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Abstract 

A numerical study of the effects of cluster mobility on the clustering kinetics during deposition of atoms on a substrate 
surface is presented. The pertinent rate equations are solved by a two-group approach of using discrete equations for small 
clusters and moment equations for large ones. The study is restricted to systems where the critical nucleus is a monomer 
(e.g. Ag/NaCl at low temperatures). It is shown that if small clusters are fairly mobile their population will quickly be 
depleted, resulting in an overall reduction of the total cluster density. Cluster mobility coalescence reduces the 
concentration and increases the growth of surface atomic clusters. The effects of cluster mobility coalescence are 
analyzed in terms of two mobility models: (1) where only small clusters, here up to dimers, are mobile, and (2) where all 
clusters are mobile with a diffusion coefficient given by size power law. Results of the analysis are presented for the total 
density of surface atomic clusters and their size distributions. 

1. Introduction 

The evolution of atomic clusters in the early stages of 
thin film formation by thermal atom deposition is an 
important phenomenon for a fundamental understanding 
of atomic clustering physics and for practical applic- 
ations. Typical applications are encountered in chemical- 
and physical-vapor-deposition technologies. Classical 
nucleation theories [l-3] assume that single atoms 
deposited on the substrate surface exhibit diffusive 
motion until they either evaporate or collide with other 
adatoms or clusters and are captured. Clusters formed in 
this manner are often assumed to be immobile as a first 
approximation. However, there is experimental evidence 
for cluster mobility [4,5] that is expected to affect the 
nucleation kinetics [6] by increasing the possibility for 
additional aggregation and coalescence events. Mobility 
coalescence is usually taken into account only in a 
somewhat general manner [6], or is considered merely as a 
perturbation [7]. In some cases [l, 81, however, specific 
calculations have been undertaken. A more refined 
treatment of mobility coalescence [8], however does not 
aim at calculating its effects on the size distribution. 

Experimental evidence for cluster mobility suggest that 
isolated atomic islands on a substrate exhibit rotation and 
translation. Bassett [9, lo] evaporated silver, gold and 
copper onto substrates of MoS,, graphite and 
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amorphous carbon. He observed the nucleation, growth 
and coalescence processes under the electron microscope. 
Clusters as large as 5&1OOA were observed to move 
suddenly and coalesce with others. Growth sequences 
observed in the electron microscope by Poppa [l l] also 
showed evidence of cluster mobility. Despite the 
argument that electrostatic effects might have caused such 
movements [ 121, further experimental evidence of cluster 
motion obtained without using the electron microscope 
were presented by Bachmann et al. [13], and by 
Skofronick and Philips 1[4]. However, their conclusions 
are based upon a decrease in the cluster density with 
deposition time, and on distortions of the cluster size 
distribution. These experimental inferences are indirect 
and, therefore, must be analyzed in terms of a detailed 
atomic-clustering model. Other direct observations of 
cluster mobility have been presented in the literature 
[15-181. For example, Schwabe and Hayek (161 used the 
method of high resolution shadowing with tantalum/ 
tungsten to study the surface migration of gold on 
vacuum-cleaved surfaces of NaCl and KC1 under high 
and ultrahigh vacuum conditions. 

In this article we view the problem of surface cluster 
evolution as an aggregation phenomenon where particles 
of any size may interact according to a given, size- 
dependent rate constant. Such systems are described by 
Smoluchowski’s equation [19] and have been known in 
various different areas of research, as for instance aerosol 
physics [20] or star cluster physics [21]. Within this 
framework, we present a systematic study of the effects of 
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mobility coalescence on the clustering kinetics, the 
evolution of individual clusters, and the size distribution. 
The present model is restricted to atomic deposition 
conditions where the critical nucleus size is only a 
monomer. This, for example, may apply to systems where 
the binding energy of dimers is large enough that 
dissociation is negligible (as in low temperature 
experiments of Ag/NaCI). 

In Section 2, we present a kinetic model which includes 
mobility coalescence events, that describes the evolution 
of surface atomic clusters. In Section 3, we discuss 
mobility coalescence and give two models representing 
coalescence rates. Results of calculations of cluster 
densities and size distributions using our previously 
developed two-group moments method are given in 
Section 4. Conclusions drawn from this work are finally 
outlined in section 5. 

Equations (1) and (2) describe the system considered 
here. Apart from the deposition and evaporation rates, all 
of the physics is contained in the coalescence rate 
constant, K(i,j), particularly its dependence on the sizes 
of the coalescing clusters i and j. Other possible processes 
such as cluster growth by direct impingment [2] or 
nucleation at preferred sites [25] are excluded here so that 
we can focus on mobility coalescence effects. We have 
included such mechanisms in a separate publication [26] 
with the intention that the effects of each individual 
mechanism will be investigated without the added 
complexity of the simultaneity of processes which could 
make the interpretation of results somewhat ambiguous. 

The system of eqns. (1) and (2) is theoretically an 
infinite set of nonlinear, ordinary differential equations. A 
solution method has been developed by us in a separate 
publication [24], and will be discussed briefly in Section 4. 

2. Cluster evolution 

Consider a system of atomic clusters on a structureless 
surface. Each cluster is supposed to have, to some degree, 
the capability to exhibit Brownian motion on the surface. 
This gives rise to collisions where two clusters may 
combine to form one large cluster containing the sum of 
the atoms of the two colliding clusters. 

Let the number of clusters per unit area containing i 
atoms be C~(t), where t denotes the time. The rate of 
coalescence of an/-sized cluster with a j-sized cluster is 
given by K(i,j)CiCj, where K(i,j) is a coalescence rate 
constant. Balancing all possible gain and loss processes, 
one obtains Smoluchowski's well-known equation 
[19, 221 

d_C. 1 i - t  
= 2j~'==t K(I' , i - j)CjCi_j-  j=iL K(i,j)CICj i i> 2 (1) 

~t i 

Equation (1) describes an irreversible process. In some 
systems, clusters are not entirely stable but may dissociate 
spontaneously into fragments. Such a process may be 
included by adding appropriate terms [23, 24] to eqn. (1), 
but will be left out here. As mentioned earlier, we treat the 
case where dissociation of dimers and larger clusters is 
negligible (i.e. i = 1 systems). 

For applications to surface atomic clustering during 
the early stages of thin film formation, two important 
processes have to be included, namely the deposition and 
evaporation of species. In most cases, this concerns only 
the monomers for which we get the equation 

-~C,8 = _ ~ K(I'j)C'cj-C'+Qz (2) 
j = l  

where r is the mean residence time of an adatom before 
evaporation and Q is the deposition rate of monomers per 
unit area. 

3. Coalescence rates 

In eqn. (1), the coalescence rate constant K(i,j) appears 
as a phenomenological coefficient whose value may, in 
principle, be obtained from an appropriate microscopic 
theory. In thin film formation, two mechanisms leading to 
coalescence (i.e. migration and growth) are distinguished. 
Growth coalescence occurs typically at high surface 
coverage. In this paper, we wish to investigate mobility 
effects only; hence, we confine ourselves to low coverage 
(e.g. up to about 0.1 to 0.2 monolayers). 

It is important to note that in diffusion-controlled 
reactions in two or less dimensions, the rate "constants" 
may actually depend on the concentrations of  the reacting 
species [27]. Models for K(i,j) based on diffusion theory 
have been developed for monomer capture by immobile 
clusters [2, 28, 29]. Here, one writes 

K(I,i) = a,D a (3) 

where D t is the monomer diffusion coefficient and a~ is a 
dimensionless quantity called the capture number. 
Equation (3) may be generalized [22] for collisions 
between two mobile clusters, 

K(i,j) = aq(Di+ Dj) (4) 

where a o is a generalized capture number and D~ + Dj is 
the diffusion coefficient for the relative motion of the two 
clusters. 

3.1. Capture numbers 
Consider first the capture of adatoms by immobile 

clusters (eqn. (3)). Diffusion calculations show that ol is 
not only dependent on the size i of the capturing cluster 
but is also determined by competing effects such as 
evaporation and capture by other clusters [29]. 

One limiting case, typically encountered at low 
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substrate temperatures, arises when an adatom is more 
likely to be captured by other clusters than to evaporate. 
For this capture-controlled case, the capture number is 
given by [30], 

tr i = 2~/ln(R/ri) (5) 

where r~ is the radius of an/-sized cluster and R is a length 
of the order of the average distance of two neighboring 
clusters: 

Equation (5) is valid for low fractional coverage 

Z = ~ nr2C, <~ 1 (7) 
i = 1  

If  all clusters have the same radius, r i =  r, then 
Z = (r/R) 2, and eqn. (5) becomes identical to the result 
obtained from a lattice diffusion model [28]. 

In the other limiting case (desorption-controlled 
kinetics) which is typically encountered at high substrate 
temperatures, diffusion theory yields for an isolated 
circular cluster [2, 3] 

21tri K l ( rJ2 )  
~ ' =  ,~ Ko(r,/,Z) (8) 

where 2 is the diffusion length, (D~01/2, and Ko and K 1 
denote modified Bessel functions [31]. Except for very 
high temperatures where 2 is only a few lattice constants, 
the expression in eqn. (8) may be approximated by [2, 3] 

ai = 2n/ln(2/rl) (9) 

Now consider the more general case where two moving 
clusters coalesce [expressed in eqn. (4)]. Since clusters do 
not evaporate, a o may be given by an expression similar 
to eqn. (5), 

a o =  2 n / l n ( ~ )  (10) 

where ri + r~ is the distance of  contact. 
It must be emphasised that the expressions (5) and (9) 

are less rigorous than they might seem. This is mainly 
because the underlying diffusion theories do not take into 
account spatial correlations between clusters. Moreover, 
all these theories assume steady state, which is never 
strictly met in deposition experiments. The difficulties 
encountered in attempts to calculate rigorous 
coalescence-rate constants reveal, in fact, the fimitations 
of the mean-field concept that is inherent in eqn. (1). 

3.2. Models  f o r  cluster mobilities 
The dominant size dependence of the coalescence rates 

is given by the diffusion coefficient, Di [cf. eqn. (4)]. 
Monomer diffusion follows quite closely an Arrhenius 
relation [32], 

D1 = ¼a2vle E,/kr (1 !) 

where a is a hopping distance, v I is the adatom vibration 
frequency, and Et is the activation energy for adatom 
diffusion. Furthermore, k is Boltzmann's constant and T 
is the surface absolute temperature. 

The diffusion of clusters is much more complicated 
since different mechanisms with different activation 
energies are involved. In general, cluster diffusion does 
not obey a simple Arrhenius law [33]. The qualitative 
behavior depends on the relative bond strengths of the 
substrate and the deposit, and also on the mismatch in 
bond lengths. 

In the one extreme, where the bonding between two 
adsorbate atoms is strong compared with the bonding 
between an adsorbate and a substrate atom, the cluster 
moves as a whole, and a relation 

D i oc e - E ' / k T  (12) 

is suggested [3], where Ei is an energy proportional to the 
interface area. Clearly, the mobility decreases rapidly 
with increasing cluster size in this case. 

In the other extreme where the internal bonds within a 
cluster are weak, cluster migration is thought to be caused 
by random self-diffusion of individual cluster atoms. 
Here, the diffusion coefficient obeys a power law [3] 

D i oc i -s (13) 

where the power exponent s depends on the dimension- 
ality of the process. According to ref. 3, s = 1 corresponds 
to volume self-diffusion, s = 4/3 to surface self-diffusion, 
and s = 5/3 to peripheral self-diffusion. 

It should be noted that eqns. (14) or (15) are based only 
on certain simplified theoretical models. Experimental 
information on cluster surface diffusion exists [5] but is 
scarce. It is interesting to note, however, that in some 
systems, dimers have been observed to have higher 
mobilities than monomers, which is incompatible with 
either eqn. (12) or eqn. (13). In this paper, we use the two 
mobility models represented by eqns. (12) and (13) to 
illustrate the possible range of mobility coalescence 
effects. 

4. Calculations of size distributions 

All our calculations are based on coalescence rates 
according to eqn. (4). However, in order to keep the 
number of parameters small, we used constant capture 
numbers, a l j ~ a .  This is not a severe approximation since 
all the expressions given in section 3.1 have weak 
logarithmic dependence. At any rate, it is the diffusion 
coefficient rather than the capture number that contains 
the dominant size dependence in the coalescence rate. 

To study the effects of cluster mobility on nucleation 
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kinetics, two different models are adopted. In the first 
model, dimers are assigned a certain fraction of the 
monomer mobility while all larger clusters are considered 
immobile. In the second model, mobilities are assumed to 
follow a power law according to eqn. (13). These two 
models allow a systematic study of mobility effects. 
Calculations with exponential size dependence as 
suggested by eqn. (12) were carried out as well [24], but 
the results are qualitatively the same as for the model 
where only dimers are mobile. Therefore, those 
calculations will not be reported here. 

In nucleation theory, it is common to distinguish 
between two different regimes of condensation that are 
characterized by the relative importance of processes in 
the monomer balance (eqn.(2)). The first is the 
desorption-controlled case, where deposition and evapor- 
ation of adatoms are in equilibrium and aggregation can 
be neglected. In this case, eqn. (2) reduces to 

C1 = Qz (14) 

The second regime of condensation is the capture- 
controlled case, where loss due to aggregation dominates 
over evaporation. Here, eqn. (2) becomes 

- ~ K(1,y)Gcj+Q 05) 
- ~ c 1  = J f 

We wish to keep this distinction here and discuss the 
effects of mobility coalescence for both extremes 
separately. The numerical solution of the system of 
clustering equations has been fully explored in ref. 24 and 
more detailed derivations can be found in ref. 30 [1]. For 
convenience, however, we summarize our numerical 
approach below. 

A two-group method has been developed to solve the 
hierarchical system of eqns. (1) and (2). In this technique, 
small size clusters, up to an arbitrary size given by i = x*, 
are obtained by a direct numerical solution to eqn. (1). 
Equations for the k's moment, Mk, of the size distribution 
have been derived, and are given by [24]: 

d ~ k 0  
~Mt, = - i=1 i ~-~Ci 

.x'* X* 

+½ E • CICIK(1,J)[(i+J) k-ta-jk] 
i = l j = l  

+ Ci dxC(x)K(1 ,x)[(i + x) k - /k  _ x ~] 
i=1 x* 

x [(x+y)k--x~--yk]+ ~ ikQi (16) 
i=1 

Instead of solving a large hierarchy of clustering 
equations (e.g. thousands) of the type represented by 
eqn. (1), a small number of kinetic moment equations 

(eqn. 16)) are solved. The solution for the dis- 
crete group is appropriately attached to the moment at 
i = x*. The size distribution is then reconstructed from 
the moments by a modification of the maximum entropy 
principle [34, 35] as explained in ref. 24. 

4.1. Desorption-controiled case 
The number of parameters may be reduced without 

loss of generality by appropriately rescaling quantities, 

c', = Cd(QT) 

t' = aDiQzt (17) 

This transformation removes Q, r, a, and D~ from the 
calculations. The only input parameters left is the ratio of 
the diffusion coefficients, Di/D~. All results in this section 
will be given in terms of the dimensionless primed 
quantities. Table l gives the magnitude of input 
parameters used in example calculations. The values of 
the parameters in Table 1 are chosen to illustrate a typical 
high-temperature deposition case. 

TABLE 1. Input model parameters "Illustrative example" 

Symbol Parameter Value Units 
meaning 

D1 monomer diffusion coefficient 10- to m 2 s -  t 
mean adatom residence time 10-s s 

Q monomer deposition rate 1017 m -2 s -  t 

In this example, all Ci's will denote concentrations in units of  10 9 m-2,  
and t will be the time in units of  10 s. 

Figure l(a) shows the time dependence of the 
concentrations of the five smallest clusters together with 
the zeroth moment, Mo of all larger clusters: 

Mo = ~ Ci (18) 
i=6 

Only monomers are assumed to be mobile. Initially, 
atoms are present on the substrate surface at their 
equilibrium concentration (eqn. (14)), while all other 
concentrations are set equal to zero. As time proceeds, 
dimers and larger clusters are formed until they reach a 
common "quasi-equilibrium" value. We define here 
"quasi-equilibrium" as the condition which exists when 
C2 = Ca---(74 . . .  Here, 'the gain of /-clusters by 
monomer aggregation to ( i -  1)-clusters is compensated 
for by an equal loss due to monomer aggregation to i- 
clusters. The zeroth moment of clusters with six or more 
atoms increases linearly because six-mers are produced at 
a constant rate. 

Figure 1 (b) shows the same results except that dimers 
have finite mobility, D2 = D1/IO0. The behavior in the 
initial stage is identical with the behavior shown in 
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Fig. 1. Time dependence of small cluster concentrations Ct • • • C5, and 
of the zeroth moment (Mo) for the desorption-controlled case: (a) 
monomers mobile only, (b) dimers mobile with D2 = DI/IO0; (c) all 
clusters mobile (eqn.(15) with s=2).  (The quantities are made 
dimensionless according to eqn. (17).) 

Fig. l(a), but for t' > 10 there is a marked difference. The 
concentrations o f  dimers and larger clusters pass through 
a maximum, followed by a continuous decrease. Here, 
dimers are lost because o f  aggregation to other clusters. 
Consequently, all concentrations o f  larger clusters 
decrease as well, and the zeroth moment  o f  clusters with 
six or more atoms increases sub-linearly. It is remarkable 
that this effect is present even for such a low dimer 
mobility o f  1%. 

Figure l(c) displays the evolution o f  concentrations 
where all clusters are mobile according to a power law 

(eqn. (13)with s = 2). The initial phase is the same as in 
the previous figures since coalescence does not operate 
before sufficient cluster concentrations have built up. 
However, after passing through a maximum, the 
concentrations do not assume c o m m o n  quasi- 
equilibrium values since clusters of  any size are lost by 
aggregation to larger ones. Therefore, the total production 
rate (for clusters o f  size i > 3 ) is reduced because o f  the 
loss of  dimer growth centers. 

Figure 2(a) shows size distributions for a fixed time, 
t ' =  1000. The different curves correspond to different 
dimer mobilities. The solid line, representing zero dimer 
mobility, shows features o f  a propagating step function 
(i.e. clusters with less than I000 atoms occur with 
concentrations around unity, where larger clusters are 
practically absent). The waviness of  the distribution for 
i < 1000 in the case when dimers are immobile (solid 
lines) is not real but is an artifact of  our method of  
solution that is caused by the reconstruction o f  the 
distribution from its moments  [24]. The accuracy of  the 
reconstruction is substantially improved in cases where 
dimers are mobile (dashed lines). A complete analysis o f  
the numerical problems associated with reconstructing 
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(eqn. (13)) (reconstructed from three moments). 
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the distribution function from a small number of  
moments is given by us in refs. 24 and 30. The broken 
curves in Fig. 2 (a) show size distributions for finite dimer 
mobility. All distributions have the same qualitative 
behavior (i.e. the concentrations increase with increasing 
size, followed by a pronounced maximum and a sharp 
drop-off at around i = 1000). The exact position of  the 
maximum concentration shifts to larger sizes as the 
mobility of  dimers increases. This is to be expected if an 
increasing proportion of  dimers contribute to cluster 
growth through capture. This implies that dimer mobility 
does not significantly enhance the growth rate of  existing 
clusters, as one might expect. Rather, dimer mobility 
results in a loss of  dimer growth centers and thus reduces 
the rate of  formation of  higher-order clusters. Therefore, 
all broken curves in Fig. 2(a) fall below the solid curve. 

The situation is more complex for the distributions in 
Fig. 2(b), where power-law mobility (eqn.(15)) is 
assumed with various powers s. As in Fig. 2(a), mobility is 
found to decrease the total number of  clusters per unit 
area, i.e. the integral over the distribution. Unlike 
Fig. 2(a), however, the growth rate increases with an 
increasing degree of  cluster mobility, i.e. decreasing s. 
Whereas the maximum of  the distribution is around 
i = 1000 for s = 2, it is at around i = 2500 for s = 1. Also 
the shape of  the distribution seems to depend 
qualitatively on the power exponent s. While for s = 2, 
the bulk of  the distribution is made up of  larger clusters of  
sizes around i = 1000, there is a comparatively large 
fraction of  small clusters for s = 1. This may be explained 
by the fact that for s = 1 there are fewer clusters than for 
s = 2, thus resulting in a smaller chance for the small 
clusters to aggregate to large ones. Hence, more of  them 
survive, as is seen in the distribution function. 

4.2. Capture-controlled case 
In this section we rescale quantities according to 

C; = (aD1/Q)t/2Ci 

t' = (aDIQ)I/2t  (19) 

This makes the quantities aD 1 and Q disappear from 
both eqns. (1) and (15), and the behaviour of  the system is 
completely determined by the relative cluster diffusion 
coefficients, DJD~. As an example, one may consider 
quantities which are representative of  low-temperature 
condensation. If the values of D 1 = 10 -~3 m 2 s -1, 
Q = 1 0 1 9  m - 2  S -1 were used, the C~'s will denote 
concentrations in units of  1016 m-2  and t' will be the time 
in units of  10  - 3  S. 

Figure 3(a) shows the time dependence of  individual 
dimensionless concentrations. Here, the monomer 
concentration is not constant but is determined by the 
balance of eqn. (15). At short times, C1 increases linearly 
because there is a constant source Q and essentially no 

loss by aggregation. For  t' > 1, however, aggregation sets 
in, and the adatom concentration decreases [1] as 
C~oc l / t  ~/3. Quasi-equilibrium is achieved for all 
displayed concentrations at times t ' >  10 (i.e. all 
concentrations are equal to C1). The zeroth moment of  
large clusters increases as Mo oc t ~/3 for sufficiently long 
times [1]. 

Figure 3(b) depicts the same set of parameters but with 
dimer mobility D 2 = DI/IO0. Here the dimer concentr- 
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monomers mobile only, (b) dimers mobile with D 2 = D1/lO0 , (c) all 
clmters mobile (eqn.(15) with s = 2). (The quantities are made 
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ation decreases more rapidly at long times compared with 
the case where dimers are not mobile (Fig. 3(a)). Here, 
nucleation centers are lost, resulting in a smaller total 
zeroth moment of large clusters. This has a feedback 
effect on adatoms in that they have fewer partners to 
aggregate with and, thus, remain more abundant in 
comparison to the previous case of Fig. 3(a) where dimers 
are not mobile. The abundance of adatoms, in turn, has 
implications on the growth rate, as will be shown below. 

Figure 3(c) shows the evolution of concentrations for 
power-law mobility [eqn. (13) with s = 2]. There is no 
quasi-equilibrium for long times since clusters of any size 
may be lost due to aggregation. The formation of large 
clusters is much slower than in the previous figures 
because the independence of clusters is lost while they are 
still small. Compared with Figs. 3(a) and 3(b), more 
monomers survive because they meet fewer large clusters 
with which to aggregate. 

Size distributions for different dimer mobilities are 
shown in Fig. 4(a). It is seen that with increasing dimer 

mobility (shown as a fraction of the monomer mobility on 
the curves), the total number of clusters decreases. On the 
other hand, the growth rate increases with increasing 
dimer mobility. The reason here is not, as might he 
suspected, that clusters grow to a noticeable degree by 
dimer aggregation [monomer aggregation is the domi- 
nant growth mechanism for all cases displayed in 
Fig. 4(a)]. Rather, the increase in growth rate is caused by 
an increased monomer concentration for increased dimer 
mobility, as can be seen by comparing Figs. 3(a) and 3(b). 

Finally, size distributions for power-law mobility with 
various exponents s are shown in Fig. 4(b). Apart from 
the different scale, there is a striking similarity to the 
curves in Fig. 2(b). This behavior suggests that for power- 
law mobility, the shape of the distribution is not 
dependent on the details of the monomer balance. This is 
in contrast to the case where only monomers are mobile 
(where the size distribution is a "mirror image" of the 
temporal monomer concentration [l]). 

5. Conclusions 

Z o 
P .¢  
ee 
P 
Z 

O 
Z 
O 
O 
tt~ 

tU 
.d  

O 

lu  
IE 

0.20 

0.10 

0.0( 
0 

0.02 

(a) 

OJD~= 0 

0 . 0 1  //i 
/ / ~ ..~,, O. 1 

/ / / ., 
/ ., , \ 

/ I 'l . /  ", 

. . . . . . . . . . . . . . . . . . .  , : . . . . . .  

IO0 20O 

l 
i I 

i 

l 2 

°01t/ i 
,t 2 /3  I 

',.5 ~ 1 ~ ",, 
........... . ~  .. . . . .  '-" .¢. . . . . . . . . .  ~ . . . . . . . . . . . . . . .  

0.00 
0 500 1000 

300 

1500 

CLUSTER SIZE (atoms) 

Fig. 4. Cluster-size distribution functions for the capture-controlled 
case, at dimensionless time t' = 1000: (a) dimers are mobile with their 
diffusion coefficient indicated as a fraction of  the single a tom value 
(reconstructed from five moments) ,  (b) all clusters are mobile with 
various values for s shown on the curves (eqn. (13)) (reconstructed from 
three moments).  

We have presented a kinetic study of mobility effects on 
cluster evolution during the deposition of atoms onto a 
surface. Calculations have been carried out for two 
extreme regimes of condensation: the capture-controlled 
and the desorption-controlled cases. Cluster mobility has 
been modeled either as dimer mobility only or as a power- 
law dependence where even large clusters are fairly 
mobile. 

Our results suggest the following conclusions: 
(1) If  only monomers are mobile, the size distribution is 

essentially a mirror image of the time dependence of the 
monomer concentration [1]. This simple picture is valid if 
all clusters grow in a deterministic fashion (fluctuations 
due to the discreteness of the aggregation process being 
negligible). 

(2) Dimer mobility causes dimer depletion due to 
aggregation with larger clusters. Consequently, since they 
grow from dimers, the concentrations of trimers and all 
larger clusters are depleted also. The size distribution is a 
mirror image of the dimer concentration as a function of 
time. Cluster growth is still dominated by single atom 
aggregation. 

(3) The case where large clusters are mobile is more 
complex. For a power-like dependence of cluster 
mobility, clusters grow to a certain degree by cluster 
aggregation in addition to single particle aggregation. 
The size distribution no longer reflects the time 
dependence of monomers or even small clusters. Typical 
size distributions display a sharp decrease at small sizes 
and a peak at large sizes. Our numerical results are 
consistent with the qualitative arguments of Venables and 
Bienfait [36], and Venables et al. [6]. 
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