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Calculations of neutron displacement damage cross sections for Sic are presented. We use Biersack and Haggmark’s 
empirical formula in constructing the electronic stopping power, which combines Lindhard’s model at low PKA energies and 
Bethe-Bloch’s model at high PKA energies. The electronic stopping power for polyatomic materials is computed on the 
basis of Bragg’s Additivity Rule. A continuous form of the inverse power law potential is used for nuclear scattering. 
Coupled intergro-differential equations for the number of displaced atoms j, caused by PKA i, are then derived. The 
procedure outlined above gives partial displacement cross sections, displacement cross sections for each specie of the lattice, 
and for each PKA type. The corresponding damage rates for several fusion and fission neutron spectra are calculated. The 
stoichiometry of the irradiated material is investigated by finding the ratio of displacements among various atomic species. 
The role of each specie in displacing atoms is also investigated by calculating the fraction of displacements caused by each 
PKA type. The study shows that neutron displacement damage rates of SIC in typical magnetic fusion reactor first walls will 
be - lo-15 dpaMW-’ m2; in typical lead-protected inertial confinement fusion reactor first walls they will be - 15-20 
dpaMW-’ m2. For fission spectra, we find that the neutron displacement damage rate of SIC is - 74 dpa per 10z7 n/m2 in 
FFTF, - 39 dpa per 10z7 n/m* in HFIR, and 25 dpa per 10z7 n/m2 in NRU. Approximately 80% of displacement atoms 
are shown to be of the carbon-type. 

1. Introduction 

Early calculations of radiation damage rates in 
monatomic materials have been made on the basis of 
simplifying assumptions. Jenkins [l] and Sheely [2] used 
the Kinchin-Pease model to account for the displace- 
ment efficiency and calculated the displacement cross 
sections for iron. Their work was extended and made 
complete by Doran [3], who used Lindhard’s model in 
accounting for the displacement efficiency and in- 
cluded inelastic (e.g., (n, 2n) and (n, y)) nuclear reac- 
tion channels. Investigation of displacement rates in 
polyatomic materials soon followed. In the works of 
Baroody [4] and Andersen and Sigmund [5], the contri- 
butions of the electronic stopping to the energy loss 
were omitted. Realizing the importance of this mecha- 
nism of energy loss, Parkin and Coulter [6] accounted 
for the electronic stopping by using Lindhard’s model 
and solving coupled intergro-differential equations for 
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the number of displaced atoms. The investigations were 
applied to MgO, Al,O, and Tao. Their work was 
further developed to a computer code by Greenwood 
[7]. Alberman and Lesueur [8] developed a similar 
computer code (COMPOSI), on the basis of their own 
formulation to calculate the displacement damage rates 
in diatomic materials. However, their formulation is 
not accurate because they assumed that the energy 
transferred is fixed after the ion travels a distance in 
the matrix. 

In this paper, we present a calculational method for 
displacement damage in Sic. First, we construct the 
electronic stopping power based upon Lindhard’s [9,10] 
and Bethe-Bloch’s [11,12] formulations, and use Bier- 
sack and Haggmark’s empirical bridging formula [13]. 
Secondly, we extend this formulation to polyatomic 
materials and use Bragg’s Additivity Rule, which was 
experimentally shown to be reasonably accurate within 
lo-15% [14]. Thirdly, we formulate coupled intergro- 
differential equations for the number of displaced 
atoms. The numerical procedure is an extension of the 
Runge-Kutta method to coupled differential equa- 
tions. Following these steps, we calculate the partial 
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displacement cross sections, the damage rates of each 
atomic specie, the damage rates caused by each PKA 
type, the total displacement cross section, and the total 
displacement damage rates of Sic under irradiation 
conditions of FFTF, HFIR, NRU [15], PROMETHEUS 
[16] and ARIES4 [17]. Finally, conclusions are given in 
section 5, especially the implications of these results to 
simulation experiments of neutron irradiation in non- 
fusion facilities. 

2. Theory 

2.1. Electronic stopping power in polyatomic materials 

In the low energy range, Lindhard’s theory of elec- 
tronic stopping for energetic ions is well accepted. 
Although it is proposed by Ziegler et al. [18] that the 
electronic stopping power of silicon and carbon may 
behave as E”.35 at very low ion energies, we use the 
Lindhard formulation. The reasons for this choice are 
two fold: (1) there is not enough experimental data to 
give accurate electronic stopping cross sections in the 
very low energy range, and (2) electronic stopping in 
this range (E I 500 eV) doesn’t have a large effect in 
displacement damage calculations. The Lindhard elec- 
tronic stopping cross section is given by [9,10] 

where Z2i3 = Zf/3 + Zz/‘, u0 = 2ne2/h, and a0 = 
0.529 A. Z, and Z, are charge numbers of the projec- 
tile and the target atoms, respectively, e the charge of 
an electron, u the velocity of the projectile, N2 the 
atom density of the target, and h the Planck constant. 
This formula is valid for PKA energies E < 25 
keV/amu [18]. 

In the case of fusion neutron irradiation of low-Z 
elements, the PKA energy can be high enough so that 
Lindhard’s formulation does not hold anymore. For 
PKA energies greater than 200 keV/amu, the Bethe- 
Bloch electronic stopping power is in good agreement 
with experiments. The Bethe-Bloch stopping cross sec- 
tion is given by [11,12] 

e 

2~-GfZ2e4(Ml/m,) = 
E ln( (Mp/Em,)i). (2) 

where Z,, is an effective charge of the projectile, given 
by Bohr [19]. E is the energy of the projectile, M, the 
mass of the projectile, m, the mass of the electron, N2 

the atomic density of the target, and f the ionization 
energy of the target atom. This stopping formulation is 
valid for PKA energies E > 200 keV/amu. 

To cover the entire energy range, we propose to 
extrapolate the formulation of Bethe-Bloch to low 
energy by linear extrapolation at the highest stopping 
energy point. The two stopping powers arc then bridged 
according to Biersack and Haggmark’s procedure [13], 
which is given by 

‘,’ = (~,>$&,xI + (5e)&he-Bloch’ (3) 
The theoretical prediction of electronic stopping 

power based on this equation is compared with the 
experimental data of electronic stopping power in 
monatomic materials given by Northcliffe [20], and very 
good agreement is obtained. Since Bragg’s Additivity 
Rule has been experimentally shown to be accurate 
within lo-15% [14], we extend the electronic stopping 
power obtained above to polyatomic materials based 
on Bragg’s Additivity Rule. This is given by 

CAiN,S,,, 

S e composite = 
‘xA;N, ’ 

i 

(4) 

where A; and N, are mass number and atomic density 
of species i, respectively. 

2.2. Interatomic potentials and atomic scattering cross 
sections 

Winterbon [21] compared the accuracy of the atomic 
scattering cross section based on the inverse power law 
potential with that based on the Thomas-Fermi poten- 
tial, and found that they are in fairly good agreement, 
provided that several power laws are used to cover the 
entire energy range. Therefore, the inverse power law 
potential, which is very simple, is used in this paper. In 
applying the inverse power law potential, the main 
problem to be solved is matching potentials of different 
powers. Here, we are concerned with the energy trans- 
fer process. Therefore, we match different powers by 
requiring that the atomic stopping cross section is 
continuous at each transition point. According to Win- 
terbon [21], we have 

cr(E, I-) dT= C,E-“T-‘-” dT, (51 
where 

2Z,Z,e* 2m 
c, = ;Ama2> ~ 

2 i i a 

and 
0.4683 

a= 
(zf/3 + q/3y2 . 
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The value of the power m, and the constant A, are 
given by 

(m, A,) = (l/3,1.309) for E 5 Em, 

= (l/2, 0.327) for e21cle1, 

= (1, 0.5) for l 1 5 E, 

where e is the reduced energy E = E/e,, while e, = 
Z,Z2e2/a, (ei, l 2) are transition energies, and A, and 
A, are the mass numbers of the projectile and the 
target, respectively. 

Chou and Ghoniem [22] modified this cross section 
at extremely low energies. They proposed to match the 
Born-Mayer potential by using an inverse power po- 
tential with m = 0 and A,,, = 24 for E <es. According 
to the matching procedure mentioned above, Chou and 
Ghoniem found that the transition energies should be 
chosen as (pi, E*, EJ = (2-10, 0.369, 0.0234). For Sic, 
we found that a smoother matching can be obtained if 
we choose pi = 15. Therefore the values, (ei, l 2, EJ = 
15, 0.369, 0.0234) are used in this paper. We compared 
the results based on these two different matching pro- 
cedures and found that they give similar results, except 
that the new matching gives smoother dependence of 
the damage cross section on energy. 

where vii is the number of displaced atoms of type j 
caused by PKA of type i, excluding the PKA itself, 
T(x) is the step function, Ni the atomic density of 
species i, uij(E, T) the differential atomic scattering 
cross section of species i and j, uij(E) the total micro- 
scopic atomic scattering cross section between species i 

and j, Aij the energy transfer efficiency between 
species i and j, and akj the Kronecker delta function. 
The first integral represents the number of displace- 
ments vij if a PKA (of type i) collides with target 
atoms in traveling through a short distance dx, the 
displacements induced by the slowed-down PKA, and 
the displacements induced by the SKA (secondary 
knock-on atom). The second integral represents the 
number of displacements vii if the PKA collides with 
electrons in traveling dx. The last term represents the 
number of displacements vij if nothing happens in 
traveling the distance dx. The collision cascade model 
will be discussed in more detail in the next section. The 
reader is referred to Lindhard’s work (e.g. ref. [3]) for 
further explanation of the derivation of eq. (6). 

Approximating vij(E - T,) = vij(E) - 7”(dvij(E) 
/dE) and performing algebraic manipulations, we ob- 
tain the following coupled intergro-differential equa- 
tion 

2.3. Governing equations for the number of displaced 
atoms, vii 

s, dvij(E) 

le dE 

Assume that the solid contains atoms of type i and 
j. If a PKA of type i travels a distance dx, it will 
eventually result in a number of displacements of atoms 
of type i (vii) and a number of atoms of type j (vii). 
Similarly, a PKA of type j will produce vii and vjj. 
Conservation of atoms implies that each one of these 
numbers are separately conserved over all possibilities. 
That is to say that vij is conserved before and after 
interaction. Therefore, we have the following conserva- 
tion equation 

xuik( E, T) dT 

+[r(E-T-Ejd/Aij)vij(E-T)-vij(E)] 

vii(E) 

= ;~A’*EIT(E-T-Ej&Iij)vij(E-T) 

Xuik(E, T) dT}, (7) 

where S,,(E) is the electronic stopping cross section of 
specie i, fk the fraction of atom density of specie i in 
the composite, Ejd the displacement threshold of specie 

j. 

+r(T-Ekcl)(6kj + Vkj(‘))] Nkqk(E, T) 

x dx dT+ /=emvij( E - T,)&T~~( E, T) dx dT 
0 

+ (1 - EN,& E) dx - Neuiie( E) dx)vij( E), 
k 

(6) 

Because there is no resonance in the displacement 
efficiency and the atomic scattering cross section, there 
is little doubt that the integration could be done attain- 
ing high accuracy by using any simple integration pro- 
cedure. On the other hand, care must be exercised in 
solving the coupled integral-differential eq. (7). We 
extended the Runge-Kutta [23] method to two coupled 
differential equations, and the numerical extension 
procedure of Runge-Kutta method to 2 coupled dif- 
ferential equations is given in appendix A. 
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2.4. Collision cascade model 

A PKA (of type i) traveling a short distance in 
binary ceramics may have several collision channels. 
The PKA may collide with an atom of specie k (k may 
represent Si or C> and transfer an amount of energy T 
to the atom. There will be slowed-down PKAs with 
energy (E - T) and SKAs with energy T after the 
collision. Both the slowed-down PKAs and SKA’s will 
continue to displace lattice atoms as long as they are 
energetic enough. If the energy of the PKA is high 
enough, there will be a series of displacements initi- 
ated by this single PKA. Since the free path of a heavy 
ion is small, displacements will occur locally, and a 
displacement cascade ensues. In this process, the mini- 
mum energy transferable is the displacement threshold 
energy, E,,, of the target atom, which is 92.6 eV and 
16.3 eV for silicon and carbon, respectively [24]. In 
order to transfer this amount of energy from species i 
to species k, the knock-on atom of specie i must have 
energy no less than E,,/A,,. Below this energy, a 
knock-on atom of species i cannot displace an atom of 
species k anymore and the knock-on atom is captured. 

Capture events are treated via a threshold capture 
energy value represented by the step function T(E - T 
- EJA,,). In the event that i =j (i.e., similar species), 
A,j = 1 and the minimum energy required for displace- 
ment is Ejd. When the species are different, the mini- 
mum energy required is E,,/A,,. This procedure is 
equivalent to the treatment given by Parkin and Coul- 
ter [6]. However, in our calculations, the displacement 
cross section is found to be insensitive to the capture 
events. 

The PKA may collide only with electrons in dx and 
not cause displacement. The energy transfered to elec- 
trons, T,, is used in electronic excitations. The PKA is 
left with energy E - T,, which will be used in displac- 
ing lattice atoms or exciting electrons in the subse- 
quent steps. 

The PKA may collide with nothing in dx and keep 
its original energy E, which will then be used in dis- 
placing lattice atoms or exciting electrons in the subse- 
quent steps. 

2.5. The primary recoil spectrum 

When a diatomic materials is irradiated by a neu- 
tron, PKA’s may be of type i or type j. The primary 
recoil spectrum (PRS) depends on three factors: (1) the 
neutron scattering cross section with each specie, (2) 
the anisotropy of neutron elastic scattering cross sec- 
tion, and (3) the neutron spectrum. The number of 
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Fig. 1. Neutron spectra in several fusion and fission facilities. 

PKAs of type i per unit energy at energy E is defined 
as 

P;(E) = jEnsmx@( E,) c 
E 

2T@l,i(E”7 0) 
“.llli” 1 = all channels 

(8) 

where @(E,) d E, is the neutron flux from energy E, 
to E, + dE,, u,,~(E, 0) is the differential scattering 
cross section of a neutron with specie i in nuclear 
channel 1 (e.g., elastic, (n, n’), (n, p), (n, (Y), (n, y) 
nuclear reactions). The neutron spectra [X,16,17] for 
several facilities are shown in fig. 1. The neutron 
elastic cross section of silicon at low energies (E, I 2 
MeV) is given by Hughes and Schwartz [26]. Other 
neutron cross sections are obtained from the ENDF-V 
library [25]. The reasons for this choice are two fold: 
(1) the neutron elastic cross section of silicon at low 
energies is not available in ENDF-V, and (2) the 
neutron elastic cross section of carbon deducted from 
the total neutron cross section given by Hughes and 
Schwartz [26] is in good agreement with that obtained 
from ENDF-V [25]. The neutron elastic cross sections 
for silicon and carbon are compared in fig. 2 [25,26]. 

For the elastic collision channel, we have 

d cos 0 I I 2 
Emin=O, E,,=A,iE,, - =- 

dE A,iE, ’ 
(9) 

where Ani is the energy transfer efficiency between a 
neutron and species i. For the (n, y) nuclear reaction 
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Fig. 2. Comparison of neutron elastic scattering cross sections 
of carbon and silicon. 

channel, we find that the minimum (E,,,) and maxi- 
mum (Emax) transferred energies are given by 

Emin / max =-+ 

and 

factor which accounts for (n, a), (n, p>, and (n, y) 
reactions. 

There are several reasons for using s to account for 
(n, OL), (n, p> and (n, y) channels. First, a (n, (~1 
reaction produces a PKA that is dramatically different 
from the lattice atom. The associated Q-value is large, 
while the cross section is small. Secondly, the PKA is 
not too much different from the lattice atom in (n, p) 
and (n, y) channels, as far as the electronic stopping 
power and atomic scattering cross sections are con- 
cerned. The last and the most important factor is that 
even for fusion neutron spectra, the neutron elastic 
collision channel still dominates. All other channels 
contribute a small fraction of the total cross section. 
But if neutron sources with higher neutron energies 
are used, non-elastic nuclear reaction channels have to 
be carefully studied. 

In the present study, we only consider elastic, (n, 
n’), (n, p), (n, cx> and (n, y) nuclear reactions channels 
because other channels have very higher Q-values (I 10 
MeV), small cross sections or both, for neutrons with 
energy less than 15 MeV. 

2.6. The displacement cross section and damage rate 

We define the partial displacement cross section as 

For a given (n, x) nuclear reaction channel, (x = n’, p, 
a, etc.), we get 

Emin/max 

= BiEn ~+(~-Qi,l)(l+~)-l 
(1 +Ai) 

where c is the speed of light, Ai is the mass number of 
species i, Bi = Ai + 1 -x the mass number of the re- 
sulting atom in reaction, Q,,t the neutron reaction 
energy of specie i in channel 1, s = _4aj/Aij a scale 

x [ vlj( E) +,Sij] dE. 

Because each species in a polyatomic material has 
different neutron cross sections, the probability that a 
neutron will collide with species i is N,u~#,)/ 
CNjqj(E,). However, the probability that a PKA will 

c;llide with species i is simply assumed to be propor- 
tional to the atomic density of species i. Based on 
these arguments, the partial displacement cross section 
for lattice atom i is given by 

(15) 

where c+(E,,) is the total neutron microscopic cross 
section of species k, S,(E,) the total macroscopic 
neutron cross section of the composite. 

The displacement damage rate of species i is given 
as 

(16) 
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The total displacement cross section and total displace- 
ment damage rate are simply given as the summation 
of the partial displacement cross sections and partial 
damage rates, respectively. Similarly we can define the 
partial displacement cross section corresponding to 
PKA of type i as 

The corresponding displacement damage rate R,,; 
can be calculated in the same way as Rlatticer. 

3. Cascade stoichiometry 

It is clear from the formulation presented here that 
the displa~ment damage rates of various elements in a 
polyatomic solid can be vastly different. If the displace- 
ment damage rates of various elements are not in 
proportion to their stoichiometry in the matrix, the 
possibility of non-stoichiometric microstructure forma- 
tion will exist. Asymmetries in displacement threshold 
energies for various elements in the material, different 
nuclear reaction cross sections, and different electronic 
energy loses for various elements in the material can 
lead to non-stoichiometric cascades. Let’s now define 
the displacement cascade stoichiomet~ ratio as 

sij = &mice i 
--S 
Rlattice j 

mat 1 (18) 

where S,,, is the thermodynamic stoichiometric ratio 
of the matrix, which is 1 for stoichiometric Sic. If Sij is 
zero, then the cascade stoichiometry is the same as 
that of the matrix. Otherwise, the cascade is consid- 
ered to be non-stoichiometric. 

To gain insight into the type of PKA which results 
in more damage, we define the PKA damage ratio as 

R 
PR, = 

PKAi 

CR . 
(19) 

PKAj 

4. Results 

The electronic stopping power of carbon in carbon 
is shown in fig. 3, where eqs. (l)-(3) are used. The 
general fit given by eq. (3) gives good agreement with 
the experimental data reported by Northcliffe [20]. It is 
noted that the electronic stopping power at high PKA 
energies deviates substantially from the Lindhard’s 

5 01 / I 
Gi 0.1 1 10 

PKA Energy (MeV) 

Fig. 3. Comparison of experimental and theoretical electronic 
stopping powers for carbon in carbon. 

model. For carbon PKA with energies greater than 
_ 2 MeV, the Lindhard’s model would tend to overes- 
timate the electronic energy loss. Thus for fusion neu- 
trons, this effect is expected to play an important role. 
For silicon, however, the deviation from Lindhard’s 
model at PKA energies relevant to fusion applications 
is small. 

The primary recoil spectra for carbon and silicon 
based on eq. (81, under several neutron irradiation 
conditions, are shown in figs. 4 and 5. It is seen that 
the primary recoil spectrum resulting from fusion neu- 
tron irradiation and that resulting from fission neutron 
irradiation are very different at high PKA energies. 
This fact directly corresponds to the differences of the 
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Fig. 4. Primary recoil spectra of carbon in several fusion and 
fission facilities. 
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Fig. 5. Primary recoil spectra of silicon in several fusion and 
fission facilities. 

neutron spectra shown in fig. 1. The result may have 
important implications for the simulation of fusion 
neutron damage with fission neutrons. 

The fraction of energy which is dissipated in atomic 
dispIacements rather than heat is defined as the dam- 
age efficiency. This fraction is shown in fig. 6, where 
we show lij as the fraction of energy used in displace- 
ments in the process that ion i displaces lattice atoms 
j. It is seen that the damage efficiency for carbon is 
lower than that for silicon, particularly at higher ener- 
gies, because of the higher electronic stopping power 
of C in Sic. At high energies, although the electronic 
energy loss decreases as. a function of energy, the 
scattering cross section decreases at a faster rate, with 
the net effect being a decrease in the displacement 
efficiency. This is exemplified for carbon ions at high 
PKA energies in fig. 6. There are two factors which 
determine the number of displaced atoms by a given 
transferred energy: (1) the electronic stopping power, 
and (2) the displacement threshold. Fig. 7 demon- 
strates the energy dependence of the number of dis- 
placed atoms, vij, obtained by solving the coupled 
integro-differential equations. 

The partial displacement cross sections defined in 
eq. (14) and the total displacement cross section are 
shown in fig. 8. The important fact to mention here is 
that the displacement cross section of Sic is very 
different from that of steel, as calculated by Doran [3]. 
If the neutron spectrum is composed mainiy of fast 
neutrons (0.1 MeV I E, I 1 Me%‘), the displacement 
damage rate of SIC will be larger than that of steel. On 
the other hand, if the neutron spectrum is composed 
mainly of fusion neutrons, the damage rate of Sic will 
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_ - _ SCC 

- C-Si 

- Si-Si 

PKA Energy (MeVf 

Fig. 6. Displacement efficiency &. The first subscript is PK.4 
while the second is the lattice atom being displaced. 
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Fig. 7. Number of displaced atoms of type j caused by PKA of 
type i, vii. 
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Fig. 8. Displacement cross sections for SIC. Also shown is the 
displacement cross section for steel calculated by Doran [3]. 
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Table I 
Displacement damage rates (dpa) and cascade stoichiometry for Sic 

Species Facility 

ARETS-4 PROMETHEUS FFTF HFIR NRU 

1171 1161 iI51 iI51 Il.51 

Carbon 11.5 13.7 62.5 32.7 21.4 
Silicon 2.1 2.5 
Total 13.6 16.2 

SC-% 4.5 4.5 
PR, 0.27 0.33 
Location First wall First wall 
Normalization MW-y/m2 MW-y/m2 

11.2 5.8 3.8 
13.7 38.5 25.2 

4.6 4.6 4.6 
0.35 0.34 0.34 
Midplane in MOTA Instrumented position Markiv fast neutron rod 
10” n/m* 10” n/m* 10z7 n/m2 

be smaller than that of steel. The reasons for these can 
be seen by referring to fig. 2. The nuclear elastic cross 
section of Si or C is higher than that of iron in the 
neutron energy range (0.1 MeV-1 MeV), and lower 
than that of iron for fusion neutrons. 

Based on eq. (15), the partial displacement damage 
rate of silicon and carbon, the total displacement dam- 
age rate and the two fractions defined in section 3 are 
calculated for typical fusion reactors, a fast fission 
reactor, a mixed spectrum reactor and a thermal fission 
reactor. The calculated results are listed in table 1. 
From the table, one can see that thermal neutrons do 
not result in significant displacement damage in SIC. 
The displacement damage rate for a typical fusion 
reactors is on the order of - 15 dpa/year for 1 
MW/m2 neutron wall loading. 

5. Concfusions 

The results of our calculations reveal many features 
of the displacement damage process for SIC in a neu- 
tron environment. Salient conclusions are given below. 

(1) The total displacement cross section of Sic for 
epithermal neutrons is small. However, the displace- 
ment cross section for fast neutrons (0.1 MeV I E, I 1 
MeV) is larger than that of steel. The damage rate is 
also smaller than that of steel for fusion neutrons. This 
may have important implications for the simulation of 
fusion neutron damage with fission neutrons. There- 
fore, fast reactor irradiation will accelerate damage 
production in comparison to fusion reactors. 

(2) The local stoichiometry of Sic will be dramati- 
cally changed after irradiation, because carbon atoms 
are easily displaced due to their small displacement 
threshold. Approximately 80% of the displaced atoms 
will be carbon-type. It is experimentally found [27] that 

Sic does not amorphize if the irradiation temperature 
is above 650°C. The thermo-chemical driving forces for 
recrystallization are strong enough to restore the best 
stoichiometry. 

(3) The displacement damage rate for typical mag- 
netic confinement fusion conditions is around 14 
dpa/year for 1 MW/m’ neutron wall loading, that for 
typical inertial confinement fusion conditions is around 
16 dpa/year for 1 MW/m2 neutron wall loading, that 
for FFTF is around 74 dpa per 10” n/m’, that for 
HFIR is around 39 dpa per 10z7 n/m*, and that for 
NRU is around 25 dpa per 10z7 n/m2. The damage 
rate is sensitive to the neutron spectrum, i.e. the de- 
sign. 

(4) The interpretation of simulation experiments 
with energetic particles (up to 100 MeV) requires fur- 
ther analysis. Non-elastic neutron scattering channels 
will become important in this case. Subsequently, the 
number of PKA species will be larger than the number 
of lattice species. 

Appendix A. Extension of the Runge-Kutta method 

Assume that we have the following coupled differ- 
ential equations: 

dy/dx =f(x, Y, z), (A.11 

dz/dx =g(x, y, z). (A.2) 

Now let 

K, =f(xi, yi. q), (-4.3) 

M* =g(xiT Yi, zi)7 (A.41 

K,=_#‘(xi+~,h, Yif@,K,ht zi+r,M,h), (A.51 

M2=g(xi+P*hl Yj+qZKlh? zi4rZMlk), (A.61 



where h is the increment of the independent variabfe, 
yi and zi are the solutions for y and z at point xi, pr, 
qr, rlr pz, q2, and r2 are free parameters. The goal is 
to approximate yi+r and .zi+r to h3 by choosing the 
free parameters 

Yi,l =yi+ (a&, “+“a&)h, (A.7) 

zi+t =zi+ (b,M, +b,M,)h, (A@ 

where al, a,, b, and bz are also free parameters. 
Qn the ather hand, the Taylor expansion of yi+t 

can be written as 

Yi+l’Yi+f(xl* Yi* zi)h +” 2 dx 

+ O(h3), 

while 

(A-9) 

df V V dy af dr 
-= 
dx 

~‘----+-~~* 
ay dx 

(A.10) 

K2 and iM, can also be expanded in Taylor series as 

v v 
+qlK,fr-- fr,M*hg, 

34’ 

(A.11) 

(A.12) 

Substituting K, and K, into expression of yi+, and 
comparing the coefficients of independent functions, 
we obtain 

at + a2 = 1 @ azpl tj: i @ a2q1 = 4 @ a2rl = 4. (A.13) 

There are four equations and 5 unknowns, so we 
can choose 

p,=l~q,=lcBrl=l$al-fOa,=t. (A-14) 

Similarly, we can find the free parameters in expres- 
sion for zi+t. Tberefore, 

%:-+l =yi+ +h(K, +X2)* (ASS) 

ri+1 =zi+ ~h(MI+M2). (A.16) 

Wng this method, we have a numerical calculation 
which is accurate up to hs. For our problem, fr = 
E&e=i” - I> with c = Iolb(E~/Emi,>, a the ehusen 
number for discretizing the energy range, Ei as the 
PKA energy at ith discretized energy point. Because of 
electronic stopping, vij a E” with a < 1. Therefore, the 
relative error at any step is less than (e’/” - 1). 

Appendix B. Nuctear reacth kinematics 

In the folIowing, we derive the kinematics for (n, 7) 
and other non-elastic nuclear reaction channels. For 
(n, y) reactions, the conservation of momentum and 
that of energy give 

E/c = (1 +A)u,,, (B.1) 

E + ;(l +A)++ Q = $&+&Au;,, (B.2) 

where E is the emitted y-ray energy. R the mass 
number of target atom, Q the nuclear reaction energy 
of the (n, 7) reaction, u the speed of particle in CMS, 
the subscript 1 and 2 are for neutron and target atom 
respectively, the subscript o and f are for before and 
after reaction, respectively, aud c the speed of light. 
The energy and momentum are in atomic units. Solving 
these two equations for non-relativistic condition, we 
have 

AEn 1 Q 
u - 
2f - c(1 +A)* -(I+A)T-- 

Assuming that the scattering angle in CMS is 8, we 
have the velocity of the resulting atom in LS 

6/,,= 
-‘WI 1 Q2 --- 

c(1 +# 1-t-A c 1 

1 Q --- 
l+A c 

9 

(W 

where VI, is the speed af incident neutron in IS. The 
kinetic energy of the resulting atom (i.e., the energy 
transferred to target atom) is given by 

En 
E=-+ --...*- 

l+A 

v’=i -- -__- 
i 1+A l+A c 

For <n, x) reactions (x =E n’, p, a, 2n, etc.), the 
~onse~atjon of momentum and that of energy give 

Xz$f = BE,, (B-6) 

;xE& + #E& + Q = +& + &4& (B-7) 

where x is the mass number of emitted particle (e.g., 
n’, p, fy, 2n, etc.), B the mass number of resulting 
atom. Other notations are the same as those used in 
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(n, y> reaction. Solving these two equations, we have 
the final velocity of resulting atom in CMS, 

-1 

P.8) 

The corresponding velocity in LS is given by 

The energy transferred to the target atom is there- 
fore 

E= ++[$n][;+l]-1 
(1 +A) 

2 cos e 
_- 

l+A 

1 1-l I[ I -+z . x 

(B.10) 
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