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The effects of cluster size-dependent 
aggregation on thin film formation 
C A S t o n e  a n d  N M G h o n i e m ,  Mechanical, Aerospace and Nuclear Engineering Department, 
University of California, Los Angeles, California 90024, USA 

The early stages of thin film formation by thermal atom deposition are modeled by a system of kinetic rate 
equations which describe atomic clustering phenomena. Specifically, a set of discrete kinetic rate equations, 
used to model small atomic clusters, is coupled to a set of kinetic moment equations which model large 
atomic clusters with a continuum description. Cluster growth and dissociation processes are assumed to occur 
via single-atom transitions. Growth behavior is investigated as a function of cluster size, x, with an 
aggregation parameter w ( x )  = Wo xr for 0 <~ r < 1. Results from this statistical approach illustrate how 
size-dependent aggregation influences the cluster size distribution during the early stages of nucleation and 
growth. 

1. Introduction 

In several theoretical studies of thin film formation, a kinetic 
formulation of hierarchical discrete rate equations has been used 
to describe cluster sizes 1-8. These rate equations are coupled, 
non-linear, and extremely complex. Thus, they are difficult to 
solve unless some simplifying physical assumptions are intro- 
duced. From a computational standpoint, these approaches 
must solve a large system of equations to obtain specific 
clustering details since the number of atoms in the largest cluster 
dictates the number of discrete equations that must be solved. 

We have recently outlined an atomic clustering model which 
includes many processes that occur during thin film formation 
by energetic atom deposition 9. Our benchmark studied the 
early stages of a deposition process (i.e. substrate coverage 
~< 10%) for the first atomic monolayer with the assumptions 
that thermal, single atoms were deposited at a constant rate, 
cluster growth and decay resulted only from mobile single 
atoms, only single atoms could evaporate off the substrate, and 
aggregation and dissociation rate constants did not depend on 
cluster size. Following Zinsmeister's approach 7, these assump- 
tions enabled us to model atomic clustering phenomena with a 
series of discrete kinetic rate equations for clusters containing 
up to Xm~ ~ atoms 9, To avoid solving Xma x discrete equations, a 
continuum equation was derived for 3 ~< x ~<)(max, where x 
denotes the number of atoms in an x-atom cluster. A transition 
cluster size, X~, was defined as the smallest cluster size de- 
scribed by the continuum. Thus, we modeled atomic clustering 
with a set of discrete kinetic equations for 1 ~< x ~< (xc - 1) and 
with a continuum equation for X¢ ~< x ~< )(max 9, 

Inherent in our earlier work and Zinsmeister's theory 7 is the 
assumption that mobile single atoms diffuse over the substrate 
and aggregate with large, stationary clusters at a constant rate. 
Physical intuition would lead one to believe that larger clusters 
present a bigger target for single atoms to diffuse into; however, 
the overall aggregation rate also depends on the population of 
large-size clusters residing on the substrate. The purpose of this 
work is to study the influence of a size-dependent aggregation 
parameter on the early stages of atomic clustering. Theoretical 
results will demonstrate how cluster geometry influences the 
cluster size distribution. 

2. Kinetic clustering equations with size-dependent aggregation 

Developing the system of kinetic clustering equations with a 
size-dependent aggregation parameter follows the same ap- 
proach used previously 9. The variable of interest is the cluster 
density distribution function, C(x, t), which represents the 
number of clusters per unit substrate area found on the sub- 
strate at time t; x is the number of atoms in the cluster. Five 
basic processes govern the behavior of C(x, t) during the early 
stages of atomic clustering. These processes include the deposi- 
tion rate, direct impingement of the depositing species onto 
growing clusters, cluster evaporation, cluster aggregation, and 
dissociation. Focusing on the early stages of a deposition 
process allows one to neglect direct impingement phenomena 
because only a small portion of the substrate is assumed to be 
covered (~< 10%). Cluster dissociation will also be negligible in 
a thermal atom deposition process, especially if the growing 
nuclei form stable clusters. For  a single-atom deposition pro- 
cess in which only single atoms can evaporate off the substrate 
and cluster growth is due to single-atom transitions, the follow- 
ing rate equation describes the population of single atoms on 
the substrate at time t: 

~3C( 1, t) [ x ~ ,  
8t = q - v a C ( l ' t ) - t  x=l 

- (v,gg(x, t)>Ctot(/). 

V,gg(X, t)C(x, t ) ]  

(1) 

The successive terms on the right-hand side of (1) represent the 
deposition rate of single atoms on the substrate (q), the evapo- 
ration of single atoms off the substrate, the aggregation of 
single atoms with discrete clusters (i.e. 1~< x ~< Xc - 1), and the 
aggregation of single atoms with clusters in the continuum 
distribution.The frequencies v a and Vagg(X , t) describe the re- 
spective rates at which single atoms evaporate off the substrate 
and aggregate with x-atom clusters. The frequency (vag~(x, t)) 
represents an aggregation rate which has been appropriately 
averaged over the continuum cluster distribution; Ctot(t) de- 
notes the total density of clusters in the continuum. 

Clusters containing two atoms are produced when two single 
atoms aggregate together, but are destroyed when a single atom 
aggregates with a two-atom cluster to form a three-atom entity. 
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The appropriate kinetic equation is 

~C(2, t) 1 
cqt = ~ V~gg( 1, t )C( 1, t) - V~gg(2, t)C(2, t). (2) 

The remaining discrete clusters, for 3 ~ x ~ (X¢ - 1), are gov- 
erned by 

dC(x,  t) 
~t = v~gg(x - 1, t )C(x  - 1, t) - v~gg(x, t )C(x ,  t). (3) 

Clusters containing X¢ or more atoms are described by a 
continuum distribution function, C¢o~(x, t), which depends on 
the following three characteristics of the distribution: Ctot(t), 
the total density of clusters in the continuum; (x)( t ) ,  the 
average size of the continuum clusters; and ME(t), the second 
central moment or variance of  the continuum distribution. By 
taking the zeroth, first, and second moments of  our continuity 
equation 9, the following kinetic moment equations can be 
derived for size-dependent aggregation phenomena: 

Oftot(t) 
- -  = J ( X ~ ,  t )  (4) 

at 

~(x)(t) 
at = (V,gg(X, t)> 

+ [X¢ - ( x  >(t)]J(X~, t) + (i/2)v~gg(X¢, t )C(X¢,  t) (5) 

Got(t) 

dM~(t) 
Ot = (v~gg(x, t ) )  + 2(Vagg(X, t)[x -- (x ) ( t ) ] )  

{[-'ge -- (x>(t)] 2 -- M2( t ) } J (Xc ,  t) 
+ [X¢ - (x>(t)]v~gg(X¢, t )C(Xc,  t) 

+ (6) 
Ctot(t) 

The transition cluster size, Xc, defines the smallest cluster size 
in the continuum. J(X¢,  t) represents the nucleation current 
going into the continuum from the discrete clusters, given by 

J(X~, 0 = Vagg(X¢ - 1, t )C(X¢ - 1, t). (7) 

The ( )  symbols are used to denote quantities which have been 
appropriately averaged over the continuum and evaluated at 
x = ( x ) ( t ) .  Since the continuum construction is based on using 
second order moments, a convenient procedure is to assume 
that the continuum cluster distribution function is Gaussian, 
i.e. for x ~> X¢ 

C~o,(X, t) = Ctot(t) - [ [x --_ (x)(t)]2/- (8) 
exp_ 2M2(t) _l 

thus allowing us to approximate 

C(X¢, t) = C¢o.(X¢, t). (9) 

To determine the averages (V.gg(X, t) ) and (v .gg(x,  t)[x - 
(x ) ( t ) ] ) ,  the aggregation frequency is chosen to be 

V~gg(X, t) = w(x)C(  1, t) (10) 

where w(x) is the aggregation parameter describing how mobile 
single atoms aggregate with stationary x-atom clusters. Selecting 

w(x) = Wo x~ (11) 

and utilizing the Gaussian nature of  the continuum leads to 

(V~gg(X, t) ) = v~s~( ( x  )(t) ,  t)/1 
r ( r  l)M2(t)-] 

+ -27x)--~ / (12) 
L 3 

and 

. F r M  2 (t) ] 
(vagg(x, t ) tx - ( x ) ( / ) ] )  = va ,g ( ( x ) ( t ) ,  t ) l - ~  I (13) 

where r is the growth exponent, defined over 0 ~< r < 1. A 
specific value for r would indicate the cluster geometry. For 
example, atomic diffusion to 2-D discs can be described by 
r = 1/2, while that to 3D spheres by r = 1/3. 

It should be mentioned that the factor x r used in (11) is 
equivalent to the "capture number", a, previously discussed in 
the literature t°, ~1,12. 13, 14. A capture number describes the diffu- 
sional flow of single atoms to critical (ai) or stable (ax) nuclei 
present on a substrate. Since single-atom diffusion is assumed 
to occur over a two-dimensional surface, analytical solutions 
for the capture numbers emerge as expressions involving Bessel 
functions. Particular solutions depend somewhat on the regime 
of condensation involved and on the amount of substrate 
coverage. 

In the complete condensation regime, where an atom experi- 
ences no difficulty in attaching itself to a growing stable cluster, 
Venables 14 has shown that two types of approximate expres- 
sions can be derived for a~, that represent upper and lower 
bounds to the true value. The "lattice approximation ''15 deter- 
mines the upper bound for ax by placing all the stable clusters 
on a lattice and evaluating cluster growth rates. The "uniform 
depletion approximation 'q6 calculates the lower bound by ran- 
domly distributing the stable clusters over the substrate and 
determining cluster growth rates, accounting for capture events 
which compete with re-evaporation in the process. These two 
approximations determine tr~ to within a factor of about two, 
independent of the amount of surface coverage 14. 

In the incomplete condensation regime, correlations between 
single atoms and stable clusters do not extend to the next 
cluster because the concentration of stable and subcritical 
nuclei is very small. For  low substrate coverages, both trx and 
tr; can be expressed with much more certainty than in the 
complete condensation regime. 

Despite their relatively complex form, these capture numbers 
are not strong functions of  the cluster size and do not depend 
strongly on other parameters involved. As shown by Stowel115 
and Venables t4, ax is in the range 5-10 and tr~ in the range 2 - 4  
in many situations encountered in practice 1°. 

Venables and Price ~2 mention several nucleation studies that 
have performed calculations with capture numbers which are 
proportional to cluster diameter and an "attachment co- 
efficient", /~. They state that such a treatment is only true if 

,~ 1, and in order to evaluate/1, one must know the details of 
the attachment mechanism. Our "capture number", x r, is pro- 
portional to the diameter of  the capturing species. By overlook- 
ing attachment mechanisms, this simple factor introduces 
size-dependent aggregation into the kinetic rate equations and 
allows us to study the effects of  cluster geometry on the early 
stages of nucleation and growth. Theoretical comparisons with 
experimental measurements will be required in order to deter- 
mine if this assumption applies in reality. 

The solution of equations (1)- (13)  enables one to study the 
influence of  a size-dependent aggregation parameter, 
w(x)  = Wo xr,  on the early stages of thin film formation by 
thermal atom deposition, under the assumptions that cluster 
dissociation and direct impingement effects are negligible. To 
solve these equations, the parameters q, v~, Wo, r, and X~ must 
be specified. 
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3. Results and discussion 

To study the influence of size-dependent aggregation, (1 ) - (13)  
were solved for the case where q = 10~3atomscm-2sec-~ ,  
v ~ = 2 . 7 4 ×  105see - I ,  Wo=1 .50×  10-Scm2sec - l ,  and r = 0 ,  
1/3, and 1/2. X~ was selected to be five; previous studies 9 
indicate that X~ does not  influence the clustering phenomena 
when cluster dissociation is neglected. 

Since dissociation is not  considered, continuous clustering 
occurs which promotes an increase in the values of (x) ( t ) ,  
M2(t ), and Ctot(, t) with time. This is evident in our assumptions. 
Calculations also indicate that t~(x)(t)/t3t and OM2(t)/Ot both 
increase with r over all deposition times. Consequently, at a 
specific time, 2D clusters will not only be larger than 3D 
clusters, but they will be growing larger at a much faster rate. 
Additionally, at the same time, the 2D cluster distribution 
function will have a broader range of cluster sizes than the 3D 
cluster distribution, as well as dispersing at a much faster rate. 
All of  these results can be attributed to enhanced aggregation 
which is characteristic of a larger growth exponent. 

Calculations also demonstrate that the total density of clus- 
ters first increases rapidly up to t = 0.04 sec. It is shown that if 
2D discs grow, this results in a saturation in the total cluster 
density for t ~> 0.04 sec. The rapid growth of these discs nearly 
terminates further nucleation for t /> 0.04 sec. On the other 
hand, nucleation is cont inuous for 3D clusters. 

Figures 1 and 2 show how the cont inuum cluster distribution 
function varies over time for r = 0, 1/3, and 1/2. Since X¢ = 5, 
all curves begin with five atoms in the smallest cont inuum 
cluster. Notice that for a specific r, the total density, average 
size, and the second moment  (i.e. the area, mean, and width of 
the distribution) all increase as time progresses from t = 0.05 to 
0.08 sec. This is due to the continuous nucleation phenomena 
previously discussed. At a specific time though, Figures 1 and 2 
both indicate that a larger growth exponent promotes a larger 
average size and a more disperse distribution, in accordance 
with our ( x ) ( t )  and Mz(t ) results. Enhanced aggregation thus 
promotes a shift and a broadening in the calculated size distri- 
butions. 

4. Conclusions 

The influence of a size-dependent aggregation parameter  on the 
early stages of thin film formation by thermal atom deposition 
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2. Continuum cluster distribution at t = 0.08 sec for various 
of the growth exponent, r. 

has been investigated with a hybrid model that couples a set of  
discrete kinetic rate equations to a Gaussian cont inuum. Clus- 
ter aggregation rates increase with the growth exponent, pro- 
moting cluster distributions with larger average sizes and wider 
dispersions. Since extended aggregation eventually leads to 
coalescence, total cluster densities saturate at smaller equi- 
librium values when larger growth exponents are used. Such 
efforts are not noticeably obvious if constant  capture numbers 
are employed. Theoretical comparisons with experimentally 
measured cluster size distributions are thus needed to determine 
if the form of the aggregation parameter, w(x )=  WoX', is a 
realistic assumption. 

Since the growth exponent is indicative of cluster geometry, 
the following remarks can be made. Since 3D clusters have a 
smaller surface-to-volume ratio and a higher self-binding than 
2D clusters, they appear as more compact atomic arrangements 
than 2D entities. As a result, cont inuous nucleation and slow 
growth processes will be indicative of clusters which possess a 
high self-binding and exhibit compact atomic packing. 
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Figure 1. Continuum cluster distribution at t = 0.05 sec for various 
values of the growth exponent, r. 
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