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Abshact, The formation and evolution of defect microstructures in inadiated materials is 
analysed in he framework of a dynamical model for the evolution of the two fundamental defects 
of irradiated microsmctures, namely vacancy and interstitial clusters. The effects of irradiation 
on materials is described by dynamical equations for WO mobile atomic Size species (vacancies 
and interstitial atoms), and two basic immobile elements of the microstructure (vacancy and 
interstitial clusters). It is shown that uniform vacancy and interstitid loop distributions may 
become unsfable during irradiation and that they will form large-scale spatially organized 
distributions, in a specific range of irradiation and material conditions. The selection and stability 
of the resulting microsmctures studied in the quasi-static approximation and in the weakly 
non-linear regime around the bifurcation point It is shown that. after transients corresponding 
to three-dimensional BCC patterns, the final pattern should correspond to planar wall structures 
in agreement with experimental observations. 

1. Introduction 

Many irradiated materials present several types of microstructures which correspond to the 
spatial organization of defect populations. Well-known examples are void [ 1-31 and bubble 
lattices [MI, precipitate ordering [7], defect walls and vacancy loop ordering [&IO]. In 
particular, the spatial ordering of vacancy dislocation loops occurs frequently in metals and 
alloys imdiated at moderate doses and high temperatures [ I l l .  The uniform distribution 
of loops which are created by the collapse of cascades becomes unstable beyond some 
threshold which is determined by various material and irradiation parameters (e.g., the 
irradiation dose, damage rate, bias in the migration of point defects to loops and network 
dislocations, and temperature). In a preceding study [12], we analysed a simplified model 
proposed by Murphy [I31 to describe the dynamics of defect populations in metals and 
alloys under particle irradiation. This model is based on the rate theory of radiation damage 
originally developed by Bullough and cc-workers [14], and expanded further by Ghoniem 
and Kulcinski [ I  51 to include the dynamics of point defects in the fully dynamic rate theory. 

In the models analysed by Murphy [13], and by Walgraef and Ghoniem [12], network 
dislocations are assumed to have a constant uniform distribution. Furthermore, the effect 
of interstitial loop formation is not taken into account and the interstitial loop density is 
considered as a part of the network density. By considering the basic elements of defect 
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dynamics; namely point defect creation, recombination and migration to microstructures, 
the kinetic equations for defect concentrations are obtained. It was shown by us that a 
pattern-forming instability occurs at a critical value of the mean vacancy loop density and 
a critical wavelength. In the sink dominated regime, the corresponding threshold can be 
expressed as a function of material and irradiation parameters. We showed that instability 
occurs when the uniform vacancy loop density exceeds the network density multiplied by a 
function of the bias B and of the cascade collapse efficiency E (i.e. p~ z p ~ / ( m -  1)’). 
Furthermore, the critical wavelength decreases with increasing network dislocation density, 
cascade collapse efficiency and damage rate. Experimental verifications of these findings 
were discussed in our earlier work [IZ]. 

Since the linear analysis only determines the wavelength of the ordered microstructure 
that is expected to develop beyond the instability point, but not its symmetiy, a non-linear 
analysis in the post-bifurcation regime is needed to discuss the selection and stability of 
emerging patterns. Hence, we performed the weakly non-linear analysis of the problem 
by deriving amplitude equations for the microstructures 1121. In the systems considered 
here, the spatial fluctuations of vacancy and interstitial concentrations evolve much more 
rapidly than vacancy loop density fluctuations. In such a situation the dynamics can be 
reduced, through a multiple scale analysis [16] or via an adiabatic elimination of the fast 
variables [17]. to the dynamics of the slow mode or order parameter-like variable which 
is proportional to the deviations of the loop density from its uniform value. In our earlier 
analysis we showed that the stable pattems correspond to: 

(i) roll or wall structures associated with spatial modulations of the vacancy loop 
density in one direction. They appear via a second-order-like transition. or a supercritical 
bifurcation; 

(ii) rodlike hexagonal or triangular structum appearing via a first-order-like transition 
(subcritical bifurcations); 

(iii) BCC lattices or filamental structures of cubic symmetry, also associated with a 
subcritical bifurcation and defined similarly to hexagonal structures but with six pairs of 
wavevectors. 

Hence one sees that, on increasing the bifurcation parameter (e.g. the mean loop density), 
one should expect a transition from a uniform distribution to BCC and finally to wall 
structures. However, this analysis was performed by neglecting the time evolution of the 
interstitial loop density, which may prevent the system from following the path anticipated 
on the basis of the evolution of vacancy loop density alone. 

The aim of the present work is to formulate and analyse a dynamical model which 
considers the two major elements of irradiated microstructures, namely vacancy and 
interstitial clusters. In this regard, we model the effects of irradiation on materials in the 
form of dynamical equations for two mobile atomic-size species (vacancies and interstitial 
atoms), and two basic immobile elements of the microstructure (vacancy and interstitial 
clusters). 

N M Choniem and D Walgraef 

2. The dynamical model 

In order to explicitly account for the effect of interstitial loops on the evolution of defect 
populations, we propose the following dynamical model, which is based on two point- 
defect equations including spatial diffusion operators and a set of equations describing the 
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evolution of loops (this model is obtained from a more detailed analysis of the kinetics of 
interstitial loop formation, and is given in Appendix A): 

where cv corresponds to vacancies and ci to interstitials. p~ is the network dislocation 
density, pv the vacancy loop and m the interstitial loop density. K is the displacement 
damage rate and E the cascade collapse efficiency, a is the recombination coefficient, b the 
Burgers vector, rb the mean vacancy loop radius and Z,,. are the bias factors which will 
be approximated by ZW = 1 + B .  Z ~ I  E Ziv = 1 + B' and ZVl = Z"N = Z,v = 1. B 
is the excess network bias and B' is the excess loop bias (8' > B ) .  &,v, &V and are 
the concentrations of thermally emitted vacancies from network dislocations, vacancy and 
interstitial loops, respectively. 

hy = D v Z v ~ p ~  D, = D , / h ,  a/hV = y P = yK/& 
P:,, = PY.I/PN 

/L = Z ~ N D ~ / Z , N D ,  = (1 + B ) D i / D ,  

We shall now use the following scaling relations: 

i ,v  ?"I = X"r. 
(2) 

xi." = YCi," 
0 

r y  = br,pNy r = hyf 
5, = bapN I k N D , .  

It is to be noted that while r y  is constant, rr is dose dependent through the p; term. 
Equation (1) can now be written in dimensionless form. 

a,xi = P - X,x ,  + D i v z X i  - &&(I + p; + p:) 
a,x, = P(I - E )  - xix, + D v v 2 x v  - (xv - i V N )  - (x,  - i v L ) p ;  - (x, - i V L ) p :  

r&P; = MI +  AB^ - (x,  - i v L ) i  
r d p ;  = E P  - p ; ( p ( ~  + AB)X,  - (x" -ivL)). 

(3) 

To derive equation (3) from equation (I), we used the approximation: B' Y B in point 
defect equations, and ( I  + B ' ) / ( l  + B )  Y 1 + B' - B - BB' 5 1 + A B  in the interstitial 
loop equation, where A B  is the difference between the loop and network bias. In order to 
gain analytical insight into the problem, we will consider here the case of a sink dominated 
regime. We will therefore ignore the effects of mutual point defect recombination. This can 
be viewed as the practical case of high temperature irradiated structural alloys. Generally, 
structural alloys are heavily cold-workeb and recombination effects are negligible. Ghoniem 
and Abromeit, however. have recently considered the effects of point defect irradiated 
microstructures I181. Our intent here is to establish the conditions for the linear stability of 
the uniform dislocation loop densities (section 3). and then proceed to perform a stability 
analysis in the weakly non-linear regime (section 4) in order to determine the symmetries 
of the evolving microstructures. Since the point defect densities evolve much more rapidly 
than the loops, they may be adiabatically eliminated from the dynamics and their evolution 
related to that of the loop densities via the following relations: 
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Figure 1. Normalized dislocation densities of vacancy (d,) and interstitial (pp) loops as a 
function of dose for typical mctor conditions (is .  K = dpa s-' and T = 500 "C). The 
network dislocation density is IO" m-' for annealed steels and 10'' m-a for cold worked 
steels. 

where A = Z U ~  - TVN. 
The resulting reduced loop dynamics are approximately given by: 

We will now define a relaxation parameter, a, given by 

For typical material and irradiation conditions (i.e., p~ = 10" an-', N = IOl5 cme3, r$ = 
1.5 x IO-' cm) a is generally much larger than unity. The relationship between the vacancy 
and interstitial loop densities can easily be obtained from equation (5). This is given by 

p ~ = [ ~ P / ( A + f A B ) ] ( ( l - l / a ) + p ~ - ( I  -I/a)e-'pF). (6)  

Since a! is shown to be generally greater than unity, and after a dose allowing pp to be 
greater than unity (i.e. interstitial loop dislocation density of the order of the network 
density), the transient term can be neglected, and the relationship can be cast in the simpler 
form: 

4 [ € / ( E '  - €)]U + .L$) 
where we defined E' = AB + A/ P + E 

The time dependence of 4 and pc is therefore given by: 

pp = fi - 1 P; = [ E / ( € '  - E ) ] -  

where17=2(PAB+A)/rI=4ir (PAB+A)ND,/BpNa! .  

(7) 
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Figure 2. Normalized dislacalion densities of vacancy (4) and interstitial ( p f )  loops as a 
function of dose for typical low temperature accelerator conditions (i.e. K = dpa 5- l  and 
T = 500 T). The network dislocation density is I O l 3  m-2 for annealed steels and 10l5 m-2 
for cold worked steels. 
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Figure 3. Normalized dislocation densities of vacancy (&) and interstitial ( O) loops as a 
function of dose for typical high temperature acderafor conditions (i.e. K = IO3 dpa s-' and 
T = 700 "C). The network dislocation density is loJ3 n r 2  for annealed steels and IOt5  
for cold worked steels. 

It is clearly seen from this analysis that the quasi-steady-state dislocation densities 
for clustered defects will follow a ,E time dependence, after transients related to either 
interstitial loop nucleation, or to differences in the time constants of the two types of clusters. 
The dose dependence of p p  and p: is illustrated in figures 1-3 for 316 stainless steel in 
various irradiation conditions. The relevant material and irradiation parameters are given in 
table I .  
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Table 1. Material parameters for 316 stainless steels. 

Parameter Svmbol value Units 
Vacancy formation energy E: 1.6 eV 
Vacancy migalion energy E: 1.3 eV 
Interstitial migation energy E? 0.2 eV 
Interstitial formation energy Et  4.0 eV 

@re-exponential factor) 

(pre-exponential factor) 
Stacking fault energy YCf 9.4 x eV 
Shear modulus p / ( I  - U) 4 x 10” dynecmm2 
Burgers vector b 25  x IO-* cm 
Network bias excess 5 0.1 - 
Looplnetwork bias excess A B  0.05 - 
Initial vacancy Imp radius r t  1.5 x IO” cm 
Nclwork dislocation density 109 1011 
Displacement damage rate K 10-~-10-3 dpa s-l 
Cascade collapse efficiency < 0.01-0.1 m-3 
Interstitial loops number N 

Vacancy diffusion 0: 0.6 cmz s-’ 

Inlerstitial diffusion 0; 10-3 mz s-1 

density 

3. Linear stability of the uniform density 

In order to check the possibility of pattem formation in our model, we perform the linear 
stability analysis of the uniform defect densities. This procedure consists of determining the 
linear evolution of the inhomogeneous perturbations of the uniform state. The occurrence 
of an instability would lead to the growth of such perturbations which are defined as: 

Introducing these variables in the system (31, we obtain the following equations for the 
Fourier components (wave vector, q)  of point-defect perturbations (the equations are still 
within the approximation of fast pointdefect evolution in the sink dominated regime): 

and its linear part may be written as: 
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where A0 = l+p$+pp ,  Avq = Ao+q26 , ,  Ab = A o + q 2 6 v / ( l + B )  and I' = P ( l - € ) - A .  

rvar8Pv, = - ( ~ P / p $ ) & o , ~  - [VU + A B W i q  - axvq] 

The linear evolution of loop density perturbations is then given by: 

(11) 
rA8p,,  = [ p ( l  + 
or 

- (x," - X , L ) ] ~ P Q / P ~  + [ ~ ( 1  + ABVXiq - h q ] l / P p  

(12) 
rvar6pvq = - [ G P / P ;  - drlv,q]8~vg t pprlv.q8p, 

r&sp, = -(p$/pp)riv,q8pv, - [rrv.q + ( € P  + A ) / A o ~ $ m q  

where 

rrv.q = P ( l  + A B ) / A 4 A o  - F/AvqAa (13) 

The elements of the corresponding evolution matrix are time dependent. This situation 
prevents us from performing the usual stability analysis. However, some insight into the 
behavior of the system may be obtained within the quasi-static approximation, i.e. when the 
stability of the uniform densities is evaluated by considering them as frozen or stationary at 
each moment. One thus expects an instability when at least one eigenvalue of the evolution 
matrix acquires a positive real part. Of course this approximation does not describe correctly 
the growth rate of the perturbations, but in similar problems it seems to predict the instability 
threshold quite accurately [ 191. Since it may be shown (cf Appendix B) that, in the vacancy 
loop dominated regime, one eigenvalue of the linear evolution matrix becomes positive when 

( p $ ) z r l v , q  2 G P  (14) 

one expects, in this case, an instability threshold defined by 

We will define the ratio as an appropriate bifurcation parameter for this problem. 

b E = & / ( I  t & +&') (17) 

when b reaches its critical value, b,, defined by (15) ,  spatial instability in the vacancy 
loop population sets in. The evolution of the bifurcation parameter, b, as a function of 
dose, is shown in figure 4 for typical reactor conditions (i.e. K = dpa s-' and T = 
500 "C) for both cold worked and annealed steels. It is shown that the critical state for 
spatial instability in the vacancy loop population is reached only for annealed steels. The 
initial high network density of cold worked steels would suppress the transition to spatially 
ordered microstructures. The critical dose for annealed steels is shown to be very small, 
on the order of dpa. Similar results are obtained for higher displacement rates, as 
in accelerator conditions at higher temperatures (2 700 "C) . At lower temperatures (2 
500 "C) and under accelerator damage conditions, the transition from uniform to spatially 

The bifurcation parameter, b, is then: 
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Figure 4. Evolution of the bifUcation parameter with irradiation dose for cold worked and 
annealed steel irradiated in typical reactor conditions (i.e. K = IOw6 dpa s-' and T = 500 'C). 
The dashed lines represent the critical values of the bifurcation parameter. 
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Figure 5. Evolution of the bifucation parameter with irradiation dose for cold worked and 
annealed steels irradiated in typical low temperature conditions (i.e. K = IO-3 dpa s-' and 
T = 500 'C). The dashed lines represent Ihe critical values of the bifurcalion parameter. 

ordered microstructures is achieved, even for cold worked steels, at small irradiation doses 
as shown in figure 5. 

Form equations (5) and (6), one can find an expression for the bifurcation parameter at 
any dose. After a relatively short transient, both types of loops will grow with the same 
J? time dependence. Hence, it is interesting to see that the bifurcation parameter, b f r ) ,  
tends to a constant value, given by: 

b = E P / ( E P  + PAB + A) =  d. (18) 
This very interesting result implies that the distance from the critical value, bc, is 
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fixed by material and irradiation variables, and that the nature of the dissipative periodic 
microstructure is determined after the start of irradiation. The reduced bifurcation parameter, 
2' = ( h  - b,)/b,, is also a fixed number, and is given by 

c = [(+' - I) + (1 - & E ) 2 ] / 2 E / ~ .  (19) 

It will be shown in the next section that this condition does not mean that once a 
dissipative structure has formed (e.g., rolls, BCC, etc), it will remain unchanged with dose. 
In fact, the effects of increasing the dose will be manifest in the non-linearities of the 
system. 

4. Stability analysis in the weakly non-linear regime 

It is clear from the signs of the linear evolution matrix eigenvalues that the dislocation 
loops are subject to spatial instabilities, since there is at least one eigenvalue that can turn 
positive leading to growth in spatial fluctuations. The presence of non-linear reaction terms 
in (1) can be shown to saturate the growth of fluctuations. In this section we will extend 
our analysis to the weakly non-linear regime in order to describe the symmetries associated 
with the evolution of the microstructures. 

We will again simplify the problem by acknowledging the stabilizing role of 
recombination [ZO, 211. We will also adiabatically eliminate the time-dependence of point 
defect equations. Furthermore, in the vacancy-loop dominated regime, the dynamics is given 
by the evolution of the vacancy-loop density, all the other defect densities being slaved to 
it. With these simplifications, we take the Fourier transform of the vacancy-loop equation 
(equation (3)), which gives: 

rV6v.q =cP6q,O-/dk fiV.q-k(P(1 4- AS)ii.a - (%-&dk).  (20) 

The symbol - is used for variables in the Fourier space, and 6,,0 is the Dirac delta 
function. Notice that we used the convolution property of the Fourier transform to derive 
equation (20). Now, inserting (8) and (9) into (20). we obtain 

In equation (21), the first term on the right-hand side is a constant and corresponds to 
the homogeneous solution of the vacancy-loop concentration, the second term is a single 
integral over all wave vectors, k ,  and the third term is a double integral over k and k'. Let 
us now consider this double integral separately. Denoting the integral by I ,  and utilizing 
equations (8) and (9) again, we obtain: 
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Rewriting this equation in ascending powers of a, and noting that when k' = k,  the 
first term is obtained, we get: 

The form of the integral, I given by equation (Z), together with equation (21) will 
now allow us to extract terms which contain various powers of cvsq. The linear part of the 
evolution equation (21) may then he written as: 

rv&,, = - ( cp  + A/AO)bv., + PV,O[P( I  + AB)/AI,,Ao - F / A v , A o ] P v , ~ .  (26) 

The quadratic term can be obtained by taking the first integral in the series represented 
by equation (25), i.e. 

The cubic term is similarly obtained by going back to equation (22). and substituting 
terms from equations (8) which are only first order in jjv.k?. This cubic term is then given 
by: 

We now introduce a definition of the order parameter, U ,  which will describe the 
deviation of the spatial fluctuation from the uniform density. 

(29) 0 0  
oq = G v , q  = ( P i K q  - Pv)/Pv. 

An evolution equation for U, can be written if we use the definition given by (29) and 
equations (26x28). 

rvuq = - ( E P  + A/Ao)/p: - P(l + A B ) / A Q A o  - P/Av,Ao]P$).  I 

We notice from equation (30) that the coefficients in the linear and quadratic terms of the 
order parameter evolution equation can be positive and therefore can lead to an exponential 
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growth of small spatial fluctuations. The coefficient in the cubic term, however, is negative 
and will saturate the spatial instability. It can be shown that, at the critical wave-vector, qc, 
the coefficient of the higher order non-linear term associated with (uqc)" assumes the form: 

(-l)"(p;)"-'/Ao[P(l + A5)/A&' - p /Ay; ' ] .  (31) 

Hence, the contributions of higher order terms to the order parameter evolution equation (30) 
diminish and since the coefficients of odd powers of U are negative, we need not consider 
terms of order above n = 3. 

Close to the instability point, we may express the linear term as (see Appendiw C for 
details): 

( 1 / f ) [ ( b  - bJ/bc - <&' -~;)* ]oq (32) 

where the bifurcation parameter, b. is given by 

b = P ; / (  1 + P$ + P;) 

and its threshold value, 6, is given in Appendix B. The threshold wavevector, qc, is also 
given in Appendix B. so and 50 are constants. 

In this regime, the weakly non-linear equation for uq may then be written as: 

where 

In real space one has: 

rou = [ (b  - b,)/b, - <;(V' +q;)' U + YU' - uu3. 1 (35) 

When pp cannot be neglected versus &, the kinetic equations for the loop densities 
are not decoupled. The order-parameter-like variable is, in this case, a linear combination 
of and ~ T p y , ~  which is proportional to the eigenvector of the linear evolution matrix 
associated with the vanishing eigenvalue which induces the instability. After diagonalization 
of the linear part of the dynamics, the usual adiabatic elimination procedure of the stable 
modes may be performed. The resulting evolution equation for the order parameter has then 
the same sttucture as (33), the actual values of the coefficients being only modified. For the 
sake of simplicity, we will restrict our analysis to the vacancy-loops dominated case. This 
condition corresponds to experimental situations where (AB + A / P ) / c  is small, since 

(36) 0 0  PI /Pv = [(E' - +IPP/(1 +PPI.  
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The condition is easily achieved at temperatures below half of the melting point. Thermal 
emission would be negligible under these circumstances. Also AB is usually small. and of 
the order of a few percent [ZZ]. 

We thus recover the slow mode dynamics analysed in [I21 but in the present case the 
coefficients of the linear terms decrease with time, since they are inversely proportional 
to p$. Hence, and in the quasi-static approximation, the stability limits of the different 
structures evolve in time. This is because they are proportional to uz/u  a I/&. while their 
amplitudes increase and are proportional to fi well above threshold. 

Let us recall that for the dynamics defined by equation (33), the stability range for 
critical B c c  microstructures is given by -v2/33u c (b - b,)/b, c 3u2/u, while wall 
structures are only stable for uz/u e (b - b,)/b, 1121. However, as discussed in [23], since 
this dynamics is variational, BCC microstructures should be selected in the range given by 
51 = -8v2/297u e ( = (b - b,)/b, e 52 = 3u2/u, while critical wall structures should 
be selected for 52 = 3u2/u c < = (b - b,)/b, . The corresponding bifurcation diagram 
is schematically shown in figure 6 for a particular dose. Since the dose is continuously 
increasing, and since 6 tends to a constant value at high doses, while u2/u decreases and 
finally tends to zero, the following scenarios should be observable. 

N M Ghoniem and D Waigraef 

Figure 6. Bifurcation diagram for the stationary solutions of equation (33). Solid lines represent 
stable states, dashed lines represent unstable states, and heavy lines correspond to ule minimum 
of the associated Lyapounov functional. 

(i) When (b - &,)/b, tends to a positive value, BCC structures may appear in the early 
stages of the irradiation process but the final state corresponds to wall structures. This should 
be the case for annealed steel in reactor or accelerator conditions. The reactor conditions are 
illustrated in figure 7 for 500 “C. In this case, one observes a succession of domains where 
different types of microstructures may be selected. In the first one, both BCC and uniform 
loop distributions are stable; then appears a domain where only uniform distributions are 
stable followed by domains where BCC and wall structures are successively selected. 

(ii) When (b - bc)/be tends to a negative value, the final state corresponds to uniform- 
loop distributions, but BCC microstluctures may still appear as transients. In this case no 
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wall structures can be formed. This should, for example, be the case for cold worked steel 
in reactor conditions at 500 "C as illustrated in figure 8. 

Hence, one sees that 3D BCC microstructures should only appear as transient states while 
the final state should correspond to uniform distributions or plane wall structures. 
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5. Effects of point defect diffusion anisotropy 

In the preceding section, we discussed the formation and evolution of defect microstructures 
in irradiated metals in an isotropic medium, i.e. when the diffusion coefficients of point 
defects are isotropic. Let us analyse here what happens when this is not the case. 
The experimentally relevant case corresponds to anisotropic interstitial mobilities, and, on 
assuming that this only affects the diffusive part of the interstitial evolution, the dynamical 
model (1) has then to be rewritten as: 

N M Ghoniem and D Walgraef 

a,G = K -(UGC, + v, DY'v~c; - D i e i ( Z i ~ p ~  + ziVm + zilm) 

a,m = ( Z X N / I W ( D , Z ~ ~ ~ ~  - D,z,,(~, - G)) 
a,& = (I/IW:)[SK - ~ ~ ( D ~ z ~ ~ c ~  - ~ ~ z ~ ~ ( c ~  -zVv)] 

a,c, = K ( 1 -  E )  - q c V  + D,V2c, - Dv(Zv~(c, - &)pN 
+ Z"V(C" - E"V)PV + Z"I(C" - ?",)PI) (37) 

with m, n = x ,  y, z .  
When interstitials have higher mobility in planes perpendicular to a well-defined 

direction, say in planes parallel to the xOy plane and perpendicular to the Oz direction, 
V,Dl""'V, becomes Dill(V: + V:) + D,V: or Di(V2 + ,!?Vi) with Di = DLL and 
fl z 1. When the interstitials have a higher mobility in a well-defined direction, say 02, 
V,Dim"'V, becomes DqV: + D,(V: + V:) or Di(V2 + BO:), with Di = Dii and 
,!?> 1. 

Hence, on performing the linear stability analysis of uniform densities, the only 
modification that occurs in (14) is that A 4  has to be replaced by its anisotropic counterpart 
A" - AI ,  + [by/(l + B)](92 + @&(or 4:)). according to the type of anisotropy. The 
cntical wave vector being the one which minimizes the threshold value of the bifurcation 
parameter, it is also the one which minimizes A& and the instability point is now defined 

5. - 

by: 

with qc = qcl, for easy-plane anisotropy and qc = qcli for easy-axis anisotropy. 

Appendix C): 
The linear growth rate of the order-parameter-like variable is now given by (cf 

(b - bc)/bc - (4: + V2)' + KV: 

in the easy-axis case, and by 

(b  -b , ) /b ,  - (q,'+V2)* +KV: 

in the easy-plane case. 
Near the instability point, the weakly non-linear approximation for the dynamics of 

defect populations may be worked out as above, and one obtains the following evolution 
equation for the order parameter-lie variable in the easy-plane case: 

roa,o(l', t) = [ ( b  - b,)/b, - (4: + VZ)' + K~:]U(T,  t )  f vo2(r, t) - rto3(r, 1)  (39) 
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where Vz = V: + 0; +V: and V: = 0: +V$ 
Fmm this kinetic equation, one can derive the amplitude equations for the various 

patterns which may appear beyond the bifurcation point. It has to be noted that the 
orientational degeneracy of the isotropic systems is lifted since the first mode to bifurcate 
has his wavevector parallel to the z-axis and corresponds to a planar wall structure with 
planes parallel to the planes of high interstitial mobility. The vacancy-loop density in this 
case is defined by: 

u(r, t )  = A ( r ,  t)e'"' + A(r, t)e&c2 

where A are slowly evolving functions on space scales much larger than Znq;' and satisfy 
the following amplitude equation: 

ro&A = [ ( b - b c ) / b c + 4 q : V ~ + ~ V : ] A  -3uAIAI'. (40) 

One thus recovers here the usual amplitude equation for wall structures in anisotropic 
media 1241. 

Since the quadratic non-linearities of the kinetic equation (39) still couple this mode 
with modes having the same wavenumber but which make 2 r / 3  angles with it, one has to 
test the stability of the planar wall structure versus these modes. The corresponding set of 
uniform amplitude equations is: 

r&,A = A + uBC - 3uA(IA12 + 21EI2 + 21C12) 

ro&E = [ ( b  - b,) /b ,  - + w r i t  - 3uE(IEI2 +21A12 + 21CIz) (41) 

ro&C = [ (b  - b,) /b ,  - &:K]C + wib - 3uC(ICIz +21AIZ+218I2) 

where 6 and C are respectively the amplitudes of modes of wavevectors g = -(qc/2)1, + 
(&/2)1~ and p = -(qc/2)lz - (&/2)lL. 1 is a unit vector in the axial direction, 
and lL is a unit vector on the perpendicular plane. 

The linear evolution of the modes B and C in the presence of a steady wall structure 
of amplitude J ( b  - b,) /b ,  is thus given by 

r0&6 = - [ ( b  - b,) /b ,  + &:K]B t uJ(b - be)/3ubcC 
(42) 

ro&C = - [ ( b  - b,) /b ,  + :q:K C + uJ(b - bc)/3ubcB 1 
and the eigenvalues of the corresponding evolution matrix are 

w = (h - bc)/b, - & z K  f vJ (b  - b,)/3ubC. (43) 

Hence, the planar wall structure is always stable when K > w2/9uq:. Let us note that the 
time dependence of the variables involved in this condition is such that it only depends on 
materials parameters at high doses. If this condition is not satisfied, there is a window in 
< = (b - b,)/b,, defined by 
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where the wall structure is unstable. In this regime anisotropic 3D structures may be expected 
but, since this window shrinks with increasing dose, and the final structure should consist 
in planes parallel to the planes of high interstitial mobility, as is experimentally observed 
W1. 

In the easy axis case, i.e. when the interstitial mobility is maximum in one direction 
(e.g. Oz), the discussion made above may easily be transposed. There is in this case a 
circle of critical wavevectors which lies in the plane perpendicular to the direction of high 
mobility and the weakly non-linear dynamics may be written as: 

N M Ghoniem and D IValgraef 

where V2 = V: + V; + Vz. In this case, the first structure to be expected is a rodlike 
hexagonal structure with the rods parallel to the z direction. On increasing the constraint, 
as in the other cases discussed so far, this structure should become unstable and lead to a 
planar wall Structure with walls parallel to the z-axis. 

6. Experimental evidence 

Experimental observations of periodic 3D microstructures have clearly shown the existence 
of clusters of cubic symmetry [28,29], defect walls [30,31], as well as anisotropic 
arrangements of planar aggregates of defects [32-341. It is experimentally verified that 
cascade production is necessary for the formation of 30 periodic microstnrctures. Irradiation 
with electrons (no cascade) does not produce ordered arrays of defect clusters [ I  I]. The 
only alignments of stacking fault tetrahedra (SIT) occur along (100) directions in Cu [35.36] 
and Au [37]. However, these alignments were not observed in 3D, nor did they extend well 
into the irradiated area. Periodic walls were also not observed when gas atoms, such as H 
or He, were pre-implanted [38]. 

The temporal evolution of the spatial evolution of 3D periodic arrangements of defect 
clusters has been documented recently [I l l .  Only in a few cases were defect clusters of 
cubic symmetry observed [28]. At low doses, spatial fluctuations of cluster densities were 
generally observed. However, blocks or agglomerates of defect clusters along cubic axes 
were observed to disappear at higher doses in favour of planar walls parallel to [ 100) matrix 
planes in Cu and Ni. Up to a dose of 4 dpa, no competing arrangement of higher stability 
than planar walls were observed. 

7. Conclusions 

It has been shown that the coupling between reaction and transport induces pattem-forming 
instabilities in defect distributions in irradiated crystalline materials. For example, uniform 
distributions of point defects such as interstitials and vacancies in irradiated materials may 
become unstable and lead to the precipitation of solid solutions, to the nucleation of voids 
and of void lattices. In this framework, it is shown that vacancy-loop ordering occurs under 
very general conditions in irradiated metals and alloys. It mainly results from a Turing-like 
instability induced by the different mobilities and bias in the migration of point defects to 
line defects such as dislocation loops or network dislocations. According to the generic 
properties of such pattern forming instability, structures with different symmetries, such 
as BCC lattices or wall structures, may be simultaneously stable in well-defined parameter 
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ranges. However, at sufficiently high values of the bifurcation parameter, the only stable 
structure corresponds to planar arrays. 

Here, one has to take into account that the microstructure is continuously evolving. In 
such cases, our analysis predicts that, in the case of stainless steel (or nickel) irradiated 
under typical reactor conditions, the effective bifurcation parameter continuously increases 
with time or irradiation dose. Hence, after an initial phase where loop clustering should 
occur in the form of Bcc lattices, the system evolves towards a uniform state followed by a 
transient BCC structure and finally reaches a planar wall structure, even for isotropic defect 
mobilities. These structures could then be in non-parallel orientations, i.e. with a structure 
different from the structure of the host lattice. This behaviour, which seems consistent with 
many experimental observations. also occurs under accelerator conditions, particularly for 
an initially annealed microstructure. In the case of anisotropic interstitial diffusion, planar 
structures should also be the rule, but in this case, the orientation of the walls are determined 
by the diffusion anisotropy. For heavily cold worked initial microstructures, the bifurcation 
parameter cannot reach the instability threshold. However, since BCC structures may appear 
subcritically, 3D loop clustering could occur transitorily, but the final defect distributions 
should be uniform. 

Hence, since the symmetry of the defect structures is a crucial issue in irradiated 
materials, the present discussion shows that a careful study of the post-bifurcation regime is 
needed to test the relevance of particular kinetic models to the interpretation of experimental 
observations. Furthermore, we believe that a coherent description of materials instabilities 
that induce the spatio-temporal organization of defect populations will hopefully lead 
to a deeper understanding of the behaviour of irradiated materials. Indeed, due to the 
strong non-equilibrium conditions under which irradiation induced defect patteming occurs, 
classical mechanical or thermodynamical considerations are not sufficient to interpret these 
phenomena and we need to study them in the framework of non-linear dynamics and 
instability theory. In particular, we showed that, despite the huge complexity of defect 
dynamics, even in the case of phenomenological models, valuable information can be 
obtained via the reduced dynamics near instability points leading to a realistic description 
of the pattem selection and stability properties in the post-bifurcation regime. Hence, we 
believe that by the combination of the results of bifurcation analysis, amplitude equation 
formalism and numerical simulations, significant progress may be expected in understanding 
and prediction of the effects of materials instabilities on the macroscopic behaviour of driven 
or degrading solids. 
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Appendix A. Defect dynamics under irradiation 

The dynamics of free and clustered defects under irradiation involves the solution of 
hierarchical rate equations [25],  or equivalently, coupled rate/Fokker-Plank equations [26]. 
However, since we are not interested in the evolution of the size distribution of clustered 
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defects, but rather in their spatial stability against fluctuations in point defect concentrations, 
we can simplify defect dynamics in the following set of equations: 

ate, = K(I  - E )  -ucicV - ~,zc,c2i - D,[~,N(c, - & N ) ~ N  

N M Ghoniem and D Walgraef 

+ Zvv(cv - 2vv)pV + Zv,(cv - Evi)Dcr- + DvVZcv (AI) 

arci = K - UC~C, - ~ici(zi,vpN + ZW, + ~ Z ~ , ~ C ~ & F )  
+ Kvzcvczi + 26~21 - K I I ~  - K12ciczi + DiV'ci ('42) 

2 aiczi = Kiic? - K I Z C ~ C ~ ~  - Zczi - 2K22cn 

- D ~ ~ C ~ ~ ( Z Z W P N  + ZziviN + 2Zziibci&Z) + DnV'~zi (A3) 

arN = Kizc,czi + 2Kzzc;i L44) 

a,x = K(x)[Dizi,q - D,Z,,(c, - z V I ) ]  - (X - 3 ) a , ~ / ~ .  (AS) 

In the equations (AIHA5) the reaction rate constants between species a and b are 
represented by Kob, and are mainly dependent on the diffusivity of the mobile species. 
Nucleation of interstitial clusters proceed homogeneously, at a critical size of two interstitial 
atoms. Solution of equations (AlHA4)  results in the determination of the time-dependent 
interstitial loop concentmion. However, the time scale for nucleation of interstitial clusters 
is very short (see 1251). This will greatly simplify the present model, where we can safely 
assume that the total number density of interstitial loops, N ,  is constant. Equation (A5) 
gives the growth rate of the average interstitial loop size, where X is used for the average 
number of atoms in a loop. On the basis of fast loop nucleation, the term a,N/N drops 
out. The bias factor K(X) can be strongly size dependent for very small loops [22]. An 
average value, Zi, will be used in our calculations. Equation (AS) then becomes: 

a,r = (l/lbl)[DjZiLCj - D V Z V L ( C ~  -&)I. (A6) 

Since pi = 2rrrN, we can finally write the following two equations for the dislocation 
density of clustered defects. 

= (2nN/lbl)[QZi~Ci - DvZVL(CV - CVL)] (A7) 

(A8) 

As a final approximation, the effects of nucleation on Ci and C, will be neglected, 
which leads to the set of four equations, for free and clustered point defects, as given in 
section 2. 

arb. = (I/lblr:)[~K - ~v(DiZivci - DJvv(cv -Gv))]. 

Appendix B. The eigenvalues of the linear evolution matrix 

We present in this appendix a detailed derivation of the critical eigenvalues in the quasi- 
static approximation. The evolution matrix equation which corresponds to (12) takes the 
form: 

a r v q  = ~ ~ 8 6 ~  (BU 
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where S& is the density perturbation vector with components 8pp.., and 8p~ . ,  for the Fourier 
wavevector q. 

The evolution matrix M, has the elements: 

Now if we assume that the density perturbations follow solutions of the form: 

Spy, = Ave@ Sprq = AleW' (B6) 

where AV and A, are complex constants and w is the frequency. Substituting (B2) in (BI), 
we obtain: 

M,( AA;) = w( AA:) 
For a non-trivial solution of equation (B7). the determinant of the coefficients must 

vanish. This condition results in the dispersion relation: 

wz --@(MI1 + M22) + (MIIM22 - M12MZI) = 0. (B8) 

When the cross-terms (M12M21) in the matrix M, are small, which is the case in the 
vacancy-loop dominated regime, the fluctuations in the loop densities Spy,, Sp,, are almost 
decoupled. Since this is not always attained, let us discuss the general case here. Note that 
a detailed investigation of the dispersion relation (B8) is given by Ghoniem and Abromeit 
[181. 

Again, using the simplification that ZI,, 2 1, the uniform distributions are unstable when 
MIZMZI 2 MIIMU, i.e. 

(B9) .P/p," 6 p:riv.,(EP + A ) / ( E P  + A + PYAoriv.,) 

rrv.,(l - [P?Ao/(P:)~]EP/(EP + A)) 2 E P / ( P ~ ) ~  

or 

(B 10) 

and the critical wavevector qc is the wavevector which minimizes this threshold condition. 
It is thus defined by the condition: 

substituting (BI I )  into (B9). we can obtain the following condition for the threshold 
wavevector qc: 
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At this point, we introduce a bifurcation parameter, b = p$/Ao, which controls the 
dispersion relationship. For values of b less than a critical quantity, b,, the system is 
always stable against infinitesimal spatial fluctuations. The solution of equations (B9) and 
(B12) gives the instability threshold which is defined by: 

which gives 

and 

where E'+ AB + A / P .  

I), equations (B9) and (B13) may be written as 
It is interesting to note that in the vacancy-loop dominated regime (i.e. when p:/p; << 

(d)*r,v,q > E P .(B16) 

and 

(p,O/Ao)l Y Z ~ / ( E '  + B ) .  (B17) 

These equations are equivalently obtained by neglecting the off-diagonal elements of the 
linear evolution matrix. In this case, the evolution of the loop densities may he decoupled 
at the leading order in p;/& 

As discussed in section 3, the actual value of the bifurcation parameter tends to a 
constant (b + € / E ' )  and the condition for instability is only related to the value of materials 
parameters and becomes 

E/<' 5 2 f i / ( d  + B )  

which is equivalent to (for A / P  << A B )  

B > e(1 + A B / E ) [ I  + ~ A B / E  t , / (AB/c)(I +A.B/e) ]  

or 

B < € ( I +  A B / E ) [  1 +?-AB/€ - J ( A B / e ) ( l +  A B / c ) ] .  

It is also worth noting that the preferred wave number qc increases with time since it is 
proportional to A0 (cf (B15)). 
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Appendix C. The slow mode dynamics near threshold 

Close to threshold, the linear growth rate of the order-parameter-like variable U, may be 
expanded in powers of (b  - b,/b, and (4’ - 4:). At the leading order, one obtains 

The coefficients T and c$ are obtained from the threshold conditions (B14) and (B15) 
and are found to be 

B SEPB(E‘+ E )  
(E’ + 2 8)’ 

which is constant in time, and 

t‘$ = [ < ( E ‘ +  B ) / S B ( E ’ + ~ B ) ] ( D , / A O ) ’  

which decreases with time. Hence the band of wave numbers allowed for the spatial 
pattems increases with time. The increase in qc with time would result in a shorter 
preferred wavelength of the organized periodic loop structure. In addition, since the band of 
wavelengths allowed for the loop structures, imperfections and a distribution of wavelengths 
are expected to develop. 

At the leading order in ( b  - b,)/b, and (qz - q,’), one only needs to consider the values 
of the non-linear coefficients at b, and qc. Using the threshold conditions (B11) and (B17) 
one finds: 

and 

( P ( 1  + AW/A;,c - p / A : q v A ~ ) ( ~ : ) Z  = ( E P  + A/Ao)bc/p: (W 

In the anisotropic case, since A‘;, = A,, + [&/(I + B)](q’  + Bq:(or qf)) ,  the linear 
which leads to (33). 

growth rate of the order-parameter-like variable is given, in the easy plane case, by: 

with 

One easily sees that, K is algebraically decreasing in time as a result of its A i z  dependence. 
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