
ELSEVIER Journal of Nuclear Materials 212-215 (1994) 148-153 

Molecular dynamics calculations of defect energetics in P-Sic * 
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Abstract 

The molecular dynamics (MD) method is used to calculate defect energetics in p-silicon carbide. Many-body 
interaction effects in this covalent material are accounted for by using a hybrid of two-body and three-body 
potentials. Pearson’s potential is modified to accurately fit the sublimation energy of B-Sic, and interatomic 
potentials among silicon, carbon, and helium atoms are also developed. A microcrystal is constructed to represent 
the computational cell, and external forces are applied to its boundaries so that it behaves as a part of an infinite 
medium. The potential energy for the unperturbed computational cell is first calculated. The cell is then set at a 
chosen defect configuration and relaxed, and the potential energy of the relaxed cell is computed. The difference 
between the potential energies of the unperturbed cell and that of the defect-containing cell is used to calculate the 
formation energies of point defects and defect clusters in Sic. Binding energies, and migration energies of point 
defects are then deduced. Preexponential factors of point defect diffusion coefficients are derived from the 
calculated potential energy profile. Activation energies and preexponential factors of thermal diffusion through the 
vacancy mechanism are compared to corresponding experimental data. 

1. Introduction 

Defect energetics in covalent materials have not yet 
been studied by the molecular dynamics (MD) simula- 
tion technique. Several approximate calculations were 
performed for vacancy formation energies [l-6] in ger- 
manium, diamond, silicon, and silicon carbide. These 
studies can be classified into two categories. The first 
one [l-3] employed a Morse-type potential and made 
several approximations about the relaxation of atoms 
neighboring a vacancy. One shortcoming of this ap- 
proach is that it does not fully relax the defected 
lattice. The second approach [4-61, however, consid- 
ered the electronic structure of a defected lattice and 
omitted lattice relaxation. Since a defected lattice does 
relax, this approach should not be able to give reason- 
able results. Surprisingly, results of both approaches 
are in good agreement with experimental data. 

In the present numerical simulations, an empirically 
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calibrated potential function given by Pearson et al. [8] 
is modified to accurately fit experimental sublimation 
energy of P-Sic. Many-body effects are taken into 
account by employing a phenomenological three-body 
potential. Interatomic potential functions among sili- 
con, carbon, and helium atoms are also developed. 
Using the constructed potential functions, we study 
defect energetics in B-Sic by the molecular dynamics 
simulation technique. When an atom is put on a crys- 
tal’s surface, certain amount of energy will be recov- 
ered. This effect is taken into account according to 
Olander’s scheme [23]. 

Nuclear reactor components are affected by neu- 
tron irradiation. Changes of their macroscopic proper- 
ties are determined not only by point defect production 
rate but also by defect evolution processes. In order to 
understand defect evolution processes, defect energet- 
its have to be studied first. Generally, there are several 
possible defect cluster configurations. One factor which 
determines the defect configuration is its formation 
energy. Study of defect binding energies can also help 
us to determine the importance of backward reactions 
with respect to forward reactions. These results are 
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critical to defect clustering processes to be studied 
later. 

2. MD simulation 

The molecular dynamics simulation method is well 
established. Calibrating interatomic potential functions 
and constructing a representative computational cell 
are generally the two most important considerations 
when the MD simulation technique is applied to a 
variety of problems. 

2.1. Interatomic potentials in silicon carbide 

Two-body potentials have been widely used for met- 
als (e.g., Ref. [9]). When one considers a covalent 
material (e.g., Sic), directional dependent interactions 
become important. A many-body potential appropriate 
for this purpose has been developed by Born and 
Oppenheimer [7], and is given in the form 

= d &,vc2)(rij) + $ c c vc3)(rij, rikr rjk) 

. ]#I ’ k# j#i 

+ . . . 

x(rij;..,riq;..,rmq). (1) 
To make this many-body potential usable in prac- 

tice, Pearson et al. [8] truncated the expansion up to 
the three-body level. For Sic, they combined the 
Lennard-Jones two-body potential [9] and Axilrod- 
Teller three-body potential [lo] in the form 

V2)( rij) = &[ a( $--( ai’]. C2) 
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where the energy parameters (a, Z) and the two-body 
structure parameters (m, II, R,,) were adjusted to fit 
experimental data for bulk solid and atomic clusters 
(sublimation energies and bond length). A set of poten- 
tial parameters is given by Pearson et al. [8]. Unfortu- 
nately, the calculated Si-C sublimation energy (15.409 
eV) with their parameters is at discrepancy with corre- 
sponding experimental data (12.865 eV) for P-Sic. 
Since defect formation energies are generally on the 
order of several eV, higher accuracy of the potential 
function is required. To improve this fit and keep other 
constants unchanged, we modify the Z parameter for 

the Si-C-C system. The Si-Si-C and Si-C-C systems 
are symmetrical with respect to silicon and carbon 
atoms. Assuming that contribution of a carbon atom to 
three-body interaction is underestimated, we multiply 
Zsi_c_c by a factor f and Zsi_si_c by f/2. The factor 
f is adjusted to fit the experimental sublimation energy 
of P-Sic. With this simple procedure, we derive the 
following potential function parameters: 
(m, n) value: (12, 6); 
E value (eV): (Si-Si) = 2.817, (Si-C) = 3.895, (C-C) = 
5.437; 
R, value (A)>: (Si-Si) = 2.2951, (Si-C) = 1.7400, (C-C) 
= 1.4806; 
Z value (eV A9,9>: (Si-Si-Si) = 3484.0, (Si-Si-C) = 
796.8, @i-C-C) = 597.5, (C-C-C) = 167.3. 

2.2. Interatomic potentials among He, C, and Si atoms 

The interaction between closed shell atoms is domi- 
nated by a Van der Waals mechanism. Using a pertur- 
bation method, Slater et al. [ll] calculated interatomic 
potential function between two helium atoms ( lIne_ue). 
Their calculated result of polarizability is close to that 
measured experimentally, and their potential function 
can be written as 

V He_He = (0.91/r6) eV. (4) 

The Van der Waals potential is proportional to the 
polarizability of participating atoms [21]. Polarizability 
data for silicon or carbon atom is not available while 
that for noble gas atoms is available. Since a carbon 
atom has fewer electrons than a neon atom, it should 
have a smaller polarizability. On the other hand, a 
carbon atom has an open electronic structure while a 
neon atom has a closed shell configuration. A carbon 
atom should therefore have larger polarizability than a 
neon atom. As a first order approximation, the polariz- 
ability of a carbon atom ((Y,) is taken as equal to that 
of a neon atom (a,,). Likewise, the polarizability of a 
silicon atom ((usi) is taken as equal to that of an argon 
atom (a,,). 

According to Slater et al. [ll], the polarizability of a 
helium atom (a,,), a neon atom (a,,), and an argon 
atom (cy,) are 0.205 x 10-24, 0.39 X 1O-24 and 1.65 x 
1O-24 cm3, respectively. The Van der Waals potential 
between helium and carbon atoms (VHe_c) can then be 
derived from the helium-helium Van der Waals poten- 
tial and is written as 

V me-C= (W~H~)~'CI~-H~. (5) 

A similar expression holds for the helium-silicon 
Van der Waals potential WHe_si). The two-body po- 
tential for Si-He or C-He system can be written in the 
same form as for Si-C system. The equilibrium dis- 
tance is approximated as the sum of the atomic radii of 
interacting atoms. When bonds are formed, the atomic 
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radii of helium, carbon, and silicon atoms are 0.93, 0.77 
and 1.11 A, respectively [12]. 

Since the three-body Van der Waals potential is 
also proportional to the polarizability of each partici- 
pating atom [22], the potential function parameter for 
Si-Si-He system can be derived from that of silicon 
and carbon systems, and is written as 

ZSi-Si-He = d ‘Hezsi_si_siaH’zsi_si_c 
aSi + 

Similar expressions hold for ZC_,--ue and ZSi_C_He. 
In these expressions, differences in covalent and Van 
der Waals interactions are not included. A three-body 
system containing a helium atom is less directionally 
dependent than that containing silicon and carbon 
atoms alone. In other words, participation of helium 
atoms reduces the covalent nature of the three-body 
system. We found that a reduction of Z by a factor of 
2 will give reasonable results (i.e., helium stabilizes a 
silicon vacancy and has positive interstitial formation 
energy). The two-body and three-body potential pa- 
rameters involving a helium atom are summarized as 
(m, n) value: (12, 6); 
E value (eV>: @i-He) = 0.0677, (C-He) = 0.2193; 
R, value (A>: @i-He) = 2.04, (C-He) = 1.70; 
Z value (eV A9p>: (Si-Si-He) = 78.3, @i-C-He) = 32.4, 
(C-C-He) = 14.9. 

2.3. Construction of a computational cell 

A computational cell consists of inner atoms and 
boundary atoms. The thickness of boundary layer atoms 
is larger than the effective range of interactions in the 
crystal. The boundary consists of a hybrid of fixed and 
flexible atoms. Due to the cutoff of interatomic inter- 
actions, a net force on an atom in a perfect crystal is 
not zero. External forces are applied to lattice atoms to 
balance these net forces. A vacancy is created by 
moving an inner lattice atom to the crystal’s surface. A 
vacancy cluster is created by moving several neighbor- 
ing atoms to the crystal’s surfaces. These atoms are 
located far away from each other on the surfaces, so 
that mutual interactions do not take place. An antisite 
defect is formed by replacing a silicon (or carbon) atom 
by a carbon (or silicon) atom. A cavity consisting of a 
vacancy and a helium atom is formed by (1) creating a 
vacancy, and (2) filling the vacancy by a helium atom. 
When an extra atom is added to the lattice, an intersti- 
tial is formed. Two tetrahedral interstitial configura- 
tions are the most favorable, one is that surrounded by 
four carbon lattice atoms (T,) and the other is that 
surrounded by four silicon lattice atoms (T,J. 

A computer code for solving these coupled equa- 
tions was developed at UCLA [13]. The standard 

Fig. 1. Relaxation field of lattice atoms around a silicon 
vacancy, located at center of the cell. Length of the lines 
corresponds to displacement magnitude of atom relaxation. 

Leap-frog numerical method was used in solving the 
set of coupled differential equations. In the simulation 
process, a velocity component is quenched to zero 
whenever it is in the opposite direction to the corre- 
sponding acceleration component. 

2.4. Defect energetics 

The potential energy of the computational cell is 
calculated before any defect is introduced. The compu- 
tational cell is then set at a defected configuration and 
the increased potential energy is calculated. Relaxation 
of the defected lattice results in an energy decrease. 
The net increase of the potential energy from a perfect 
configuration to a relaxed defected configuration is the 
formation energy of the defect. Clustering of two de- 
fects usually results in decrease of their total potential 
energy. This decrease is binding energy of the two 
defects. The relaxation of lattice atoms surrounding a 
silicon single vacancy is shown in Fig. 1, where it is 
clearly shown that the four nearest neighbors of the 
vacancy undergo the largest displacement from their 
equilibrium positions. The magnitude of this relaxation 
decreases rapidly with distance away from the vacancy. 
Relaxation of nearest neighbors to a silicon vacancy 
and that of those to a carbon vacancy are compared in 
Fig. 2. It is observed that the four nearest neighbors of 
a vacancy tend to form bonds. When a silicon vacancy 
is created, the four nearest neighbors relax signifi- 
cantly. On the other hand, the nearest neighbors of a 
carbon vacancy do not relax as much, because of the 
geometrical asymmetry of silicon and carbon atoms. 

When a defect migrates, it must cross a potential 
barrier. Formation energies of the defect at an equilib- 
rium position (Eeq> and a saddle point position (Pad) 
can be calculated in the same way as for defect forma- 
tion energies. The migration energy of a defect can 
then be deduced as the difference of Esad and Eeq. 
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Each carbon atom surrounding a silicon 
vacancy displaces 4.3% of bond length 

db 
Each silicon atom surrounding a carbon 
vacancy displaces 0.1% of bond length 

Fig. 2. Relaxation of the nearest neighbors: (a, top) around a 
silicon vacancy, (b, bottom) around a carbon vacancy. The 
larger spheres are silicon atoms and the smaller ones are 
carbon atoms. 

It is found that Tc is energetically the most favor- 
able interstitial position. The most favorable path of 
interstitial migration is Tc * Tsi =. (another Tc). The 
most favorable path for a silicon vacancy (Vsi) is Vsi = 
Tsi * (nearest silicon lattice). Similarly, a carbon va- 
cancy migrates through a Tc. If we assume that the 
potential profile along the migration path, E(x), can 
be approximated by a parabola, the Debye frequency 

Table 1 
Energetics of points defects in Sic 

Species Calculated 

(v) and diffusion coefficient (D) of the defect can be 
calculated as [23] 

(7) 

D = #y,, ,-Em%-, (8) 

where A = (\/Z/2)a, is jump distance and 6 = 12 is 
number of the nearest identical neighbors for the 
jumping atom or defect. a, is the lattice constant. 

For Sic, thermal diffusion data has been docu- 
mented by Ghoshtagore et al. [14], Hong et al. [15,16] 
and Hon et al. [17,18]. A vacancy diffusion mechanism 
is strongly suggested by the experimental data [14-181. 
It is found that acceptor dopants always occupy Si-sites 
[19,20]. Hong et al. [15,16] found that n-doping in- 
creases Si diffusivity and decreases C diffusivity. These 
results imply that Si atom diffuses through Si vacancies 
while C atom diffuses through C vacancies. Based on 
these experimental evidences, we can take the mea- 
sured activation energy as the sum of vacancy forma- 
tion energy and vacancy migration energy. The preex- 
ponential factors for self-diffusion will therefore corre- 
spond to those of vacancy diffusion coefficients. 

3. Results and conclusions 

The calculated defect energetics data for point de- 
fects are summarized in Table 1 and those for ex- 
tended defects are summarized in Table 2. From the 
calculated results, several salient conclusions can be 
made: 

(11 A silicon atom can be spontaneously replaced 
by a carbon atom from the energy point of view. This 

Si interstitial CT,) 
Si interstitial (Tsi) 
C interstitial (Tc) 
C interstitial (Tsi) 
He interstitial (Tc) 
He interstitial (Tsi) 
Si vacancy 
C vacancy 
Antisite Si replaces C 
Antisite C replaces Si 

Formation Migration 
E’ (eV) Em (eV) 

6.48 6.04 

13.80 N/A 
6.00 1.47 

6.43 N/A 
0.70 0.68 

1.07 N/A 
3.25 7.39 
2.63 6.10 

3.66 N/A 
- 3.33 N/A 

Diffusion 
Da (cm’/s) 

1.09 x 10-Z 

N/A 
1.31 x low2 

N/A 
1.38 x lo-’ 

N/A 
1.10 x 10-s 
1.51 x 10-2 

N/A 
N/A 

Experimental 

Ef+Em 

(eV) 
Diffusion 
D, (cm*/s) 

N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
9.5 
8.7 

N/A 
N/A 

N/A 
N/A 
N/A 
N/A 
N/A 
N/A 
8.4 x 10’ 
2.6 x 10s 

N/A 
N/A 
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Table 2 
Energetics of extended defects in Sic 

Species 

He + vacancy (He replaces Si) 
He + vacancy (He replaces C) 
Divacancy SIC 
Trivacancy SiSiC 
Trivacancy SiCC 
Diinterstitial SiSi 
Diinterstitial SIC 
Diinterstitial CC 
Triinterstitial SiSiSi [llO] 
Triinterstitial SiSiC [llO] 

Triinterstitial SiCC [110] 

Triinterstitial CCC [110] 
Triinterstitial SiSiSi (1101 
Triinterstitial SiSiC {RIO} 

Triinterstitial SiCC {lOO) 

Triinterstitial CCC (100) 
Triinterstitial SiSiSi (111) 
Triinterstitial SiSiC {ill) 

Triinterstitial SiCC {ill} 

Triinterstitial CCC {ill} 

Calculated 

Formation 
E’ (eV) 

3.06 
3.29 
5.01 
8.44 
7.79 

10.79 
10.33 
9.73 

15.19 
14.31 

14.78 

14.12 
14.91 
15.04 

13.44 

13.26 
17.56 
14.45 

15.90 

15.88 

Binding of last 
defect (eV) 

- 0.79 
- 0.04 
- 0.53(Si/C) 
- 0.16fSi) 
- 0.19(C) 
- 2.17fSi) 
- 2.15(Si/C) 
-2.27(C) 
-2.08&J 
- 2.48(C) 
-2SOfSi) 
- 1.55(C) 
- 1.43fSi) 
- 1.61(C) 
-2.36&I 
- 1.75(C) 
- 1.77fSi) 
-2.69(C) 
- 2.57(Si) 
-2.47(C) 
+ 0.29N) 
- 2.34(C) 
- 2.36Gi) 
-0.43(C) 
- 0.49(Si) 
+0.15(c) 

Configuration 

A helium atom fills a Si vacancy 
A helium atom fills a C vacancy 
Two vacancies occupy nearest lattice points 
Two Si vacancies enclose one C vacancy 
Two C vacancies enclose one Si vacancy 
Two atoms occupy two nearest interstices 
Two atoms occupy two nearest interstices 
Two atoms occupy two nearest interstices 
Three atoms form a line along [ 1101 
Three atoms form a line along [110] 

Three atoms form a line along [ 1101 

Three atoms form a line along [1101 
Three atoms form a (100) plane 
Three atoms form a (100) plane 

Three atoms form a (100) plane 

Three atoms form a {lOO} plane 
Three atoms form a (111) plane 
Three atoms form a {ill} plane 

Three atoms form a {ill) plane 

Three atoms form a (111) plane 

means that more carbon 
nonstoichiometric cases. 

(2) Atoms surrounding 

atoms may be present in 

a silicon vacancy undergo 

substantial relaxation while those surrounding a carbon 
vacancy do not relax as much. This is due to the size 
asymmetry of silicon and carbon atoms. 

(3) The sum of calculated formation energy and 
migration energy of a vacancy agrees quite well with 
the corresponding experimental data on self-diffusion 
in SC, indicating the validity of the modified Pearson 
potential. 

(4) Helium-filled silicon vacancies are energetically 
more stable as compared to unoccupied ones. The 
effect of helium in stabilizing vacancies is therefore 
important. 

(5) Defects tend to cluster. A divacancy is always 
composed of one silicon vacancy and one carbon va- 
cancy because the nearest neighbors are always of 
different types. 

(6) The calculated preexponential factors of vacan- 
cies are not in good agreement with experimental data. 
This may be accounted for by the complexity of experi- 

mental conditions. In reality, many diffusion mecha- 
nisms may operate at the same time. 
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