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We present a numerical scheme for the treatment of particle 
agglomeration phenomena. The method is based on separating clusters 
into two groups according to size: small clusters containing up to x* 
particles and larger clusters with more than x* particles. In the first 
group, a set of equations describes the evolution of individual clusters; 
moment equations are derived for the second group. These two sets of 
coupled equations are solved numerically for, and giving good agree- 
ment with, a case where an exact solution is available. In a second step, 
the full distribution function is reconstructed from its moments. Here 
we use a nonlinear method based on the maximum entropy principle. 
The superiority of this method over a Gram-Charlier expansion is 
demonstrated for an example taken from the condensation of atomic 
clusters on a surface. 0 1992 Academic Press. Inc. 

incorporates all potentially relevant processes and allows 
the calculation of the distribution. 

In this paper, we develop a model based on kinetic rate 
equations. In Section 3, we describe, in detail, the basic idea 
of separating the clusters into two groups according to size. 
In Section 3.1, a set of coupled equations is derived for 
the individual concentrations of clusters in the first group 
and for moments of the distribution in the second group. 
Section 3.2 is devoted to the problem of reconstruction of 
the distribution from its moments; an illustrative example is 
given in Section 4. The paper concludes with a discussion on 
the merits and drawbacks of the method. 

2. BALANCE EQUATIONS 

1. INTRODUCTION 

The general phenomenon of particle aggregation and 
clustering is encountered in many seemingly unrelated 
research fields. For example, this concept has been used to 
describe the particle size distribution in aerosol physics [ 1 ] 
and star cluster size in astrophysics [2]. Other examples are 
found in materials’ science (e.g., in thin film formation 
[3-53) swelling of nuclear fuel materials [6], metal clusters 
in metal vapors [7], and in expanding nozzle flows [S]. 
The one feature these systems have in common is that they 
may be characterized by the size distribution of aggregates 
or clusters. 

We consider here a system for clusters that are charac- 
terized by the number of their constituents (typically 
atoms). Other degrees of freedom, such as the shape of 
clusters, are disregarded. Allowance is made for coalescence 
reactions where two clusters combine to form a large one 
that contains the sume of atoms of the two coalescing 
clusters. 

The shape of the size distribution of clusters and its 
evolution in time is governed by microscopic processes (e.g., 
aggregation, coalescence, dissociation, and evaporation). In 
order to learn about these processes and their relative 
importance from the size distribution in a given system, it is 
necessary to understand their influence on the aggregation 
kinetics. This can be achieved with a detailed model that 

Let CJt) be the concentration of clusters consisting 
of i atoms at a given time t. Depending on the system 
considered, the concentration may be given as either the 
number of clusters per unit volume or per unit area. Then the 
rate of coalescence per unit volume (or per unit area) of an 
i-cluster with a j-cluster is given by K(i,j) CiCj, where 
K( i, j) is a rate constant that, in the general case, depends on 
the sizes of both coalescing clusters. A general conservation 
equation for the cluster concentrations mav be written 
as [9, lo] 

i Ci= i’g’ K(j, i-j) CjCiej 
j=l 

* Permanent address: Institute for Theoretical Physics, Technical 
University, P. 0. Box 3329, D-3300 Braunschweig, Germany. 

- f K(iyj) C;Cj+Qiy (1) 
j=l 
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where Qi denotes an external source rate per unit volume 
(or per unit area) of clusters (mostly monomers). 

In some systems, clusters may not be entirely stable but 
rather dissociate spontaneously into two fragments. In that 
case, a term of the form 

r-1 

- 4 C F(j, i-j) Ci+ f F(i,j) Ci+j (2) 
j=l J=l 

has to be added to the right-hand side of Eq. ( 1). Here F( i, j ) 
denotes the rate at which a cluster of i + j atoms dissociates 
into two clusters of i andj atoms. 

Finally there may be a possibility that clusters leave the 
system altogether (e.g., due to evaporation off a surface). 
This process may be accounted for by adding a term 

-vici (3) 

to the right-hand side of Eq. (1 ), where vi is the loss rate of 
an i-size cluster. 

Equation (l), and its extensions by terms (2) and/or (3), 
has been surveyed in some detail [ 111. Exact solutions are 
known for a few cases where the coalescence rate is a 
bilinear function of the cluster sizes. For the more general 
case where the coalescence rate is some homogeneous func- 
tion of the sizes, similarity solutions have been studied [6]. 

To go beyond the limitations of these attempts, recourse 
to numerical techniques is necessary. Straightforward 
numerical time integration of Eq. (1) is possible, but the 
number of equations to be taken into account may become 
very large, especially at large times. Another method of 
solution is a direct Monte Carlo simulation [ 12, 133. 

3. TWO-GROUP APPROACH 

In this section, we wish to establish a method of solution 
for the agglomeration equation (Eq. (1)). The method is 
based on separating the clusters into two groups according 
to size: the first containing clusters with up to x* atoms, and 
the second containing clusters with more than x* atoms. 
The quantity x* is some small integer that may be 
suggested, in some cases, by physical properties of the 
clusters (e.g., their stability). For the first group, a set of dis- 
crete equations describes the concentrations of individual 
cluster sizes; the second group is characterized by a set of 
equations for the moments of the distribution. Although this 
strategy is somewhat similar to an existing approach 
[ 14, 151, it only considered single particle transitions. Here, 
we wish to relax this restriction in the general formulation. 
Consequently, we do not approximate the evolution equa- 
tion for large clusters by a Fokker-Planck equation, but 
instead aim at deriving moment equations from the original 
equation ( 1). 

3.1. Moment Equations 

Introduce power moments Nk of the cluster size distribu- 
tion according to 

Nk(t)= f ikCi(t). (4) 
i=l 

The concentration of all clusters irrespective of their size is 
denoted by N,(t) and N,(t) is the concentration of atoms 
contained in these clusters. Multiplying Eq. (1) by ik and 
summing over all i, one obtains [ 111 

;Nk=; ,f f C,C,K(i,j) 
r=l j=l 

x[(i+j)“-i”-j”]+ f ikQi. (5) 
i= 1 

The intuitive meaning of this equation is clear by observing 
that, in a coalescence event between clusters of sizes i and j, 
the moment N, changes by 

(i+ j)k-ijk- jk. (6) 

In the following, we want to perform the classification of 
clusters into two groups of sizes, i < x* and i > x*. For the 
large clusters, we wish to use a continuous description so we 
write C(x), instead of Ci, for x = i > x*. Sums over Cj are 
replaced by integrals over C(x) dx in the obvious way. 
Equation (1) then becomes, approximately, for the small 
clusters, 

i Ci=iiil K(j, i-j) CjCiej 
J=I 

- $ K(i, j) CiCj 
j=l 

- 
s 

m dx K(i, x) C,C(x) + Qi. 
X’ (7) 

Next we introduce moments Mk of the large cluster 
continuum, 

M,= f O” dx xkC(x). 
x* (8) 

These are related, approximately, to the full moments N, in 
h (4) by 

li’fk=Nk- 5 ikCi. 
i=l 

(9) 
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Substituting Eq. (9) into the moment equation (5) and Although Eq. (13) is valid for any expansion point, the 
performing the separation, we obtain preferable choice for x0 is the average cluster size, 

$Mk= - 2 iktCi+i ,jj 5 CiCj 
;=, at r=l j=l 

xK(i,j)[(i+j)k-ik-jk] 

+ 5 ci~:dxc(x)K(i,x) 
i= I 

x [(i+x)k-ik-xk] 

xo-X*=X=M,/M,, (14) 

particularly so if the distribution C(x) is uni-modal. 
Applying this scheme to Eq. (7) we obtain 

~Ci=~~~‘K(j,i-j)CjCiej 
/=I 

- 5 K(i, j) CiCj 
j=l +; 

m 00 
I s dx 4 C(x) C(Y) x* x* 

x m YN-b + Ylk - Xk - Ykl 

+ f ikQi. (10) 
i=l 

Our final goal is to obtain from Eqs. (7) and (10) a closed 
set of equations for the small cluster concentrations Cj, 
i= 1, 2, . . . . x*, and the first few continuum moments Mk, 
k = 0, 1, . . . . IZ, where n is some small integer. To achieve this, 
we need to express the integrals in Eqs. (7) and (10) over the 
continuum distribution in terms of the moments Mk. 

Consider the quantity 

G = Irn dx C(x) g(x), 
.x* 

(11) 

where g(x) is some arbitrary function. Our task is to obtain 
an approximate expression for G in terms of the moments 
Mk of Eq. (8). This problem is, of course, of a general 
nature, but its solution is not unique. An ingenious method 
to obtain bounds for G based on a representation of C(x) by 
an array of delta functions is given in [ 161. Here, however, 
we wish to use a somewhat simpler scheme that gives 
accurate results if the distribution C(x) is fairly localized 
and if g(x) varies only slowly. 

Expand the function g(x) in a Taylor series around some 
point x0, 

g(x) = f $ b - XOY d”‘(xo) n=O . 

=~o~Pbo) i (~)+xor (12) 
“CO 

Inserting this expression into Eq. (11) gives the desired 
result, 

K”,“)( i, 2) Ci 

Xi 0 n (-X)"-"MY+Qi, (15) 
v=o v 

where the symbol K’“,“’ denotes the partial derivative, 

(16) 

Equation (10) may be treated similarly. The equations for 
MO and M, will be considered first. For k = 0, the square 
brackets in Eq. (10) are all equal to - 1, and we obtain, by 
a procedure similar to the previous one, 

iMo= -j$,iC,-i,c 5 CiCjK(i,j) 
r=l /=I 

x* cc, 

- 1 Ci 1 i K’“~“‘(i, X) 
,=I n=O . 

x ( -x)m+“-p-YM,Mp+ f Q;. (174 
i=l 

The equation for M,, which becomes particularly simple 
because the square bracket terms in Eq. (10) vanish, is 

iM,= -i$, iiCi+ ‘f iQi. (17b) 
i=l 

G= ~ fg'~)'xo'.~o(~) (-Xo)n-YMy. 

Equation (17b) is in fact a conservation equation for the 
n=O * (13) numberofatomsinthe system 
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Performing all the pertinent Taylor expansions in 
Eq. (10) for k > 2, we finally obtain 

3 x* 1 1 x* .x* 

$M,= -iC, ik~Cj+~~~ 1 CiCj 
1=1 j=l 

x K(i,j)[(i+j)k- ik -jk] 

+gcikfl ; 
r=l I= 1 0 

ik-lnfo A 

x (-X)m+n-~-“M,+,Mk--[+~+ f ikQi, (17c) 
i=l 

where the term in the square brackets of Eq. (10) is 

k-l k 
(x+y)k-xk-yk= c I x'yk-'; 

0 
k32. (18) 

I= I 

Equations (15) and (17) are two coupled sets of nonlinear 
ordinary differential equations for the small-size cluster con- 
centrations and the continuum moments. If we take only the 
first two terms in the Taylor series for K(x, y) into account 
(i.e., we truncate all terms with m, n 2 2), then the system 
is self-contained for any number of moments M,, 
k = 0, 1, . . . . N, with N 3 1. Since the coalescence rate K(x, y) 
is supposed to be a smooth function of size for large clusters, 
as will be given in Eq. (19) below and Eq. (25), this trunca- 
tion is not considered to be severe. 

Although Eqs. (15) and (17), as they have been derived 
here, do not contain processes like fragmentation or loss of 
species, such phenomena may be readily included by adding 
the appropriate terms (2) and (3) to Eq. (1) and performing 
similar steps which led to Eqs. (15) and (17). We thus have 
a versatile tool to study numerically the kinetics of aggrega- 
tion phenomena for a wide variety of physical systems. 

To test the method developed here, we numerically 
integrated Eq. (15) for x* = 5 and Eq. (17) for N= 4, using 
the coalescence rate 

K(i,j)=ij. (19) 

The initial condition was that only monomers are present, 
Cj(t = 0) = 6,, , and the source term was set equal to zero. 
For this case, the full solution is given analytically [ 171 for 
both the individual concentrations and the moments. We 
show the first five concentrations as a function of time in 

Fig. la. It is seen that the numerical values lie precisely on 
top of the analytical curves. In Fig. lb are shown the first 
moments Nk up to k = 4. As the time approaches unity, the 
second and all higher moments diverge. This phenomenon 
is a well-known consequence of the product kernel in 
Eq. (19) and is interpreted as the sol/gel transition. Again, 
the numerical results agree quite well with the exact solution 
although, at the divergence, the numerical calculation seems 
to underestimate the moments. 

3.2. Reconstruction of the Continuum Size Distribution 

The general problem of reconstructing a distribution 
function from its moments is well established and arises in 
various areas of research such as ion implantation [IS]. It 
is clear that the information from a finite set of moments 
cannot be sufficient to uniquely determine the unknown 
function. The problem, therefore, is to find, among the class 
of functions having all the same prescribed first few 
moments, the most reasonable one in some sense. 

A number of reconstruction schemes are available which 
technically might be classified as linear and nonlinear. In 
linear reconstruction, the function is expanded in a set of 
orthogonal functions where the expansion coefficients are 
determined by the moment constraints. Making use of the 
orthogonality relations, the result is obtained in closed 
form. One such well-known technique is the Gram-Charlier 
series expansion [ 191. For functions close to Gaussian, this 
method gives quite satisfactory results [ 181. However, the 
method is not satisfactory for highly skewed functions, as 
will be shown here. One severe drawback inherent to all 
linear schemes is that the reconstructed curve may assume 
negative values, which is physically impossible for the true 
distribution function. 

Nonlinear reconstruction schemes assume a certain form 
for the unknown function with adjustable free parameters to 
give the correct moments. This method is especially power- 
ful if, for instance, theoretical considerations suggest some 
specific functional form. Certainly the reconstructed 
function can be constrained to be non-negative. However, 
since these methods are essentially nonlinear, existence and 
uniqueness of a solution might in some cases constitute a 
serious problem. 

The most general nonlinear reconstruction method may 
be obtained from the maximum entropy principle. The 
foundation of this principle has been given by Jaynes [20]. 
It provides the means to select an unbiased estimate in the 
sense of Bayes of the distribution, given only the incomplete 
information of a finite set of expectation values (moments). 
Some of the countless applications may be found in 
[21, 221. In brief, the idea is to assign a function C(x) that 
maximizes the entropy S, where S is defined as 

S= -sm dx C(x) In g, 
.X* 

(20) 
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FIG. 1. (a) Discrete concentrations (C, -C,) and (b) full moments (No- N,,) of the size distribution as functions of time for the product kernel of 
Eq. (19). 

and C(X) satisfies the moment constraints. In Eq. (20), p(x) 
denotes a prior probability or measure [23]. Roughly 
speaking, p(x) dx is proportional to the number of states 
within the interval (x, x + dx). In our case, the continuous 
variable x represents the number of atoms in a cluster, 
originally an integer, and thus we set p(x) = 1. We note, 
however, that there is some ambiguity here (i.e., the number 
of ways a cluster of x atoms may be realized might depend 
on x). Fortunately, the influence of p(x) on the results is 
only weak, and it decreases with an increase in the number 
of moment constraints. 

The entropy in Eq. (20) is maximized, subject to the 
moment constraints given in Eq. (8) for k = 0, 1, . . . . N, by 
introducing Lagrange multipliers 2, in the usual way, giving 
the result 

C(x)=A*)ev( -ioAkxk). (21) 

Indeed, if no constraints were given at all, N = 0, Eq. (21) 
would result in C(x) = p(x) which is consistent, sincep(x) is 
the prior probability. 

Equation (21) is a formal solution in the sense that the 
Lagrange multipliers Jk have yet to be determined from the 
moment constraints, 

s ‘L, I* dxx*exp( -ioA,x’)=Mk, 

k = 0, 1, . . . . N. (22) 

Equation (22) comprises a nonlinear system of equations 
for the II, that was solved numerically using the subroutine 
COSPBF (based on the Powell hybrid method [24]) of the 

lo5 I I s . I 
/ . y 

Numerical Analytical / : i ; 

10-l. ' ' . ' * ' . ' ' 
0.0 0.2 0.4 0.6 0.8 1.0 

DIMENSIONLESS TIME 

NAG library [25]. The integrals were calculated using the 
subroutine DOlBAF of the same library [25] using a 
64-point Gauss-Legendre formula. 

In order to check the method, we use an example of the 
condensation of atoms deposited on a substrate surface as 
it occurs in the early stages of thin film formation. For 
this system, an analytical solution is available (cf. the 
Appendix). 

In Fig. 2a, we plot the distribution function together with 
the reconstruction from its moments by the maximum 
entropy principle. Good convergence is found even though 
the original distribution has a sharp peak and is highly 
skewed. The reconstructed curves oscillate somewhat 
around the true distribution, but the oscillations decay 
rapidly with the increasing number of moments used. 

For comparison, we show a Gram-Charlier reconstruc- 
tion of the same distribution in Fig. 2b. None of the curves 
approximates the true distribution satisfactorily. Con- 
vergence is slow and, in fact, if the solution was not known, 
the behavior could be quite misleading. For instance, by 
looking only at the curves for two and four moments, one 
might be tempted to conclude that the four moments 
reconstruction must already be close to the true solution, 
since it deviates from the Gaussian (two moments) by only 
a small amount. Clearly, this is by no means so. Even worse, 
going to higher moments does not improve matters very 
much but rather causes quite pronounced oscillations, 
suggesting a bimodal distribution. Note that for 10 
moments, the oscillations are more severe than for eitht 
moments. 

Although the maximum entropy reconstruction gives a 
quite satisfying overall approximation of the distribution, it 
systematically underestimates the distribution for small 
clusters. This phenomenon is similar to Fourier series 
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FIG. 2. Reconstruction of the size distribution for constant monomer aggregation coefficient using exact moments of Eq. (46) thick solid line: 
Eq. (37) for T = 2000; thin lines: reconstruction of (a) maximum entropy, (b) G ramxharlier, and (c) reconstruction of the size distribution for constant 
monomer aggregation coefficient using exact moments of Eq. (46) (thick solid line: Eq. (37) for t = 2000; thin lines: reconstruction of (c) constrained 
maximum entropy). 

expansion of discontinuous functions, where the series con- 
verges to the mean of the left and right limit at the discon- 
tinuity. It appears that one could improve the approxima- 
tion by constraining the reconstructed function to the 
correct value at the left side. After all, we know the value of 
C(x*) from the discrete Eq. (15). 

Doing this within the strict framework of the maximum 
entropy principle is straightforward but the result is not 
very helpful. The reconstructed function would be exactly 
the same as in Fig. 1 except for the point x = x* that would 
be shifted towards the prescribed value. This occurs because 
a single point has zero measure, thus leaving the moments 
unchanged. 

In view of this situation, one is almost naturally led to a 

more pragmatic approach rather than remaining faithfully 
committed to the unconstrained maximum entropy prin- 
ciple. The most obvious method is to keep the functional 
form of Eq. (21) for the reconstruction, as suggested by the 
maximum entropy principle, but replace the Nth moment 
constraint (Eq. (22)) by the boundary constraint 

exp (-,% i,(x’I’) = ax*). (23) 

The resulting function will not be the one with maximum 
entropy, but will give a better approximation for small 
clusters. 

Figure 2c shows results for constrained maximum 



KINETICS OF CLUSTER AGGREGATION 7 

0.20 

o,,5 ; ji l 

f5 A 

ii 
A Ih A 

0.10 
. 

- 9 0 

5 
ii i a : 

0.05 
- 

x 
I 

0.00 ’ 
I I I I 

0 2 4 6 6 10 12 

NO. OF MOMENTS 

FIG. 3. Convergence of various reconstruction schemes according to 
Eq. (24). 

entropy principle reconstruction of the test function. Com- 
pared to the curves in Fig. 3, the approximation is better for 
the small clusters where there are less oscillations in the 
reconstruction. The reproduction of the sharp peak at large 
cluster sizes is no worse than for the pure maximum entropy 
principle (Fig. 3). In conclusion, the constrained maximum 
entropy principle gives a satisfactory reconstruction even of 
the sharp-peaked test function presented here. 

Figure 3 gives a quantitive measure of convergence 
according to the Lz-norm, 

relative error = j$ Cfc+7~-41’ dx 
J:,f(x)2 dx 

(24) 

where f(x) denotes the exact distribution and J(x) is its 
approximation. It is observed that the Gram-Charlier series 
converges only very weakly. Both the unconstrained and the 
constrained maximum entropy principle converge com- 
paratively quickly. Note that the global error according to 
Eq. (24) is less for the plain maximum entropy principle 
than for the constrained maximum entropy principle, 
although the latter displays much better behavior for small 
clusters. 

AN EXAMPLE: THE EFFECT OF COALESCENCE 
ON GROWTH PROPERTIES 

In this section, we present an application of our method 
to the early stages of thin film formation. According to 
[26], the mobility of small islands of the desposit on the 
substrate may lead to coalescence events which should affect 
the size distribution. Calculations [27] where mobility 

coalescence was included as a perturbation support this 
conjecture. The present scheme allows us to take full 
account of mobility coalescence and to study its effects on 
the cluster size distribution. 

We adopt as a model for the coalescence rate constant the 
expression 

(25) 

where r is a parameter. This expression may be thought of 
as a sum of cluster diffusion coefficients, Di = rip ‘, with the 
exponential size dependence being characteristic for rigid 
cluster diffusion [28]. Equation (25) provides a convenient 
expression where cluster mobility may be “turned on” con- 
tinuously by increasing the value of r. For r + 0, Eq. (25) 
yields K= 0 unless i = 1 or j = 1 (only single particle 
transitions are allowed). For r >O, multiple transitions 
become possible. 

Figure 4 shows size distributions for different values of r. 
Here we have assumed a unity monomer source rate, 
Q,=d,.,t where 6,, is the Kronecker delta function, and no 
evaporation or dissociation was included. Equations ( 15) 
and (17) were integrated numerically, and the reconstruc- 
tion was performed using five moments. It is observed that 
mobility coalescence reduces the number of small clusters 
and increases the growth rate. Also, the steep cutoff past the 
maximum of the distribution seems to be smeared out to 
some extent by mobility coalescence. It is remarkable that 
even for very small cluster mobility, r = l/100, there is a 
distinct effect on the distribution: the population of small 
clusters is reduced by almost a factor of two. The reason is 
that dimers are lost by aggregation to large clusters and, 
therefore, cannot serve as nucleation centers [28]. 

0.25 

r=O 
---______ r = o.o, 
_. . . _ _ _ _ ._ r = 0.1 
*._ . . . . . _ . . . . . r=0,36 

100 200 300 

CLUSTER SIZE (ATOMS) 

FIG. 4. Cluster size distributions for various degrees of mobility 
coalescence r of Eq. (25) (t = 1000). 
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5. CONCLUSION 

We have presented a new method for the calculation of 
size distributions in aggregation and clustering problems. 
Its validity has been demonstrated for cases where an 
analytical solution exists to serve as a reference. In these 
cases, our method has been found to give good agreement 
with the exact solutions. 

The major advantage of the basic concept used here is the 
vast reduction of equations describing the system. This is 
achieved by using the moment method instead of directly 
integrating thousands of equations. We believe that in most 
cases, the distribution function is sufficiently well charac- 
terized by less than 10 of its lowest moments. 

On the other hand, we retain a number of discrete equa- 
tions for small clusters of atoms up to a size x*. Although 
one may well set x* = 1 in our formalism, it is advantageous 
to have the option of x > 1. In this way, certain features of 
small clusters that are not continuous functions of size 
maybe included. In some surface clustering systems for 
instance, dimers have been observed to have higher 
mobilities than monomers [29], whereas for larger clusters, 
mobilities certainly decrease with size. The stability of small 
clusters may not be a continuous function of size either, a 
phenomenon expressed by the term “magic numbers” [30]. 

The reconstruction of the continuum distribution from its 
moments is carried out using a nonlinear method based on 
the maximum entropy principle. This method is superior 
over linear schemes like the Gram-Charlier series because it 
is essentially free from ambiguities as, for example, the 
choice of suitable base functions. Perhaps the major practi- 
cal advantage of the method is that the reconstructed 
function is non-negative. 

However, it is fair to note some of the drawbacks as well. 
One uncertainty lies in the truncation that is necessary to 
close the system of moment equations (17). There are two 
possibilities for improvement: First, retain more than two 
terms in the Taylor expansion of the coalescence rate 
K(x, y). Second, dismiss Taylor expansion altogether and 
use an approach as suggested by [ 161 instead. 

With regard to the reconstruction, the proposed method 
requires some computational effort to determine the 
Lagrange multipliers from the nonlinear Eq. (22). The 
subroutine COSPBF [25] requires an initial guess to start 
the iteration process. If the number of moments used is 
high, it may be very difficult to find an appropriate 
starting vector for the JVk. Experience shows that, 
in general, the use of more than 10 moments is not 
practicable. 

In some cases, we were not able to find a solution for 
even five moments. This may indicate that there is in fact 
no solution at all. Similar difficulties have been reported 
by others [31] who proposed necessary conditions for the 
existence of a maximum entropy solution. In cases where 

these conditions were violated, they were still able to 
obtain a solution in the form of a histogram. 

The method developed here has been applied to a 
comprehensive investigation of the effects of mobility 
coalescence on the early stages of thin film growth. The 
results of this study will be repcjrted separately [28]. 

APPENDIX: ANALYTICAL SOLUTION 
FOR MONOMER AGGREGATION 

In the case where only monomers are mobile, clusters 
can grow only by single particle transitions and Eq. (1) 
may be simplified to 

WjC, C, + Q> 
i=2 

(26) 

&Ci=wiJ,C,~,-w;C,Ci, i> 2, 

where w,=K(l, 1)/2 and w;=K(l, i), i>2. It has been 
assumed that there is a source providing monomers at a 
constant, rate Q. The particularly simple case that all wi 
are equal, wi = w, has been treated in some detail [32]. 
The problem may be simplified by introducing a synthetic 
time r, 

z = ’ dt’ WC,(f), 
i (27) 

0 

which transforms the second part of Eq. (26) to 

gci=cip,-ci. (28) 

The differential difference equation (28) may be con- 
veniently solved by the Laplace transform [33], defined 
by 

Equation (28) then becomes 

with the solution 

C&)= l (s+ l)i& 1 C(s). 

(29) 

(30) 

(31) 



Zinsmeister [32] showed that after 
the monomer concentration is given by 
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C,(t)= z 
( > 

Inserting Eq. (32) into Eq. (27) gives 

T = ($i~Qt*)“~, 

and thus 
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a short transient, Consider the sum in Eq. (39), 

(32) 

cc 

mk= C i&q’-‘, q=1 (40) 
r=l s+l’ 

For k=O, it is 

1 s+l 

m”=l_q=,’ 
(41) 

(33) 

whereas for higher k, the mk satisfy the recurrence relation 

C,(z)=AzC”2, A = ($)“3 (Q/w)“*. (34) 

Taking the Laplace transform of Eq. (34) and inserting d 
into Eq. (31) yields [34] = -(s+ 1)2- [(s+ l))‘m,]. 

ds (42) 

J;r Z’h)=A &+ 1),- ,’ (35) From Eq. (42), it may be shown that the mk are of the 
form 

Although this expression cannot be inverted to direct 
space in a closed form, an asymptotic series expansion m,=(s+ 1) i ak,,sP(‘+‘), (43) 

/=O 

p;(L+A f ~(v+1i2)(S+l)~I~i+i:2 

,,=o f(v+ 1) 
(36) where the coefficients a&,, may be computed from the 

recurrence relation 

may be inverted term-by-term [33] to give 

C,(t)=Af 3i2epr 5 a,,r“, 
,‘=o 

aO.O - - 1, 

a k+l./=(l+ l)ak.I+lak,,-l. 
(44) 

(37) 
Inserting Eq. (43) into Eq. (39), it follows that 

with the coefficients 

f(v + l/2) 
“=T(v+l)T(v+i-1/2)’ 

&+I 

n&(s) = &A 1 (a&,,+ a&,& I) sp(‘+ I”*), (45) 
I=0 

(38) 
which may be inverted to direct space [34], 

The series expansion in Eq. (37) converges for all r, but 
the number of terms to be taken into account increases 
with increasing r. If relative accuracy E is desired, then the 
upper limit cc may be replaced by N = [t/s] -n. Summa- 
tion of Eq. (37) on a computer may be carried out up to 
T = lo4 without particular problems. 

with 

It is interesting to note that although the distribution 
can only be given as an infinite series, its moments may be 
written down in a closed form. A convenient way to show 
this is to first calculate the moments in Laplace space 
using Eq. (35), 
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&(s)=(;)‘“‘+, i’(A)‘-‘. (39) 

&+I 

Nk( t) = A c b,,,+ I,‘*, 
I=0 

(46) 

bk,, = 
2’ 

1.3.5. .‘. .(21-l) tak.,+ ak,lL 1 h (47) 
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