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Linear stability analysis of helium-filled cavities in SiC *
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In this paper, we present a theoretical analysis of the stability of cavities in SiC under fusion irradiation conditions.
Nucleation and growth of helium-filled cavities is modeled by dynamical equations. The growth/shrinkage of a cavity is
given in terms of two equations representing the rates of change of the net number of vacancies and helium atoms inside the
cavity. The equations describe the drift motion of cavities in a two-dimensional phase under the influence of point defect
and helium absorption. First the linear stability of these equations is performed to identify the nature of singular points in
phase space. The directions of trajectories around the saddle point are also found. The effects of dislocation density and
void density on the nature of the singular points are considered. The effect of helium atom generation rate is also
investigated. It is found that in the case of high helium generation, as in SiC under fusion conditions, the critical cavity size
is relatively small (about 30 ;\), and one saddle point is found between two stable critical points. This is shown to correspond

to a bimodal cavity distribution.

1. Introduction

Many experimental observations of irradiation ef-
fects on the microstructure of SiC have been made in a
number of irradiation facilities. However, the success-
ful development of composite SiC/SiC materials for
fusion applications must rely on a fundamental under-
standing of this data base. In fact, specific experiments
must be planned to explore critical physical phenom-
ena.

Swelling of SiC under neutron irradiation is known
to be a result of the condensation of helium and
vacancies to form cavities. However, in order to simu-
late or extrapolate the data to fusion conditions, an
understanding of the factors which influence the
swelling phenomenon is required. We focus our atten-
tion in this paper on a fundamental question in the
study of swelling, that is, the stability of cavities under
irradiation.

The concept of critical radius for cavity growth was
developed first for the study of the swelling of nuclear
fuels [1-4). It was later extended by several investiga-
tors for the analysis of void swelling in irradiated alloys
[5-8]. This concept has proved to be useful in the
development of radiation resistant alloys [9-10].

We wish to add to these studies of the critical
radius, and analyze the details of cavity stability under
neutron or ion irradiation. Although the previous ef-
forts have considered many of the factors which influ-
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ence the critical growth radius, they were not analyze
in terms of the stability theory of dynamical systems.
Inclusion of the effects of continuous helium genera-
tion and further resolution back into the matrix can be
accomplished within this framework.

In the following, we present a theoretical analysis of
the linear stability of average size cavities under irradi-
ation. This includes a rigorous study of the critical
points in the phase space which describes cavity stabil-
ity. The nature of the critical points and the factors
which influence their dimension are discussed. Approx-
imate analytical expressions are derived for the size of
the critical cavity in the phase plane. Phase space
trajectories around critical points are also presented.

2. Theoretical model
The concentration of point defects and mobile he-

lium atoms during irradiation described by the stan-
dard rate theory [11]

dC,/dt=K—D,C,(p +4wRN), 1)
dC;/dt =K —D,C(Zp +4wRN), )
CHe/dt - GHC _DHGCHe(p +4‘|TRN) +hNbKﬂ,

3)

where Cs are concentrations of various defects, K and
G . are production rates of point defects and helium
atoms, respectively, subscripts i, v, He denote intersti-
tial, vacancy and helium atoms respectively, Z is the
bias factor for interstitial-dislocation interaction, p is
the dislocation density, N is the concentration of cavi-
ties, R is the radius of the cavity and b is the resolu-
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Table 1

Physical parameters

Parameter Value Unit Reference

Point defect 10~ dpa/s 11
production rate
K0

Helium atoms 2and 20 appm/ Estimated
generation rate dpa
= GH: / K

Preexponential 84x10° cm?/s 13

diffusion coef-
ficient D?

Self-diffusion energy 8 eV/atom Estimated

E,=~E_+E;

Dislocation density p  10°-10'° em~2 1

Void density N 101%-10'  cm™? 11

Dislocation bias 0.1 - Estimated
factor AZ

Surface energy y 1000 ergem® 11

Irradiation temper- 1000 °C Estimated
ature T

Resolution param- 1 - Estimated
cter b

Atomic volume 2 207x10°% cm? 13

tion probability of He from cavities. It is assumed here
that the recombination rate of point defects is negligi-
ble. We retain the forms of eqs. (1) and (2) for simplic-
ity of algebraic manipulations. Solution of diffusion
equations for absorption of point defects and helium
on cavities, where the medium is represented as lossy,
with homogenized cavity and dislocation sinks, give the
following equations [11).

dR/dt = {(®, - ;) — D, [exp(P(p —2v/R) /KT)
~1]}02/R, (4)
dh/dt =4wR®,, — hbKQ, )

where p is the gas pressure inside the cavity, ¢ = DC
for every specie, T is the radiation temperature, 2 is
the atomic volume, y is the surface energy, & is the
number of helium atoms inside the cavity. All the
physical parameters used here are listed in table 1.

Egs. (1)-(5) model the dynamical behavior of the
concentration of point defects, helium atoms in the
matrix, the average cavity radius, and the number of
helium atoms in a cavity. It can be shown that the time
constants associated with egs. (1)-93) are much shorter
than those in egs. (4) and (5). An adiabatic climination
procedure can therefore be used, where the time
derivatives in egs. (1)-(3) can be set to zero, and the
results are then substituted into egs. (4) and (5). Under
this approximation, we can study the dynamics of cavity
evolution in the phase space represented by R and A
only.

3. Critical points (12]

If a cavity starts at any position in the phase plane
(R, h), its subsequent growth or shrinkage is deter-
mined by its position relative to the critical points in
the phase plane. Such critical points are obtained by
solving for dR/dt =0 and dh/dt = 0. This gives

Kp AZ/(p +47wRN) ~ &, exp[2y®/(kTR)

-3¢/(pbR?)| -0, =0. (6)

R is first obtained by solving this equation. The corre-
sponding value of A is then found and are fully deter-
mined. However this equation must be solved numeri-
cally. For simplicity, helium atoms are described by an
ideal gas model. In extreme cases, eq. (6) can be
simplified as explained below.

When the dislocation sink strength is much more
important than the cavity sink strength, then:
[ln(K AZ/D, + 1)]R2 —(2y2/kT)R + 3£/(pb)

= ().

Eq. (6) is also satisfied for R = e,

Solving eq. (6) we can obtain several critical points.
For typical fusion and fission. irradiation conditions,

the critical points and eigenvectors of the saddle point
are shown in figs. 1-4.

4, Linear stability analysis [12]

In the near vicinity of the critical points, the growth
or decay of perturbations can be studied by expanding
R and h as

R=Ry+dR, %)
h=hy+dh, (8)

where R, and h, are the critical radius and helium
atom numbers obtained above and dR and dh are
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Fig. 1. Phase diagram (h, R) for p = 10% cm 3, £ = 50 appm/
dpa.
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Fig. 2. Phase diagram (h, R) for p = 10'°cm™2, N =10 cm 3,
£ = 50 appm /dpa.

perturbations. Furthermore, if the perturbations are
expressed at (R, dh) = e* = eM*i®¥ egs. (4) and (5)
result in :

dV/dt = CV, or AV = CV, )
where V =[R, h]T, C is the matrix of coefficients com-
posed of C,-j.

where uy =R, u;=h. C; is evaluated at the critical
values.

Solution of the eigenvalue problem stated in eq. (9)
determines A, which can be found from the character- -
istic equation:

M-TA+D=0,

where T = C” + sz, D= C“CZZ - CI,ZCZI'
The corresponding eigenvector can be found by

a1 -

V=h/R=(-C)/C, (12)
where V=[V, 1]7.
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Fig. 3. Phase diagram (A,R) for p=10° cm~2, N=10'
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The nature and behavior of trajectories around the
critical point can be determined by the eigenvalues and
corresponding eigenvectors [12]. Usually, there are.
three critical points. The first critical point, which is
very small contains about one vacancy), is found to be
a stable node. The second critical point, which is about
30 A, is a saddle point while the third one, which is
almost infinite, is a stable node again. If the state starts
from a given point in the phase space (R,h), the
trajectory may approach the critical point 1 or 3. If the
trajectory approaches critical point 1, the material is
stable under irradiation, otherwise, it is unstable (i.e.
unbounded swelling takes place).

The trajectories around the saddle point approach
the critical point along the direction labeled “AP-
PROACHING?” in figs. 1-4 and depart from the criti-
cal point along direction labeled “DEPARTING"” in
the figures. Based on linear stability theory, whether a
cavity will grow or shrink is totally determined by the
initial cavity dimension. It cannot cross a barrier pass-
ing through the second critical point. On the other
hand, if there are fluctuations, cavities may overcome
the barrier and go to another nucleation regime. From
the results shown in figs. 1-4 for different irradiation
conditions and material characteristics, it can be seen
that:

(1) if the dislocation density is one order of magnitude
higher, the number of helium atoms inside the critical
cavity is reduced by almost an order of magnitude. So,
larger dislocation results in fewer helium atoms re-
quired for nucleation;

(2) a change of an order of magnitude in the void
density does not appreciably change the critical dimen-
sion;

(3) for low helium atom generation rates, the critical
cavity includes very few helium atoms (i.e. true void
conditions).
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5. Conclusions and remarks

Our stability analysis for typical fusion condition
(i.e. P=KN = 1075 dpa/s, appm He/dpa = 50) indi-
cates that there exists three critical radii for cavity
evolution. The first one, R, is nearly zero (i.e. trivial)
and the last one, R, is almost infinite. The second
critical point is a saddle point. we conclude therefore
that cavity nucleation will occur by fluctuations over-
coming the nucleation energy barrier at R,. Because
R, is a stable node, cavities will tend to cluster in its
vicinity, unless pushed by fluctuations again past the
barrier. If cavities leave the stable regime and get into
the unstable regime by fluctuations, they will grow to
the third critical point. As the third critical radius is
very large, unbounded swelling will take place. We
conclude here that the cavity size distribution will
invariably be bimodal, and that a degree of swelling
reduction can be attained if the cavity transition rate
past R, is controlled. The role of fluctuations Gi.e.
cascade effects) can be important in this regard.
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