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Abstraet--A new method is introduced for the self-consistent transient solution of semiconductor device 
equations for both majority and minority carrier transport. An axisymmetric quadratic finite-element 
formulation is employed for the solution of the potential. The traditional conservation equations for the 
majority and minority carriers are replaced by equivalent equations for the drift motion and subsequent 
interactions of individual charged particles. Transport, recombination, and thermal generation processes 
are included. Drift forces on electrons and holes are computed from potential gradients. One-dimensional 
steady-state solutions obtained from transient evolution are compared to a fully iterative finite-element 
method for silicon diodes. Applications to axisymmetric device geometries are presented. 
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constants used in eqn (18) in text 
Auger electron (hole) recombination coefficient 
(cm 6 s-I) 
electron (hole) diffusivity (cm~s L) 
electric field (V cm -L) 
electric field parameter used in eqn (20) in text 
(V cm ') 
carrier generation rate (cm-3s ~) 
electron (bole) current density (A cm -2) 
local shape function at node i 
number of nodes in the computational mesh 
electron carrier density (cm -3) 
intrinsic carrier density (cm -3) 
global shape function at node i 
number of time intervals used in calculating the 
L-2 error norm 
number of grid points used in calculating the L-2 
error norm 
ionized donor atom density (cm 3) 
ionized acceptor atom density (cm -3) 
net local dopant concentration (cm -3) 
hole carrier density (cm -3) 
electronic charge (C) 
charge assigned to node i (C) 
charge on a particle at point P (C) 
carrier recombination rate (cm -3 s -L) 
temperature (K) 
parameter used in mobility calculations in eqns 
(15) and (17) in text 
constants used in eqns (16) and (20) in text 
computational time step (s) 
silicon permittivity (F cm -1) 
L-2 error norm 
effective electron (hole) mobility (cm 2 V-Is  -I) 
lattice mobility (cm 2 V-~s -~) 
impurity mobility (cm2V 1s-t) 
carrier-carrier scattering mobility (cm 2V -~ s -~) 
net charge density at coordinates (r,z) (Ccm 3) 
electron (hole) lifetime (s) 
electrostatic potential (V) 
potential at node i (V) 

q~U t,i 
7. 

potential at node i and time t, for time step At u 
dimensionless distance used in eqn (24) in text 

1. INTRODUCTION 

Application of  particle simulation (PS) methods to 
semiconductor devices was reported by Hockney et 
al. in 197411]. Their approach was an extension of  
previous simulations of  plasmas, in which the entire 
collection of  charged particles within the plasma is 
represented by a computationally reasonable number 
of  particles. Hockney et al. simulated the steady-state 
operation of  GaAs and silicon FETs and diodes using 
12,000-30,000 particles, using either a full Monte  
Carlo transport scheme or the static-mobility diffu- 
sion approximation (SMDA) in which a particle's 
motion consists of  a drift and a diffusive component.  
They employed a uniform mesh to permit the use of  
fast Fourier  transform (FFT) techniques to solve for 
the potential profile. A review of this P S / F F T  ap- 
proach to device analysis is presented in a book by 
Hockney and Eastwood[2]. 

A number of  authors have applied particle 
methods to device simulation since that work. As 
a few examples, Pone et al. analyzed GaAs FETs 
using PS and S M D A  methods[3], Lippens et al. 
analyzed millimeter-wave I M P A T T  devices using PS 
and S M D A  methods[4], and Moglestue employed 
Monte  Carlo particle methods to analyze GaAs 
MESFETs[5]. Use of  PS methods is attractive 
because of  the convenience with which Monte Carlo 
transport methods can be implemented. 

Although PS methods in device analysis have 
been refined since their introduction, they remain 
fundamentally unchanged. Many of the above- 
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mentioned applications rely on FFT  solutions of 
Poisson's equation developed by Hockney et al. 
Although FFT analysis permits a major speedup in 
potential calculations, complex device geometries are 
more difficult to simulate and internal electrodes 
require additional computations involving capaci- 
tance matrix methods[2]. The requirement of regu- 
larly spaced meshes and the difficulty of treating 
irregular device geometries has tended to discourage 
widespread use of the FFT method. More general 
solution methods based on non-FFT finite-difference 
techniques can become computationally prohibitive. 
Apparently PS methods have not been extended 
for use with numerical techniques other than finite 
difference techniques, and only majority carrier 
transport has been simulated. 

Our approach merges these PS methods with a finite 
element (FE) solution of Poisson's equation, to allow 
more flexibility in device geometries and nonuniform 
meshes. To avoid discontinuities of electric field across 
inter-element boundaries, we have used quadratic 
interpolation of potential and density rather than the 
linear interpolation typically used in FE device analy- 
ses. A major goal of our work is the simulation of 
transient charge collection from cosmic ion tracks in 
semiconductor microcomponents. To approximate 
three-dimensional (3-D) analyses of charge collec- 
tion, we have taken advantage of the axisymmetric 
nature of charge tracks to employ an axisymmetric 
FE formulation for the solution of Poisson's equation. 
We initially use the simpler drift-diffusion model of 
carrier transport, although Monte Carlo particle 
transport can be readily implemented in the future. 

In the next section we introduce our hybrid FE/PS 
method, then we formulate the axisymmetric FE 
solution of Poisson's equation (Section 3) and discuss 
the particle model (Section 4). Results are presented 
for I-D and axisymmetric silicon diodes in Section 5. 
Finally, conclusions of this work are discussed in 
Section 6. 

2. THE HYBRID FINITE-ELEMENT/PARTICLE- 
SIMULATION METHOD 

The differential equations governing device behav- 
ior are Poisson's equation and the electron and hole 
continuity equations: 

V . E V c ~ = - q ( p - n + N ~ - N ; )  (1) 

~n 1 
- -  = -  V .  J , , +  (G  - R )  (2)  
c~t q 

~p 1 
- V .Jp + (G - R )  (3)  

~t q 

plus the related current-density equations: 

J.  = qn,u. E + qDn Vn (4) 

Jp = qpppE - qDpVp (5) 

in which e is the material permittivity, ~ the potential, 
n and p the electron and hole densities, N~ and N [  

the ionized donor and acceptor densities, q the elec- 
tronic charge, J ,  and Jp the electron and hole current 
densities, (G - R) the net generation/recombination 
rate, ~ the mobility, D the diffusivity, and E the 
electric field. Coupling between these equations typi- 
cally requires either the Newton-Raphson iteration 
scheme for simulaneous solution of ~b, n and p, or an 
iterative technique in which Poisson's equation and 
the continuity equations are alternatively solved until 
the desired accuracy is obtained for each time step. 
When the governing equations are strongly coupled 
(e.g. in transient simulations), the Newto~Raphson  
method is typically required although at a cost of 
large matrix inversions. 

The use of particle methods to represent the 
current continuity equations allows decoupling of 
these equations from Poisson's equation, permitting 
consecutive evaluation of the particle-pushing and 
potential solution steps at each time step. This 
approach allows accurate treatment of transient 
device conditions if the time step and mesh sizes 
used are appropriately determined for convergence 
within the time step, and the mobility accurately 
approximates the scattering mechanisms involved. 
The complexity of matrix manipulations is also 
reduced, with only the solution of Poisson's equation 
requiring matrix evaluations. 

The use of FE methods for device simulation has 
become well established after its introduction by 
Hachtel et al.[6] and popularization by Barnes and 
Lomax[7]. We chose the FE method for solving 
Poisson's equation because of convenient similarities 
with PS methods, such as the use of the same shape 
functions for interpolation of potential from the mesh 
nodes across the triangular elements as are used in 
the particle-to-mesh charge weighting and mesh-to- 
particle force interpolations required by particle 
methods. Evaluation of the local shape functions at 
the particle's position also provides a convenient 
means of locating the particle within specific elements 
after the particle-pushing step. 

Although linear interpolation of potential across a 
triangular element is much simpler than quadratic 
interpolation (i.e. requiring three nodes per element 
vs six), the resulting discontinuities in the force on 
particles crossing inter-element boundaries generates 
increased computational noise in the system. To 
avoid this, we chose to use quadratic interpolation 
of potential to maintain continuity of force across 
element boundaries. Although more complicated, 
such a formulation permits larger element sizes 
for similar accuracy compared with the linear 
interpolation. Our interest in simulating charge 
collection from heavy ion tracks in semiconductor 
devices encouraged us to formulate Poisson's 
equation in axisymmetric geometry, to approxi- 
mate 3-D device effects at reduced computational 
requirements but without the oversimplification 
obtained by 2-D simulations of charge track 
evolution. 
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3. AXISYMMETRIC QUADRATIC FINrrE-ELEMENT 
FORMULATION 

In the axisymmetric formulation, each element 
represents a 3-D triangular ring around the axis of 
symmetry of the device. We use triangular elements 
because they more easily approximate irregular 
boundary regions and interfaces. In our formulation, 
the exact solution q~ to Poisson's equation is approxi- 
mated by a quadratic interpolating function defined 
over each element: 

q ~ N I O x + N 2 0 2 + , ' " , + N 6 0 6  (6) 

with ~P; the value of the potential at each node i of the 
element and N; the nodal shape functions of magni- 
tude 1 at node i and 0 at all other surrounding nodes. 
The concepts of local and global shape functions 
should be clarified. For linear interpolation using 
three nodes per triangle, the local shape functions L; 
and the global shape functions N; are identical. For 
quadratic interpolation, the six global shape func- 
tions N; are quadratic with respect to the three local 
shape functions L; (i.e. of order L~). 

Typical FE formulations of Poisson's equation 
employ either the variational or Galerkin approaches 
(see e.g. [7] and [8]). Governing equations were 
derived for both approaches, but the Galerkin 
method was found to give simpler governing 
equations (i.e. with lower powers of the local shape 
functions) and was thus employed in our formu- 
lation[9]. 

In the Galerkin method, each side of Poisson's 
equation [eqn (1)] is weighted by the shape function 
Nj, and that product integrated over the region to be 
modeled. In axisymmetric cylindrical coordinates the 
governing equation becomes: 

I N,[_l a__ o~ l v ~Lr ar (~ ~---~r) + a~:J dV 

_ 1 f Njp(r,z)dV (7) 
E , J  v 

in which p ( r , z ) = - q ( p - n  + N ~ - N a )  , and the 
assumption of an isotropic dielectric constant has 
been made. The volume element d V equals 2nr dr dz. 
The region is broken up into a collection of triangular 
elements. 

To evaluate spatial derivatives of the interpolating 
function, we note that N; is a function of r and z, 
while cp; has a specified value only at the node i and 
is zero elsewhere. With the integral now evaluated 
over the region of a single element, eqn (7) takes the 
form: 

N 10 
i=1 kr ~--r ) + az2jJ 

1 f Njp(r,z) dV. (8) 
E , J  v* 

This generates the matrix equation for the element: 

[kq{cP} = {fe} (9) 

As the integral term on the left-hand side of eqn (8) 
corresponds to Ny 172N; in cylindrical coordinates, the 
first form of Green's theorem gives: 

k,J= fv NJ172N, dV = - fv VNj'17NidV 

+ ~s NjVN;.ndS (10) 

with n the unit vector normal to the surface enclosing 
the region V e. The surface term equals zero for 
common semiconductor device boundary conditions 
(i.e. Dirichlet boundary conditions with ohmic con- 
tracts, or Neumann boundary conditions at planes 
of symmetry or typical semiconductor/insulator 
interfaces) so eqn (10) becomes: 

L-~-/ W~ -57 Ti~ j d~. (11) 

In eqn (8), p(r,z) must also be interpolated from the 
same nodes at which the potential is evaluated, i.e. 
p(r,z) is expressed analogously to ~b in eqn (6). 

The integrals for k0 and f are too involved to 
evaluate analytically, so we use Gaussian quadrature. 
All terms in eqn (11) are converted into functions of 
the local shape functions LI, L2 and L 3, and Gaussian 
quadrature is applied to local L-space. 

As k o and f are evaluated element-by-element, they 
are combined into an overall matrix equation with 
the unknown potentials cp. at each node: 

[K]{¢~} = {F} (12) 

with [K] an m x m banded symmetric matrix and {O} 
and {F} column vectors of length m, with m the total 
number of nodes. 

Prior to solution for {O}, any ¢~; specified by 
Dirichlet boundary conditions (e.g. at ohmic con- 
tacts) are imposed on the system of eqn (12) by 
standard techniques. For our problem, the Choleski 
LU decomposition of the banded symmetric matrix 
[K] is efficiently used to solve for O;. We use IMSL 
routines LEQ1PB for initial inversion of the K- 
matrix and LUELPB for subsequent solutions of O; 
at each time step[10]. Although this method may be 
more time consuming than some iterative matrix 
solution methods, no convergence problems are 
expected. 

4. PARTICLE MODEL 

Particle-simulation methods typically use a rec- 
tangular grid. The nearest-grid-point (NGP) and 
cloud-in-cell (CIC) methods are commonly used to 
allocate charge to nearby grid points for potential 
field calculations. The NGP method assigns the entire 
charge of a particle to the nearest grid point, but the 
amount of inherent computational noise can be sig- 
nificant as the moving particle's charge discontinu- 
ously jumps from one grid point to the next. Instead, 
CIC allocates the charge of the particle to several 



576 R.C. MARTIN and N. M. GHONIEM 

nearby grid points, in effect extending the particle 
from a point charge to a cloud of charge. With our 
irregularly shaped triangular mesh, we use the same 
quadratic shape functions [eqn (6)] to assign charge 
from particle to nodes. The charge Q~ assigned to 
node i from a particle at point P is given by: 

Q~ = N~Q e. (13) 

With the charge allocated to the nodes, Poisson's 
equation is solved for the nodal potentials. In 
interpolating the nodal potentials q~ back to the 
particle positions, the electric field at a point is given 
by: 

i=1 Or r +  L ~ i - ~ - z  • (14) 
i=1 

We know the spatial derivatives for each value of i in 
terms of the local shape functions L, and have 
previously calculated the values of L~, L 2 and L 3 for 
each particle's position, so we can calculate the force 
on the particle directly. 

The particles are advanced in position over each 
time step using one of two methods. The simpler 
SMDA method (drift-diffusion model) considers 
each increment in particle position to be composed 
of two components,  one due to the electric-field- 
induced drift of electrons (of magnitude `aEAt 
with At the time step) and the other due to a 
random diffusional motion [of magnitude 
(4D At )l/2] [l]. This approach assumes the carrier 
velocities are instantaneously related to the field by a 
field-dependent mobility, as in conventional device 
simulation codes such as PISCES[l 1]. The second 
method is a complete Monte Carlo (MC) treatment, 
where rates of scattering are evaluated for all relevant 
scattering mechanisms. Although the MC method 
more accurately treated nonequilibrium transport, 
Hockney et al. report that the MC approach can 
be 10 times more expensive in computer time than 
SMDA[1]. As we are initially emphasizing silicon 
device simulations, we have implemented the 
SMDA transport method for all particles as a good 
approximation. 

We evaluate the mobility using a calculation pro- 
cedure proposed by Dorkel and Leturcq[12]. The 
carrier mobility is calculated as: 

I 1 `a = `aL  ( )t" ~143 0 .025  (15) 
1 + \ ~ / /  

with `at the lattice mobility given by: 

`aL = ~Lo ~ (16)  

in which T is the temperature and `aLo and ~ are 
parameters dependent on the type of carrier and the 
temperature range. In eqn (15), X is given by: 

X = / 6`aL (̀a---21 -F.___.~ccs) (17) 
~/  ,at ̀acc~ 

with à~ the impurity mobility and `acc~ the car- 
rier-carrier scattering mobility given by: 

=AT3':Iln(I ~BT2' BT 2 ] ~ `al 
Ndop L +,,dopj Ndo.+BT 

(18) 

2 × 101:T s/2 
àcc~ xfln~ {In[1 + 8.28 x 108T2(np) ,:3]} L 

(19) 

In eqn (18), Ndop is the net local dopant  concentration 
and A and B are carrier-dependent parameters. In 
eqn (19), n and p are respectively the electron and 
hole carrier concentrations. The above expressions 
are appropriate for weak-electric-field conditions. 
Extension to situations involving strong electric fields 
uses an approach suggested by Caughey and 
Thomas[l 3]: 

/to `a- [, + E,:ll, ,,j (20) 

in which E is the magnitude of the local electric field, 
E~ is a carrier-dependent constant, and à0 is the 
result from eqn (15). The constants used in eqns 
(15)~20) are given in Table 1. The diffusivities D,, and 
Dp are obtained from eqn (20) using the Einstein 
relation. 

Minority carrier transport is handled simula- 
neously with the majority carriers. The n#-product 
is used as a measure of the relative carrier recombi- 
nation or thermal generation during each time step, 
after nodal carrier densities are evaluated and before 
the solution of Poisson's equation. The net rate of 
carrier thermal generation and recombination is 
given by the standard expressions for Shockley- 
Read-Hall  and Auger recombination[14]: 

G - R = (n~ t - np){[z.(p + ni.t) 

+ r p ( n + n i n t )  ] J+c.n+Cpp} (21) 

with the local carrier lifetimes given by: 

3.95 × 10 5 
~,, = s (22) ( Udo _ 

1 + 7.1 x 1015/ 

3.52 x 10  5 
s (23) 

1 + 7.1 x 10 Is 

with nin t the intrinsic carrier density and the Auger 
coefficients c,, = 2.8 X 10 31 c m 6 / s  and cp = 9.9 x 
10 32 cm6/s. 

Table I. Constants used in mobility calculations 

Constant Electrons Holes 

T(K) 300 300 
,ut~(cm2V ~s ~) 1430 495 

2.2 2.2 
d(cm ~V ~s ~K 3,2) 4.61 x 10 Iv 1.0× I0 ~7 
B(cm 3K 2) 1.52x 10 ~ 6.25x 1014 
Ec(V cm i) 8000 19,500 
// 2 i 
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The only boundary conditions imposed on the 
particles are those required by equilibrium conditions 
at the ohmic contacts. After each time step, the 
majority carrier density within the contact boundary 
elements is equilibrated to match the doping density, 
and the minority carrier density is adjusted to satisfy 
the thermal equilibrium condition at the contact (i.e. 
n~n t = n p ) .  

The total number of particles increases after each 
time step to maintain equilibrium densities at the 
contacts and to simulate thermal generation. The 
magnitude of local charge generation and recom- 
bination is determined by the free carrier densities 
within the region around each node. The particles 
surrounding each node are tabulated, and their 
charges are adjusted to reflect generation and recom- 
bination. If the charge adjustment would be greater 
than, e.g. 50% per particle, additional particles are 
created to maintain the necessary charge balance. 
Charge reduction is preferentially applied to the 
neighboring particles with the largest charge, and 
generation to the particles with smaller charges. 

To prevent unlimited increase in the total number 
of particles, particle reformulation is implemented 
when a specified number is exceeded. Typically a 
variation in total particle number of 25-50% is 
permitted. The total number is reduced according to 
some average number of particles per element, with 
heavier-doped elements permitted a larger number. 
Particles are randomly killed off and their charge 
transferred to neighboring particles. After reformula- 
tion, all particles of the same polarity within each 
element have the same average charge. For particles 
moving from heavily to lightly doped regions, this 
periodic reformulation redistributes the charge from 
a larger particle to the smaller neighboring particles. 
Only a small fraction of particles moves into 
neighboring elements during each time step, so with 
reformulation frequencies of 5-10% or more, this 
periodic reformulation accompanied by generation/ 
recombination charge adjustment effectively smooths 
out the particle-to-particle charge fluctuations 
inherent in transport between regions of varying 
doping. Conservation of charge is maintained at all 
times during particle reformulation. 

5. RESULTS 

For more rigorous benchmarking, the results of 
this FE/PS method are compared to a finite-element 
solution based on the Newton-Raphson iteration of the 
coupled current continuity and Poisson equations until 
a self-consistent steady state is achieved[16]. A one- 
dimensional case is simulated, with the device schematic 
shown in Fig. 1: a 3-V reverse-biased pn junction with 
1015 cm -3 doping is allowed to evolve to steady state, 
and the results compared to the steady-state potential 
and carrier profiles obtained from the self-consistent 
device simulation code. Figure 2(a) shows the electron 
density profiles evolving in time, Fig. 2(b) the hole 
density profiles, and Fig. 2(c) the potential profiles. 
With the abrupt junction at 3 #m, Fig. 2(a) and (b) 
shows initial diffusion of the majority carriers across 
the junction, but as time proceeds the depletion zone 
forms and steady-state profiles are obtained, in good 
agreement with the benchmark calculations provided 
by the iterative self-consistent code. 

Very good quantitative agreement between the two 
codes is obtained for majority carrier profiles and 
effective depletion widths. Minority carrier profiles 
show some variation, but these are not significant for 
realistic device modeling. The computational noise 
apparent in the density profiles is inherent in the 
particle method. An average of 15 particles each for 
positive and negative charge per element were used in 
this simulation. Simulations using half this average 
number showed no significant difference in the overall 
profiles, but slightly more noise in the density profiles. 
Although quadratic interpolation of carrier densities 
is used in the Poisson solution, the densities in 
Fig. 2(a) and (b) are represented by linear inter- 
polation to the corner nodes. We determined that 

---r-  

Lz=6 
One-dimensional benchmark computations were ', 

i 

performed on a 3-V reverse-biased silicon diode with ', 
1015 cm -3 doping density on each side of an abrupt i 
junction (i.e. no doping variation in the radial direc- ', 

* 

tion). The depletion zone was allowed to evolve to ', 
steady state. The resulting potential and electric field 
profiles were compared to the analytical solutions for 
an abrupt pn junction[15] and found to be in very 
good agreement as documented in Ref. [9]. These low 
doping levels permit simpler analyses in the verifica- 
tion of our method than do densities approaching 
degenerate conditions. 

z 

I 
. . . . . . .  l i b  

r 

Fig. 1. Axisymmetric 1-D device simulation showing the 
geometry of the reverse-biased silicon diode (V =3V, 

geometry units are in/~m). 
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Fig. 2. Evolut ion  o f  density and potential  profiles with time, 
after applying reverse-bias to the I -D si l icon diode. The 
FE/PS code results (at t imes given in ps) for (a) electron 
and (b) hole carrier densities, and (c) potential  profile. The 
solid lines give steady-state results from iterative self- 
consistent FE code. Arrows  indicate direction o f  profile 

evolut ion with time. 

quadratic visualization of the densities (six nodes per 
triangle) showed systematic oscillations at non-corner 
nodes. 

Figure 2(c) also shows very good agreement 
between the steady-state potential profiles obtained 
by the two codes. The PS code offers the advantage 
of observing the transient evolution of the device 
toward steady state. Because of large electron mobil- 
ities, the electron density profiles for these low doping 
levels quickly approach steady state within 0.25 ns. 
The lower hole mobilities prevent hole density 
profiles from approaching steady state for a few ns; 
the minority carrier hole profiles gradually decline 
due to drift, diffusion, and recombination. Figure 2(c) 
shows the potential distribution approaches steady 
state on a time scale comparable to that of the 
electron distribution. 

Figure 3(a) and (b) shows carrier density and 
potential profiles at steady state for fine and course 

1015 
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'E 
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o 1 n 

(a) 
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I I I I ~ 
1 2 3 4 5 6 
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(b) 

0,15 

I I I I I I 
0 1 2 3 4. 5 6 

Distance (/.~m) 

Fig. 3. Effect of grid element size (in #m) on steady-state 
profiles, showing FE/PS code results at 2.5ns for (a) 
electron (*)  and hole carrier densities (arrows indicate 
change from coarse to fine grid) and (b) potential profiles. 
The solid lines show steady-state results from iterative 

self-consistent FE code. 
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grids, compared to the benchmark calculations of  the 
iterative code. The profiles obtained by the FE/PS 
code using a fine mesh (0 .15pm element size, 
0.075/~m between mesh points) show very good 
agreement with the self-consistent code. Surprisingly, 
even the profiles obtained using a very course 
mesh (0.25/~m between mesh points) are in good 
qualitative agreement for carrier densities and close 
to quantitative agreement for potential profiles. 
These results suggest that the quadratic FE formu- 
lation reduces the restrictions on small mesh spacings 
as suggested for typical device simulations[l 1]. 

Figure 4(a) and (b) shows the steady-state results 
for a more typical silicon diode, with n+-region 
doping densities of  10 j7 cm -3 and p-region doping of  
1015cm -3. Also shown are the results of  the self- 
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Distonce (~  m ) 
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2 

(b) 

i I r I I 
0 1 2 3 4 5 

Oistonee ( /zm) 

Fig. 4. Steady-state profiles for 3-V reverse-bias, 5-pm 
silicon diode with n ÷ doping of 10 ~7 cm 3 and p doping of 
1015cm -~, showing (a) FE/PS code results at 900ps for 
electron (n) and hole (p) densities and iterative FE code 
results (n* and p*); and (b) potential profiles for FE/PS 

( -) and iterative FE ( - - )  codes. 

consistent code. The average number of  majority 
carrier particles per element is increased 10-fold 
within the n +-region to accommodate  the 100-fold 
increase in doping density. The doping profile does 
not assume an abrupt junction, but rather employs 
an analytical doping expression previously used 
in another simulation to better represent a graded 
junction[17]: 

N ~  - N 2 = 1.01 × 1017 e x p [ -  116.54(1 - Z2)] 

- 1  × 1015cm 3 (24) 

where Z is a dimensionless distance across the device 
(0.0 at the p-region contact, 1.0 at the n+-contact,  
and 0.8 at the junction for this 5 p m  device). The 
use of  this doping profile is more realistic than an 
abrupt junction, and also reduces the computational 
difficulties inherent in a discontinuous order-of-mag- 
nitude change in doping densities across the junction. 

These simulations use time steps of  5 x 10 ~4 s for 
initial device evolution. The time step, At, is sub- 
sequently increased to 10 t3 s for heavier doping and 
5 × 10-~3 s for light doping conditions. Other particle 
simulations often use At of  5 x 10 -14 S[l, 3, 4]. AS a 
means of  evaluating the self-consistent accuracy of  
these transient calculations and providing a check on 
the values of  At used, the L-2 error norm was applied 
to the transient evolution of  the above device with 
doping of  1017-1015 cm 3. The potential values at the 
mesh points were compared at 25.6-ps intervals to a 
second transient calculation which used twice the At, 
over a total of  256 ps. The time step was varied from 
0.8 to 0.025 ps. The relative error in potential values 
for each pair of  time steps was calculated by: 

1 ~ t  /~M- 1 -- t ~  2 ~m~x , ( 2 5 )  

with ~M ~ and ~M the potentials at node i and time t . l  t,: 

t (with At M-1 twice that of  AtM), ~max the applied 
potential across the device, and N t and N X the number 
of  time intervals and grid points used in the compari- 
son, respectively. Figure 5 shows the results of  these 
comparisons for each At M. The reduced variation in 
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Fig. 5. Reduction in L-2 error norm as a function of the 
time step At. Each point represents the relative difference in 
the nodal potentials between calculations with the specified 

At and a time step of 2At. 
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Fig. 6. Axisymmetric device simulation showing geometry 
of  the reverse-biased silicon diode (V = 3 V, geometry units 

are in #m). 
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poten t ia l  for  decreas ing  At d e m o n s t r a t e s  self-consist-  
ency o f  the  t rans ien t  results.  The  sa tu ra t ion  in e r ro r  
n o r m  reduc t ion  as  At a p p r o a c h e s  0.05~).025 ps  sup-  
po r t s  our  use o f  0.05 ps, wi th  to lerable  e r ro r  for  At o f  
0.1 ps  unde r  heavy  dop ing  cond i t ions .  

F igures  6 and  7 d e m o n s t r a t e  the  ax i symmet r ic  
capabi l i t ies  o f  ou r  code,  wi th  an n ÷-region d o p i n g  o f  
1017cm -3 and  a p - r e g i o n  d o p i n g  o f  10 ]5 cm 3. A 

schemat ic  o f  the  sil icon device s imula ted  is shown  in 
Fig. 6; Because o f  s y m m e t r y  only  ha l f  o f  the device 
is mode led .  F igure  7(a) and  (b) shows  the  e lec t ron  
dens i ty  and  po ten t i a l  profi les near  s teady state  (after  
350 ps  o f  device evolut ion) .  These  profi les c o m p a r e  
favorab ly  wi th  p rev ious  s imula t ions  using s imilar  
device cond i t i ons  and  geomet ry  (see e.g. [17]). 

C o m p u t a t i o n a l  detai ls  o f  the  above  s imula t ions  are  
p rov ide d  in Table  2. All  ca lcu la t ions  were  p e r f o r m e d  
on  a C R A Y - 2  compu te r .  The  b a n d w i d t h  o f  the  
govern ing  mat r ix  equa t ion  s t rongly  impac ts  the  
so lu t ion  t ime for  Po i s son ' s  equa t ion .  The  code  has 
no t  been  op t imized ,  and  the  C P U  t imes include 

RQc 
distc 

(/.~ m ~ 2.5 . . . . . . . . .  
(~ml 

Fig. 7. Axisymmetric device simulation after 350 ps show- 
ing (a) electron density and (b) potential profiles. 

significant effort  in pos t -p rocess ing  and  graphica l  
compu t a t i ons .  

6. CONCLUSIONS 

( 1 ) A  hybr id  numer ica l  m e t h o d  c o m b i n i n g  
part icle  s imula t ion  and  f in i te-e lement  m e t h o d s  has  
been  deve loped  which  c o m p a r e s  well wi th  t rad i t iona l  
f in i te-e lement  so lu t ion  me t hods .  The  use o f  quadra t i c  
f in i te-e lement  in t e rpo la t ion  relaxes the  res t r ic t ion  on 
m a x i m u m  e lement  size. 

Table 2. Computational details 
Number Element Time Number Maximum CPU 

Doping of size Band step of Simulation No. of time 
(cm -3) elements (,am) width (ps) timesteps time (ns) particles (min) 

+ 1015 24 0.50 x 0.15 
+ 10 ~5 40 0.30 × 0.15 
+ 1015 80 0.15 × 0.15 
- 10 ]7 0.075 - 0.20 
+ 1015 70 
- 10 ]7 0.t0 - 0.25 
+ 10~5 800 
- 1017 0.10 - 0.25 
+ 10ts 800 

7 0.05 - 0.5 6500 2.5 579 2.9 
7 0.05 - 0.5 6500 2.5 918 4.7 
7 0.05 - 0.5 6500 2.5 1769 9.2 
7 0.05 - 0.5 3300 0.9 6320 11.9 

103 0.05 - 0.1 3500 0.325 6755 26.9 

103 0.05 500 0.025 24,151 10.1 

Computations performed on a CRAY-2 computer. 
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(2) Unlike previous uses of  particle methods, 
this numerical method accurately simulates both ma- 
jority and minority carrier transport simultaneously. 

(3) The method offers versatility in the simu- 
lation of  transient device conditions and potential for 
studying the physics of  nonequilibrium transport. 

(4) The method shows promise for further 
studies of  fast transients such as the collection of  
charge from ion tracks in semiconductors. 
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