the Laplace parameter (for 7, = ;" = 7)), on t

= 7 77 + .
% =8 o= )| p+a/3n, p(p+3/41)
(94)

Inversion of this equation gives the following time de--
pendent behavior for the particular solution:

i )[(co“—co') (¢ - )

u'p” , N -4t
oyy:s(;'__,_,,"’)[(co"co)e 47370

+41(C) = ¢ — e~ 437)]. (95)

Initial thermal stresses thus relax exponentially with
time, and if a material swells at a constant rate, the
swelling-induced stresses reach a steady-state value
which is proportional to the difference between the
swelling rates of the two materials and inversely propor-
tional to the creep rate.

Contrary to crack problems. the order of the singu-
larity of perfectly bonded viscoelastic materials depends
on the material properties, as is shown by the character-
istic values of the matrix equation (eq. (40)). Hence the
order of the singularity will depend on the Laplace::
parameter p, due to the nature of the equivalency:.
represented by egs. (87) and (88). Therefore, in the case
of perfectly bonded viscoelastic materials, the order of
the singularity will be a function of time. For example,
the transform of one of the material parameters, k, can-
be written:

. W (et
"“F”[pﬂ/ro’ ' (%)

As the Laplace parameter p ranges from 0 to oo, k can .
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Table 2
Maternial properties used for fusion applications

Graphite {20] CuBe[23]) V-3Ti-18i [23.24} W-3Re [22)
Elastic modulus (GPa) 11 116 118 430
Expansion coefficient (K™!) 7.5%x107% 17x10°¢ 10x10~° 48x10~%
Poisson’s ratio 0.11 0.34 0.36 0.36
Thermal conductivity (W /m K) 110 135 28 67
Meiting point (°C) - 1100 1900 3400

take on virtuaily any value. depending on the creep
constants of the two materials. This can be shown using
the final value theorem of the Laplace transform, which
indicates that as ¢ approaches infinite, & approaches a
limiting value given by

k,=B"/B’. (97)
Hence. the initial value of this parameter depends only
on the elastic properties (¢'/p”’) and the finai value
depends only on the creep rates, leading to the potential
for arbitrary variation of k over the component lifetime.

In addition, the dramatic impact that this parameter has
on the order of the singularity in bonded structures

indicates that, over time, the order can vary anywhere-in-

the range 0 <s, < 0.41.
4.4. Hlustrative fusion applications

As representative examples of two matenial combina-
tions for duplex fusion components, two substrate
materials (copper and vanadium) and two surface
materials (graphite and tungsten) are chosen to study
the impact of interface singuiarities in fusion compo-
nents. Copper is picked for its high thermal conductiv-
ity and vanadium for its swelling resistance and rela-
tively good high-temperature strength. Because graphite
has a relatively short lifetime (due to radiation damage),
it is not a viable candidate for commercial fusion reac-
tors, but it can be used for near-term machines because
the neutron fluence at the end-of-life is relatively small.
Therefore, graphite on copper is chosen to: represent
duplex components- for- near-term- devices; -and-- the-
tungsten on vanadium duplex is chosen to represent
commercial fusion applications.

Several alloys are possible for these two duplex
structures. The choice is generally governed by the
alloy’s radiation response and physical properties. Here
a Cu-—Be alloy is chosen because of its low swelling rate,
consistent with the INTOR design [19]. A highly iso-
tropic graphite (POCO Graphite Corporation’s grade
AXF-5Q, for example) is used as a surface material

< e g

because of its low swelling and high strength [20}. For
vanadium, a V-3Ti-1Si alloy is chosen as the substrate
material for the commercial reactor application prim-
arily because of its reduced susceptibility to helium
embrittlement induced by radiation damage [21].
Tungsten alloy choices are more limited than those for
vanadium or copper because a significant shift in the
ductile-to-brittle transition temperature (DBTT) is
caused by neutron irradiation of pure tungsten. How-
ever, alloying additions of rhenium have shown a be-
neficial effect on the ductility of tungsten [22]. There-
fore, the properties of a W—3Re alloy [22}] Wlll«w
for this analysis. The unirradiated material.pps

used in this study are given in table 2.

4.5. A near-term application

Pure copper is prone to high swelling rates;.with
measured values of up to 7% after only 15 dpa [25). The
addition of beryllium to copper, however, reduces-the.
propensity to swelling. At 450° C, Cu—Be was.founditor:
densify up to 0.66% at 16 dpa [26]. The thermal-conducs -
tivity of Cu—Be is not expected to change by lowsdess.
irradiation [26]. _

Graphite volume change by irradiation is caused:by
the growth of the hexagonal crystals perpendicular to
their basal planes, and the crystal shrinkage within this
plane. The initial stage of irradiation is accompanied.by
densification because the irradiation growth is absesbed:
in internal fabrication porosities, while the transverse-
shrinkage results in overall densification.. Whemsealk:
fabrication porosity is filled the graphite tends-torswelk: -
rapidly as illustrated in fig. 5. The end of hfmm
when accelerated swelling begins [27], causing lifetimes
shorter than one year. One other important aspect of
graphite behavior is the degradation of the-thermal.
conductivity with irradiation. -

The following assumptions are made in t.hergta--
phite /Cu-Be duplex study: -
1. Negligible effects of irradiation on the degradations:-

of the elastic properties (this is probablymuh&ﬁri:‘
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Fig. 5. Swelling of graphite {23].

for most graphites, but time-dependent moduli can-
not be incorporated in the present model, due to
computational difficulties).

2. There is no irradiation creep in either material.
(Again, this is not valid for graphite, but the present
example is intended to show the effects of swelling,
without creep. The following example — vanadium/
tungsten — will show the effects of creep.)

3. An initial 0.2%/dpa densification rate for Cu-Be
(here it is assumed that the subsequent swelling of
the Cu-Be does not begin until after the end-of-life
for the graphite).

4. Nonlinear graphite densification as shown in fig. 5.

5. A linear decrease in graphite conductivity to one
quarter of the unirradiated value by the end of life.

6. A braze temperature of 800°C [28].
This list shows that the present model is incapable of
representing the true behavior of graphite, due to it’s
time dependent elastic modulus and nonlinear swelling
curve. Hence, the time-dependent results shown below
are representative of an analysis of creep-free materials
with constant properties. A later example will include
creep effects to show their impact on the time depen-
dent singularities.

Table 3
Boundary-layer stress intensity factors for a graphite layer on a
Cu-—Be substrate

Intensity factor Fabrication Startup
(MPa m?%")

K, 136 74
K, —49 -27
K,e —-352 -28
Koo —764 —412

i

The Cu-Be/graphite component is modeled by as--
suming that it consists of a 5-mm-thick graphite tile on
a 5-mm-thick Cu-Be substrate, each 40 mm long. Plane
strain conditions are assumed. This idealization is not
intended to be for the actual divertor or limiter, but it
should represent the influence of various loadings on
the crack-free stress intensities near the edge of the
interface in such components. The peak, full-power heat.
flux is taken to be 5 MW /m?. The order of the stress
singularity for this duplex is 0.07.

The tortuous history that a fusion component experi-
ences begins with its fabrication. For a brazed part,
fabricauon takes place at high temperatures, leading to
differential contraction during cooldown if the con-
stituents have different thermal expansion coefficients.
As the component is cooled from its brazing tempera-
ture, the filler metal will freeze at some points, thus
locking the interface and causing thermal stresses as the
part cools further. For the graphite-copper components
described, this lockup is assumed to occur at 700°C, a
difference of 100°C from the brazing temperature. The
stresses caused by this process can be calculated from
the model developed for this paper by considering a
uniform temperature change of —670° C, assuming thag.-
room.temperature is 30 °C. This leads to the boundams:
layer stress intensity factors as shown in table 3. T
azimuthal stress intensity K,, is negative here, indicat~
ing that the tear-away stress (the stress normal to the -
interface) at the edge of the interface is compressive,
thus, perhaps, preventing delamination. Also, the mag-
nitude of this boundary-layer stress intensity is greater
than any of the other four. This is insignificant, thoughe:.
because the ratios of the different stress intensities:
depend only on the materials involved. Hence, this.
disparity would be accounted for automatically by any
measurements of the critical boundary-layer stress-in-
tensity factors. Experiments must be conducted to de-
termine whether these stress intensities are sufficiently
high to cause crack initiation or failure.

The startup of a fusion machine consists of several
steps. First, the entire device is heated fairly uniformty
to a temperature near the operating temperature. fos:
full-power operation. This brings the component neares* -
to the brazing temperature so, assuming that the resige.-
ual stresses resulting from the fabrication process have.: -
not relaxed, this initial heating will actually reduce the
stresses in the component. In this case, heating to an:
equilibrium temperature of 300 ° C will reduce the resid~--
ual stresses by more than 50% (actually by the ratio
400/670).

After bringing the reactor to a uniform temperatuze:-
near the operating temperature, the reactor power iss:
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Fig. 6. Surface temperature and swelling of both matenals for
the copper—graphite component.

ramped up to full power, pausing at different levels for
any required testing. When the power is initiated, the
associated heat flux sets up thermal gradients in the
plasma-facing components, thus introducing an ad-
ditional source of stresses. For a copper surface temper-
ature of 300°C, the 5-MW /m? heat flux leads to an
interface temperature 7; of 485 ° C and a graphite surface
temperature 7, of 715° C. This gradient, on top of the
stresses remaining from the fabrication and uniform
heating, leads to the stress intensity factors shown in
table 3. The tear-away stress is compressive and is
dominated by the residual fabrication stresses. Fig. 6
shows several results: (1) The decreasing graphite ther-
mal conductivity leads to an increasing thermal gradient
in the top layer, so the surface temperature increases
with the dose. (2) The surface temperature and swelling
are shown as a function of dose. (3) The surface temper-
ature goes from a low of 715°C to a high of 1053°C,
but the interface temperature doesn’t change because
the thermal conductivity of the copper is not affected
by the damage. (4) The percent volume change caused
by the damage shows that the graphite initially densifies
much quicker than the copper. After about 15 dpa
though, the graphite volume begins to increase while the
Cu-Be alloy continues to densify. The graphite is as-
sumed to fail at about 24 dpa, where its density returns
to its original value.

Because the damage behavior of the graphite is highly
nonlinear, the resulting boundary-layer stress intensities
vary significantly as a function of the radiation dose.
This is shown in fig. 7, which plots the four stress
intensities as a function of dose. The largest of the four,
K49, begins at about half its peak value, and changes
sign at about 5 dpa and again at about 19 dpa. This
stress intensity reaches its peak magnitude at the end-
of-life dose of 24 dpa. Failure could occur before this

1.0
Kmax=795
MPa m0-07 Kog
0.5
x
o KrO,Krr
E oof
<
x —0.54/ Krr
S s 12 18 24
dose (dpa)

Fig. 7. Boundary-layer stress intensities in copper-graphite
component during fuli-power operation.

time if the allowable stress intensity is degraded by the
damage, or if tensile tear-away stresses are more severe
than compressive values of equal magnitude.

The time-dependent boundary-layer stress intensity
K, for the copper-graphite component is shown in fig.
8, which includes the fabrication and startup responses.:
During the cooldown from the brazing temperature; the
copper shrinks faster than the graphite and the resuiting,..
stress intensity is negative. The subsequent»m~
heating prior to startup reduces the magnitude of this
residual stress intensity as shown, while the heat:fluxes..
associated with the onset of power cause a-slight-in-
crease. As the radiation damage begins, the graphite
densifies faster than the copper alloy. Thus the magni-
tude of the stress intensity is reduced because of slower
graphite shrinkage during cooldown from- thembraze
temperature. This phenomenon causes the stress inten~
sity to become positive until the graphite begins to
expand again at around 15 dpa. This leads to an end-

1.25
K =795
max wPa m9-07  full
0.75+ power
>5 operation
£ o2sf ~
X
>b —o.25 ]\ fabrication
) '
3 N
-0.75 1 \lmtiul startup
heating
-1.25

time (arbitrary scale)

Fig. 8. Boundary-layer stress intensities in copper—graphite-.
component.
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of-life stress intensity of about the same value as the
iniual residual stress intensity resulting from fabrica-
tion.

4.6. Commercial fusion application

For the analysis of the tungsten—vanadium dupiex,
the model consists of a 2-mm-thick tungsten layer on a
1.5-mm-thick vanadium strip. The length is taken to be
10 mm and only the plane strain state is considered.
Ihe heat flux is again chosen to be 5 MW /m?. For this
duplex. the calculated order of singularity is 0.12, which
i slightly stronger than that for the graphite-copper
combination. Given the assumed grazing temperature of
1000° C and an assumed lock-up temperature of 900°C,
the calculated fabrication boundary-layer stress intensi-
ties are shown in table 4. In a startup scenario, an initial
uniform temperature of 450°C is assumed, which was
found to reduce the residual stresses by more than half.
The onset of reactor power operation at 5 MW /m’
surface heating produces an interface temperature of
718°C and a peak tungsten surface temperature of
867°C. The calculated average temperatures of 793°C
and 584°C in the tungsten and vanadium, respectively,
are important because they determine the relative swell-
ing rate of the two materials. The residual stresses,
combined with the thermal gradients at the onset of
reactor operation lead to the stress intensities given in
table 4.

The swelling rate of pure vanadium can be signifi-
cant (~0.05%/dpa). However, alloying, particularly
with titanium, can result in a dramatic decrease in this
rate. Braski [21] has measured the swelling rate in
V-3Ti-1Si to be about 0.002% /dpa at 420° C with an
implanted helium level of 82 appm. The Blanket Com-
parison and Selection Study (BCSS) [29] estimates that
swelling rates of this order will occur until about 175
dpa. after which the swelling rate will increase to about
1% /dpa. Relevant data on the temperature dependence
for the swelling of vanadium and tungsten is very
scarce. Therefore. it is assumed that the temperature

Table 4

Unirradiated stress intensity factors for the V-W duplex
Intensity factor Fabrication Startup
(MPa m®?)

K, 180 51

K, —331 —-110

K.q —-131 —-38

Kge —664 —189

200 0.18
o~ > 2
Y Q
Y 1504 @
1%] =

+0.10
E 2
] 004 [}
L )
= Q
~ 008 £
g 50 4 exponentiat Q
X — decay F

collocation
0 . ; === 0.00
0 1 2 3 4
6/,

Fig. 9. Dose dependence of the order of the singularity and the
boundary-layer stress intensity in a tungsten /vanadium duplex,
without swelling.

dependence of these two alloy systems is similar to the

refractory alloy, TZM. at the same homologous temper-

ature. It will further be assumed that the irradiation

creep rate of both V-3Ti-1Si with W-Re alloys is

identical to that of titanium. An average value of the

creep compliance, B, of 1.5 X 10~%” MPa~! (n/cm?)™~!

will be used in this study. This value is based om
Nygren’s creep measurements on Ti [30]. This is equiv-
alent to a creep rate of 2X10~° MPa~! dpa~!. The
sensitivity of the results to this value will be studied by.
varying the creep rates of both vanadium and tungsten.

The physical and elastic properties of both materials are
also assumed to be unchanged under irradiation.

The analysis of the tungsten-vanadium duplex under
irradiation is complicated by the occurrence of irradia-
tion creep in both materials. This deformation relaxes
the thermal stresses and reduces the effects of the
swelling. As mentioned earlier, the swelling of both
materials is expected to be quite small so the initial
analysis consists of relaxation of the initial stresses.
Assuming identical creep constants 7, = 7," = 1.3 dpa,
the relaxation is shown in fig. 9 The azimuthal stress
intensity Ky, is shown to relax to zero within just a few
dpa. Considering that the expected lifetime of a typical
reactor component is over 100 dpa, this relaxation takes.
place very early in the life of the component, and the-
stresses will be essentially zero as long as the reactor
power continues. Of course, a portion of these stresses
will be recovered (as residual stresses) when the power
is turned off. Fig. 9 shows a companion curve with an
exponential decay of the initial stress intensity. The
relaxation for a Maxwell materiai is exponential so,
under most conditions, the decay of an initial thermal
stress would also be exponential. However, for a bonded.
material, the order of singularity also changes so the:

Kgg (MPa mS,+2)
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Fig. 10. Relaxation of boundary-layer stress intensity with and
without sweiling.

decay is altered. It is also shown that the order of
singularity actually increases slightly, causing a faster
than expected decay of the stress intensity. The implica-
tions of this behavior on the initiation of failure are
unclear.

If the assumed swelling behaviors of the materials in
this component are in error, there may be a significant
sweiling in one or both of the layers. To study this, the
tungsten will be assumed to swell at the rate of
0.2% /dpa. Because the material is continuously expan-
ding as the radiation damage occurs, the stresses in the
component reach a steady-state level where the swelling
rate is balanced by the creep relaxation rate. This ievel
is determined by the two rates, and by the amount of
self-constraint associated with the structure. This phe-
nomenon is shown in fig. 10, where the boundary-layer
stress intensity relaxes to a steady value of around 106
MPa m"*? within just a few time constants. The fact
that the stress intensity decreases, even in the high
swelling case, is a result of several factors and is not a
general result. If the swelling rate was higher, all other
factors being equal, then the stress intensity could in-
crease despite the creep relaxation. The relaxation time
would scale with the time constant 7, and the steady-
state stress intensity would be proportional to the re-
laxation constant. One complication. arises, . though,
when one creep rate changes relative to the other. In
this case the scaling arguments, which are possible if
both rates changes, are not valid. Fig. 11 shows the dose
dependence of the boundary layer stress intensity for
two different creep rates. When the creep constant, =,
is identical for both materials, the stress intensity is
shown to relax to a steady-state value of about 106 MPa
m**!. When the creep constant in the vanadium is
increased to 2.6 dpa (indicating a slower creep rate), the

300+
.’:‘ 7,=2.6
"E’_-_: 2004
o
a
=
~ 100+ r'=1.3
m o
N4 7'=1.3 dpa

0 '

() 1 2 3 4
6/,

Fig. 11. Dose dependence of the boundary-layer stress inten-
sity for two different vanadium creep constants.

steady-state stress intensity increases to about 240 MPa
m* 2. As a companion to fig. 11, fig. 12 shows the time
dependence of the order of the singularity. Whereas the
steady-state stress intensity increased with the increased
creep constant, the enc-of-life order of singularity de-
creases. The change, though, is quite smail over the life
of the component. .

The effects of changing a singie creep i
illustrated in fig, 13, showing how both the fate:
stress intensity and the order of singularity vary- wnh
the vanadium creep constant for a fixed tungsgemvcreep:. .
rate. The steady-state stress intensity is seen to increase .
as the creep in the vanadium slows, while the order of
singularity decreases. The increase in the stress intensity
is quite strong, but if 7, were increased sufficientiy, the
order would go to zero and the singularity woulditisap-- -
pear. This occurs because as the creep in the. vanadivm-
slows, it becomes effectively stiff, relative to thestongss-
ten. Because the tungsten was originally stiffer than the.

0.20
=
S 0.15] =13
3 /
o
£
» 0.10 =2.6 [N T
- o
o
]

0.05 1
°
5 *=1.3 dpa

0.00 + +

L] 1 2 4
6/,

Fig. 12. Dose dependence of the order of the singulaxity for
two different vanadium creep constantse. . .. . .



70 J.P. Blanchard, N.M. Ghoniem / Analysis of singular stress fields

250 0.4
~— i
PN 200 ] 2
* 1 {03 &
o ; 5
E 1504 o
Y i 102 &
= § 3
< 100 + ‘g
a
g ’ +0.1 3,
x 50 ‘[ <
04 0.0
0 | 2 3

To (dpa)

Fig. 13 Steadv-state stress intensity and order of singularity
for varving vanadium creep rate.

vanadium, the effective stiffening of the vanadium brings
the ratto of the suffnesses closer. thus eliminating the
singularity.
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