
168 Journal of Nuclear Materials 174 (1990) 168-177 

North-Holland 

Nucleation and growth theory of cavity evolution under conditions 
of cascade damage and high helium generation 

N.M. Ghoniem 
Mechanical, Aerospace and Nuclear Engineering Deparfment, School of Engineering and Applied Science, Uniuersity of California 
_ Los Angeles, Los Angeies, CA 90024, USA 

The evolution of helium-filled cavities during neutron irradiation is analyzed in terms of the stochastic theory of atomic 

clustering. The conventional separation of nucleation and growth is replaced by a self-consistent evolution model. Starting 

from kinetic rate (master) equations for the clustering of helium and vacancies, helium mobility, helium-vacancy cluster 

stability, and cavity nucleation and growth are all included in the model. Under typical fusion irradiation conditions (cascade 

damage and high helium-to-dpa ratios), the following is suggested: (1) Helium mobility decreases with the evolution of the 

microstructure. At quasi-steady state, it is mainly controlled by interstitial replacement or thermal desorption. (2) Gas 

resolution from cavities by cascades increases nucleation at high fluences. (3) The cavity size ~st~bution is broadened 

because of cascade-induced fluctuations. (4) The majority of helium-filled cavities are in a nonequilibrium thermodynamic 

state. 

1. Introduction 

Under the neutron i~adiation conditions expected in fusion reactor structural materials, the evolution 
of microstructures cannot be easily described by the conventional separation into sequential nucleation 
and growth phases. In particular, helium-filled cavity formation proceeds via competitive reaction 
mechanisms which render the conventional viewpoint inapplicable. For example, the mobility of helium 
atoms is dictated by the evolving cavity ~crost~cture. Since helium mobility is controlled by the rates of 
trapping and detrapping from various helium-vacancy (Hv) clusters, it would be inappropriate to assume 
that it is a constant value. Because cavity nucleation is determined by helium mobility, the two processes 
are therefore interdependent. Collision cascades interact directly with helium atoms inside cavities and can 
result in their displacement back into the matrix. This process, called gas re-solution, is dynamic and 
continuous, resulting in re-nucleation of smaller size cavities, provided that a significant amount of helium 
has already been introduced into the solid. Nucleation is therefore not terminated, as assumed in classical 
nucleation theories, but continuously supplies freshly formed small cavities. Nucleation and growth of 
cavities are strongly coupled under these circumstances, and the “mean field” approximation used in the 
rate theory of cavity growth is poor. 

Classical nucleation theory was originally applied to the nucleation of voids with no gas assistance. 
When the theory is used to predict the conditions for condensation of water vapor in air, liquid droplets 
are found to form at a critical value of the supersaturation ratio (about 5 to 6). As soon as the liquid 
droplets form, the supersaturation ratio abruptly drops and thereby terminates nucleation. The success of 
classical nucleation theory critically depends on this aspect. However, these conditions are not met under 
irradiation because of the ~nt~uous production of point defects and gas atoms. The theory (developed 
independently by Katz and Wiedersich [I] and Russell [2]), and its extensions, display several unsettling 
characteristics. First, nucleation rates and not cavity densities can be predicted. Second, computed 
nucleation rates are extremely sensitive to the physical parameters (e.g., the interstitial/vacancy arrival 
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ratio, surface energy, and gas pressure). When gas production is predominant, however, as in nuclear fuels 
or in fusion structural materials, terminal cavity densities can be obtained. The work of Greenwood [3] and 
of Trinkaus [4,5] are examples of this approach. 

Growth of gas-filled cavities has been treated within the framework of the mean field approximation 
where statistical variations in time and space are averaged. The original developments of Brailsford and 
Bullough [6], Bullough et al. [7], and many others (e.g., refs. [S-11]) have been successful in explaining the 
gross features of many experimental observations on cavity growth. However, under fusion conditions, the 
high helium-generation rates and the presence of collision cascades require consideration of additional 
physical mechanisms which influence the details of cavity growth. 

In this paper we give a concise description of our work on HV-cluster evolution under irradiation, as 
applied to fusion reactor conditions. Analysis of helium transport and its coupling with the transient 
nucleation of small HV clusters is provided in section 2. A stochastic approach to the coupled 
nucleation/growth problem is given in section 3. The effects of single- and multiple-atom absorption and 
loss from an HV cluster are incorporated into the framework of Fokker-Planck theory given in section 4. 
The resulting equation which describes the evolution of the size distribution is solved by a two-moment 
approximation in section 5. Results for the effects of high helium-generation rates and collision cascades 
are discussed in section 6, and conclusions are given in section 7. 

2. Transient helium transport and nucleation 

Helium migration and transport is a time-dependent process controlled by the density and distribution 
of helium traps and by the trapping/detrapping rate of each. Since most helium traps are in the form of 
single vacancies or small vacancy clusters, it is obvious that helium transport is intrinsically coupled with 
the nucleation of small HV clusters. As an interstitial atom, helium mobility is very high. Unless helium is 
migrating between traps, it will be transported quickly to grain boundaries causing severe embrittlement. 
Therefore, any mechanism that enhances the speed of matrix trapping will be advantageous in preventing 
grain boundary absorption of helium. To determine the transport and nucleation rates of helium, a model 
was developed for the reactions between the three primary species (i.e., vacancies, interstitials, and helium) 

w 
Rate equations are developed for the concentrations of the following species: (1) free vacancies, C,; (2) 

self-interstitial atoms, Ci; (3) interstitial helium atoms, Cs; (4) substitutional helium atoms, Cs”; (5) 
d&interstitial helium atom clusters, C,,; (6) d&helium, single vacancy clusters, C,,; (7) and bubble nuclei 
containing three helium atoms, C *. These are given by: 

dC,/dt=fG+(pe,+6)C,-[oC,+BC,+y(C,”+C,+2C,,+2C,,,+3C*)]C,, 

dCi/dt=fG-(C,+Cs”+2C,s,+3C*-C,‘)aCi, 

dC,/dt=Gn+(pei+6+aCi)Cs,+(pez+2S)C~,,+3(6+aCi)C* 

+ 4&s + 4aC,C,s, + msto, + M4sb + SMppt - [ cctot + C” + 4cs + csv 

+ 2C*, + 2C,,” + C,, + $&t] PCs, 

dC,,/dt = PC&” + (e2 + 26)C,,, - (ei + PCs + 6 + SC, + oLCi)Csv, 

dC,,/dt = 2pC,Z + 3(YCiC* - (2yC” + 2pC, + 26)C*,, 

dC,,,/dt = ,lKsC.~ + 36C * + 2yC,C,, - (2pC, + 26 + pez + 2X, + 2cKi)C,,, 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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(7) 

d M&d t = ,K,,C, - SM,, . 

The definitions of various reaction rates are given in the Nomenclature. Four basic reaction frequencies 

are used in our analysis: 

(Y = 48~~ exp( -E,“/kT) (s- ‘) (self-interstitial reaction frequency), 

p = 48v, exp( - Epm/kT) (s-l) (helium reaction frequency), 

y = 48~” exp( - Er/kT) (s ’ ) (vacancy reaction frequency), 

S = bG (s-l), (radiation resolution frequency), 

where the atomic jump frequencies are denoted by Vi,g,v and the migration frequencies by E& The 
re-solution parameter, 6, is defined as the probability per displacement for dissolving a helium atom back 

into the matrix. The emission probabilities, e, through e5, are computed from binding energies, as outlined 

in ref. [12]. 
Numerical solutions to the reaction rate equations have been developed, and the concentrations were 

computed as functions of irradiation time. Two major quantities can be obtained from this analysis: (1) 

the “effective” helium diffusion coefficient and (2) the time-dependent cavity nucleation current. We will 

show results for the helium diffusion coefficient in this section and will then proceed to describe nucleation 
and growth of HV clusters. 

Helium transport in an irradiated material occurs by one of several mechanisms or channels. A 

convenient way of defining the effective diffusion coefficient, D&, is to take the weighted mean of all 

channels: 

where D;i, and Ch, are, respectively, the diffusion coefficient of helium and its concentration in channel i. 

Obviously, the dominant channel will be the one with the highest helium concentration and the highest 

mobility. This turned out to be a complicated situation during transients, since clustering must be taken 
into account. Under typical reactor conditions, the length of the transient is strongly dependent upon the 
temperature and initial sink structure (see refs. [12] and [13]). During steady state, however, the effective 
diffusion coefficient can be obtained by simple analysis (see refs. [4,13,14]). Fig. 1 shows the effective 
helium migration energy as a function of temperature for nickel at a displacement damage rate of lo-’ 
dpa/s. The results are shown after an initial transient (i.e., at quasi-steady state), and are shown for both 
numerical calculations of the equations and approximate analytical solutions. The mobility of helium is 
determined (a) at low temperatures by radiation displacement from atomic-size traps, (b) at intermediate 
temperatures by the interstitial replacement mechanism, and (c) at higher temperatures by the thermal 
detrapping mechanism. The abrupt jumps in the migration energy are the result of analytical approxima- 
tions. They indicate the approximate temperature boundaries for the various dominant mechanisms in 
nickel under reactor irradiation conditions. Helium mobility by the vacancy mechanism has also been 
considered by Trinkaus [4] and by Forman and Sir@ [14]. 
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Fig. 1. Effective helium migration energy for Ni under reactor 

irradiation as a function of temperature. 
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Fig. 2. Dependence of the relative root-mean-square (RMS) for 

vacancy concentration of the fluctuation amplitude on cascade 

size. 

3. Stochastic description of nucleation/growth 

Following Russell [15], we represent an HV cluster as a point in a two-dimensional (2D) HV phase 
space. The dynamical equations of motion of this point (h, u) can be written as a set of two Langevin-type 

equations for the velocity components as: 

h = dh/dt = R’h - RF - R; + t,(t), (11) 

C=du/dt=R”,-R”,-R:+&(t). (12) 

Here, the time-averaged (non-fluctuating) rates can be computed from the rate equations (l)-(9): 

Ri = rate of helium capture, Rf = rate of helium replacement, Ri = rate of helium re-solution, Rt = rate 
of vacancy emission, and RC = rate of interstitial capture. Stochastic fluctuations are represented by the 

random “forces” th(t) and t,(t). These random components have a zero time-average, but are char- 
acterized by an amplitude and a spectrum. Cascade-induced fluctuations in point-defect concentrations 

have been studied by Mansur et al. [16], Marwick [17], and Chou and Ghoniem [18]. Fig. 2 shows the 
relative value of the root-mean-square (RMS) fluctuation in vacancy concentrations as a function of the 

cascade radius [18]. It is to be noted that the amplitude of the fluctuation is quite significant, and this will 
be reflected in the random function, E,(t). It is interesting to see that as theocascade size increases, the 

fluctuation amplitude decreases for cascades with a radius greater than - 400 A. Cascades initiated by 14 
MeV neutrons can be several thousand angstroms in size and may, therefore, result in a lower fluctuation 
amplitude, as compared with fission neutrons. Since the frequency range of the fluctuation spectrum is 
much higher than inverse relaxation times in cluster phase space, the average value of the phase-space 
vector can be described by trajectories, each being determined by the initial conditions. Those trajectories 
are solutions of eqs. (11) and (12), with the fluctuating functions Ei,( t) and t,(t) set to their time-averaged 

value of zero. 
Stability of the HV cluster can be investigated by examining the phase-plane representation of the nodal 

lines given by dh/dt = du/dt = 0. The critical points of the solution are obtained by the intersection of 
the line dh/dt = 0 with the line du/dt = 0. 

Numerical solutions of eqs. (11) and (12) have been implemented for the conditions of stainless steel 
irradiated in EBR-II (appm He/dpa = 0.1) and HFIR (appm He/dpa = 57). The results are shown in fig. 
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Fig. 3. Phase space representation of the flow field for (a) EBR-II and (b) HFIR conditions. Computations were made for a total sink 
density of 10” cme2 and at 500 o C. 

3, where the flow field in the HV phase space is represented by arrows. Fig. 3a illustrates that stochastic 
fluctuations (e.g., by cascades) are necessary to drive nucleation past the second critical point. On the other 
hand, it is shown that under high He-to-dpa conditions (fig. 3b), there are no critical points and the flow 
field propagates smoothly from any small cluster size (e.g., two helium atoms and a few vacancies) to 
larger ones. Nucleation is expected, therefore, to proceed without the need for stochastic fluctuations. 

This phase-space analysis is useful in damage correlation studies. It can be used to determine if a given 
damage simulation experiment will lead to the same nucleation and cluster stability conditions as in a 
fusion reactor. 

If the critical HV-cluster size is assumed to contain three helium atoms and one vacancy (see fig. 3b), 
the nucleation rate can be calculated from the forward reaction rates of eq. (7): 

dCt0, -= ]J~*=3(~c,+$,)c*. dt 03) 

The critical nucleus concentration is denoted by C*. In eq. (13), it is assumed that nucleation is driven by 
further absorption of helium atoms and vacancies at existing clusters which contain three helium atoms. 
This is a simplified form of the nucleation current, but this simplification is possible because of the high 
He-to-dpa ratio. 

In the present development, the nucleation current J* has two components which represent one of the 
boundary conditions to the flow field (shown in fig. 3). The helium- and vacancy-driven components can 
be represented by, respectively, J,, and J,. Thus 

J* = J,,i+ J,j, 

where i and j are unit vectors in the helium and vacancy directions, respectively. 

(14) 

Fig. 4 shows results of calculation for the total density of HV clusters for the conditions of dual 
ion-beam irradiation of steel at 625 ’ C [19]. The He-to-dpa ratio is 5 appm He/dpa and the displacement 
damage rate is 3 x low3 dpa/s. Continuous nucleation is clearly evident in the experimental results. Our 
study of the re-solution parameter, b’ (the probability of gas re-solution into the matrix per dpa) shows 
that an average value of b on the order of unity is consistent with these experiments. The exact value of b 

should be determined from theoretical comparisons with experiments under the specific damage condi- 
tions. This value represents an average over the cavity size distribution and is quite important in explaining 
the continuous nucleation of cavities. 
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Fig. 4. Comparison between calculations and experiments for I-IV-cluster density of steel irradiated at 625O C and 3 x 10W3 dpa/s. 

4. The Fokker-Planck description of cavity evolution 

The concentration of clusters containing h helium atoms and u vacancies at time t is given by 

C(h, u, t) dh du = C,,,(t)P(h, u, t) dh du, (15) 

where P(h, u, t) dh du is the probability of finding a cluster in the size interval (h, u + H i- dh, u + du). 
The time evolution of the probability function in terms of all possible transitions in the HV phase space is 
given by the master equation 

df’(k u, r) 
dt = $w{[@-Ah,), (u-Au,)] -+, o>}P[(h-Ah,), (u-do,), t] 

-CW{(h, u)-,[(h+Ah,),(u+Au,)]}P(h, u, t)- 06) 
k 

Here Ah, and Au, are fluctuations in the helium and vacancy contents, respectively, which are caused by 
a stochastic process, k. We have shown that when the transition probability, W, and the cluster probability 
density, P, are bnth expanded around the point (h, u), one obtains the 2D Fokker-Planck equation given 

by 

z+v.r=O, 07) 

where 

J=FP- v(DP), (18) 

F= ;;; 
[ 1 

is a drift vector and 

(19) 

is a diffusion tensor. The components in eqs. (19) and (20) represent first and second moments of the 
transition probability. Details of the derivation of eqs. (17)-(20) can be found in ref. [20]. It is noted, 
however, that while cascade-induced fluctuations do not affect the magnitude of the first moments (an, 
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and a,,), they increase the magnitudes of the second moments (Q,,, and aZh,,). This can be seen by 
referring back to fig. 3. 

Numerical solution of eq. (17) on an infinite quarter phase plane is given in ref. (201. In this paper, a 
two-moment solution is presented for simplicity. Under these conditions, the rates of helium (kg”), 
vacancy (kvC) and interstitial (k’“) capture, helium replacement (kg), and vacancy emission ( kve) can be 
used to compute the elements of F and D. These are given by 

alh = kg= - ( kge + k*), (21) 

a,, = k” - ( kic+ve + kgr), (22) 

a*,,,,= +[kg”+ kg’+kgc], (23) 

u~vv=~[kic+ve+kpr+kvc], (24) 

a2hv = a2vh = kg. (25) 

5. Approximate two-moment solution of the Fokker-Planck equation 

The Fokker-Planck equation (eq. (17)) must be solved for the evolution of the probability density, P, in 
order to determine the nature of the evolving HV clusters. A numerical solution, which is coupled with the 
transient nucleation conditions (eq. (13)), has been developed by Sharafat and Ghoniem [ZO] for eq. (17). 
Denoting the cluster size by the vector x, such that 

x = hi + uj, (26) 

and taking the first moment of eq. (17), we obtain 

d(x)/dt = (F(x)), (27) 

where the right-hand side represents the drift vector averaged over the probability distribution function. 
The symbol ( ) is used to denote this average. Eq. (27) is not a closed equation because of the nonlinearlity 
of 1”. However, to lowest order, one can approximate this equation by 

d(x),‘dt = 8-((x)). (28) 

The integration of eq. (28) gives the trajectory of the average cluster in the growth regime of the flow field 
shown in fig. 3. 

Let us define the variance matrix by 

(SXJX,) = (XiX,) - (X,)(X,) i, j = h,v. 

Kinetic equations for the variance matrix can be shown to be given by [17]: 

(29) 

(30) 

Eq. (30) is again not closed, and expansions of the parameters around their values at the average 
trajectory, (x), would result in an open-ended set of moment equations. Although it is possible to develop 
coupled equations for higher order moments (see ref. [22]), it is sufficient here to develop a lowest order 
expansion of eq. (30): 

Eq. (31) is the lowest order evolution equation for the variance matrix. The second moments of the 
transition probabilities, az,ii, are the components of the diffusion tensor (eq. (20)), and are to be evaluated 
at the average trajectory, x. 
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We will proceed here by reconstructing the probability density function from its zeroth, first, and 
second moments. The simplest reconstruction procedure can be based on Gaussian functions, i.e., 

P(h, u, t) = (SX,SX,Jz;;)-' exp( -y*/2), 

where 

(32) 

(33) 

6. The effects of helium and collision cascades on cavity evolution 

The formulation presented in the previous section permits study of the effects of simultaneous helium 
generation and cascade-induced point-defect fluctuations on cavity evolution. This is certainly useful for 
extrapolating existing radiation damage data to anticipated fusion conditions where the primary dif- 
ferences in damage parameters are the helium generation rate and the cascade size. Fig. 5 illustrates the 
propagation of the probability distribution function in size space under typical HFIR and EBR-II-type 
irradiation conditions for stainless steel at 500°C. The He-to-dpa ratio plays an important role in 
determining the character of the distribution function. Both the HFIR and EBR-II reactors have similar 
displacement damage rates of - 10e6 dpa/s, but differ in the He-to-dpa ratio (i.e., 57 for HFIR and 0.1 
for EBR-II). The effects of this large difference between the ratios on the spread of the size distribution 
can be seen clearly in fig. 5. The low He-to-dpa ratio, characteristic of EBR-II, results in a smaller spread 
in helium content, and helium plays a small role in cavity evolution. (Notice the different scales between 
figs. 5a and 5b). In both cases, however, most of the cavities are not in thermodynamic equilibrium where 
the gas pressure is balanced by surface tension force [20]. 

Cascade effects on the cavity size distribution are included through the second moments of the 
transition probabilities in the Fokker-Planck equation. Cascades induce fluctuations in point-defect 

HFIR 

Fig. 5. Probability distribution function for HV clusters under irradiation of stainless steel at 500 o C for HFIR and EBR-II. 
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00 

Fig. 6. The effects of a fourfold increase in the point-defect fluctuation amplitude on the probability distribution function for l-iv 

clusters under irradiation of stainless steel at 500 o C. 

concentrations, as previously shown in fig. 2. Since the RMS value of the fluctuation depends on the 
cascade size, we must determine a spectrally averaged value for the variances 8X, and SX,. We will treat 
this problem parametrically here, where we assume that cascades do not change the value of 8X,, but 
simply increase SX,. Fig. 6 shows the anticipated effects of cascades on the spread of the same size 
distribution as shown for HFIR conditions in fig. 5. Cascades were assumed to result in a fourfold increase 
in the magnitude of SX,. The point to be made here is that a “broad” size distribution is indicative of an 
important effect of cascades. Without a systematic experimental/ theoretical study, it is difficult to be 
more quantitative about the effects of cascades on cavity evolution. 

7. Conclusions 

Cavity evolution under conditions of cascade damage and high helium generation, which are typical of 
fusion reactor conditions, is shown to be a continuous process which cannot be easily separated into the 
classical nucleation and growth regimes. It is also emphasized that the rate of helium transport, which is 
described as an effective helium mobility, has a strong dependence on HV-cluster evolution. The long 
transient, associated with high helium mobility, is a result of the concentration build-up of small HV 
clusters which act as the primary traps for migrating helium. However, the quasi-steady-state mobility can 
be understood in terms of three simple mechanisms: radiation displacement at low temperatures, 
interstitial replacement at intermediate temperatures, and thermal desorption at high temperatures. 

The displacement of helium by cascades from HV clusters results in significant effects on cavity 
evolution. First, this displacement process provides for an internal source of helium production which, in 
turn, causes continuous cavity nucleation. Second, the resulting fine distribution of helium nuclei in the 
matrix is associated with slower growth rates for helium-filled cavities. 

The stochastic framework represented by Fokker-Planck theory is shown to be a convenient approach 
to the analysis of cavity evolution under fusion and simulation conditions. Although the major features of 
cavity evolution are included in this framework, its utility can be fully exploited by a systematic 
experimental approach where the basic parameters of the model can be clearly determined. 
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Nomenclature 

177 

f 
G 
c:i 

GH 
m 

C tot 

%b 
A4 

PPt 
E 

cPPt 
C PPt 

C & 

Fraction of point defects surviving in-cascade recombination 
Displacement damage rate 
Equivalent matrix distributed point-defect sink density (i.e., for dislocations, cavities, and gram 
boundaries) 
Helium generation rate 
Average number of helium atoms in a cavity 
Total cavity density 
Helium concentration at grain boundaries 
Helium concentration at precipitate interfaces 
Matrix cavity combinatorial number 
Precipitate cavity combinatorial number 
Precipitate concentration 
Equivalent distributed sink for grain boundaries 
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