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An empirical, composite interatomic potential is developed to describe interaction of energetic
particles by pair potentials at high energies and many-body potentials at low energies. Molecular-
dynamics studies of low-energy collision cascades are performed. The displacement threshold sur-
face in copper is investigated and compared to experimental data. Our computer simulations show
good agreement with the experimental results of King and Benedek at 10 K.

1. INTRODUCTION

Pair-interaction potentials for the description of
collision-cascade dynamics have been widely used to in-
vestigate the transport of ions in solids and the genera-
tion of atomic displacements. Satisfactory results have
been achieved by using numerical simulation techniques
such as the Monte Carlo and molecular-dynamics (MD)
methods.! ™14 Displacement threshold energies, however,
are generally in the range of few times the lattice binding
energy. Therefore, many-body effects are expected to be
important in the sub- to tens of eV range where pair po-
tentials do not provide an accurate description of atomic
interactions. Furthermore, the many-body interaction of
atoms at low energy can affect the morphology of the col-
lision cascade because its range of influence is greater
than that of pure pair potentials. Therefore, in order to
accurately treat cascade dynamics, it is necessary to de-
velop a more realistic treatment of atomic interactions at
low energies. A simple many-body potential based on the
embedded-atom method (EAM) is used in this work.!3 =!8

At high incident-ion energies, the interaction between
the incident ion and a stationary one is primarily that of
a pair-interaction type. As the kinetic energy decreases,
the effects of the surrounding lattice become more
significant and the interaction must contain many-body
(local) contributions.

The EAM approach has been successfully applied to a
variety of problems where the solid is very near its equi-
librium configuration. However, the method is not ab in-
itio, but rather, can be viewed as a phenomenological ap-
proach that is based on the density-functional theory.
The Hohenberg-Kohn theorem!? states that the total en-
ergy E[p(r)] is a functional of the electron density p(r).
The exact form of the functional dependence is not
unique, and empirical approaches must be followed to
determine constants associated with the assumed form.
Although simpler approaches to the determination of the
embedding functional and associated constants have re-
cently been reported in the literature,?*2! we will use the
EAM approach as originally developed by Daw and
Baskes'>!® and the approximations of Foiles.!” It is
recognized that the many-body contributions to the po-
tential are reasonably well represented by the EAM.
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However, the atomic displacement process requires fur-
ther knowledge of the potential at atomic separation dis-
tances that are shorter than the range of EAM applicabil-
ity. In Sec. II, we describe an empirical method to deter-
mine a suitable composite potential for copper that cov-
ers all ranges of interatomic distances. The computation-
al method is then described in Sec. III. Results of cas-
cade simulation in copper are given in Sec. IV, and con-
clusions follow in Sec. V.

II. COMPOSITE POTENTIAL

In order to treat the atomic interaction in a continuous
manner, a potential that preserves the nature of estab-
lished interatomic potentials at the two energy extremes
must be used. In our approach, Ziegler’s pair potential??
is selected to describe the atomic interactions at the
high-energy end and an approximation to the EAM
many-body potential at the low-energy end. For the tran-
sition region, a cubic-spline potential is used which al-
lows continuity of this composite potential throughout
the entire energy range. The high-energy pair potential is
represented by Ziegler et al.? in the form

Z.Z‘g2 4 —b
¢Z(Rij)=-l__1— > ke K% ) (1)
Ry =
where Z; and Z; are the atomic numbers of the interact-
ing particles i and j, respectively, and R;; is the separa-
tion distance between them, e is the electron charge, ¢,
and by, are constants, and a, is the screening length.?
The approximate many-body EAM potential is derived
by Foiles,"” based on the EAM framework originally
developed by Daw et al.,'>¢ and it has the form
OF;(p?)
¢EAM(Rij)=¢ij(Rij)+szij(Rij)
*F,(p?)
+————a)02 [p5(R )T, (2)
where F; is the embedding function for atom i, pf;(R;;) is
the average local electron-density contribution from atom
J on atom i at a separation distance of R, ¢;; is the
core-core pair repulsive potential between interacting
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atoms [ and j, and p° is the total average local back-
ground electron density from all of the neighboring
atoms on atom i.

A transitional cubic-spline potential which bridges the
Ziegler and EAM potentials is assumed as

3
¢s(R;)=3 dkRilj(’ ) (3)
k=0

where d,, are splining constants. This assumed spline po-
tential satisfies the following constrains:

¢Z(Rij )lRij=r1 =¢S(‘Rij )IRU=r1 H

dpamiR;; )IRU=r2=¢.s(Rij )[Rl.j=r2 ,

a¢Z(le) _ a¢s(le)
ORy;  |r;=r OR;  |ry=r, ’
pam(R;;) _ 9¢,(Ry;)
aRij Ry=r; aRi/ Ry=r ’

The interatomic potential and force are thus continuous
functions of the interatomic separation distance. The
values of r; and r, are chosen so as to reduce drastic
force variations when a particle moves from one potential
regime to another. This is very critical because the force
for the cubic-spline potential is only piecewise continu-
ous. A proper selection of #; and r, can reduce the de-
gree of discontinuity in force derivatives at these para-
metric distances. The interaction of two lattice atoms at
a separation r is completely described by the composite
potential of the form:

¢Z(Rij)7 O<R[j Srl N
¢(RU)= ¢S(Rij)’ ¥ SR‘J 5"2 ,
¢EAM(Rij)) rszierc ,

where r, is the cutoff distance (~5.0 A) for the low-
energy many-body potential. It is worth mentioning that
this spline potential is flexible enough for extensions to
other combinations of high-energy pair potentials and of
low-energy many-body potentials. Possible candidates
for high-energy Eair interactions are the Moliere and
Kr-C potential§.2 The distances r; and 7, are chosen to
be 1.5 and 2.0 A, respectively. The spline potential is not
only a function of the interatomic separation, but is also a
function of the total average local electron density. For
instance, in sputtering simulations, near-surface atoms sit
in different total average local electron densities than
atoms in the bulk because of their neighboring atom
configurations.

Table I gives a typical set of fitting parameters d, for
equilibrium lattice atoms in bulk copper. The total aver-
age local electron density 5 is 0.0276 A 3. The local
electron density for copper with an FCC structure is
based on the quantum-mechanical wave functions of
Clementi and Roetti,”® and the embedding function for
copper is derived from the work of Foiles et al. 18

Figure 1 shows plots of the composite potential as a
function of the interatomic separation, and at total aver-

age local electron densities of 0.02, 0.0276, and 0.03 A >,
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TABLE 1. Spline-potential parameters for equilibrium local
electron density.

Index, k dy

0 60.559
1 119.58
2 —162.68
3 61.414

I, COMPUTATIONAL METHOD

Because of computational constraints (e.g., the com-
puter memory size and its speed, computing cost, and the
desired turnaround time), the MD technique can only
simulate a small ensemble of atoms. It is important,
therefore, to develop appropriate boundary conditions so
that simulation results are nearly size independent. The
energy introduced by the primary knock-on atom (PXA)
must be accurately dissipated in the form of atomic dis-
placements and at the computational cell boundaries. If

‘rigid boundaries are used, reflective energy exchange with

the rigid boundaries is likely to influence subsequent dy-
namics.

A new MD computer code CASC-MD has been
developed to study low-energy collision cascades. With
this code, appropriate energy dissipation to below ~1 eV
is ensured in the following ways.

(1) The computational cell size is varied to show that
the collisional phase of the cascade dynamics is accurate-
ly represented.

(2) Two extra atomic planes are added to the computa-
tional box in the form of special viscoelastic “boundary”
atoms; thus, atoms up to third nearest neighbors are in-
cluded. Atoms on the third extra plane are beyond the
cutoff range of the EAM potential and therefore are not
necessary.

The boundary atoms experience an incomplete
configuration of neighboring atoms. To avoid the relaxa-
tion of boundary atoms from their equilibrium positions,
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FIG. 1. Composite pair—many-body potential for copper as a
function of the interatomic separation. The potential is shown
for total average local electron density g of 0.02, 0.0276, and
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spring constant k (a detailed derivation is given in the

constant is also introduced which allows boundary atoms
Appendix) is given by
N,

a balancing external force must be introduced. A spring
where E is the modulus of elasticity (Young’s modulus),

to oscillate around their equilibrium positions.
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FIG. 2 Cascade trajectories at various times after the initiation of a 60-eV Cu PKA in copper at 300 K [t =0.03, 0.14, 0.29, and

0.50 ps for, respectively, (a)—(d)].



where X; and V; are the current position and velocity of
particle i, ¢,; is the potential for particle j on i, X,, is the
equilibrium position, and F, is the net balancing force.
A damping constant y is selected so that the damping
time constant is greater than the cascade propagation
time across the computational box. The main function of
this fictitious force is to reduce the cascade energy
reflection from cell boundaries.

The EOM’s are mtegrated using Euler and leapfrog
methods.?*%> The time step is chosen to be small enough
so that, within each integration step, interatomic forces
and potentials are near constant for all particles in the
system. This allows atoms in the Ziegler potential regime
to move a small fraction of the screening length for each
time step. The time step is therefore dynamically com-
puted throughout the whole cascade simulation. A
consequence of the use of dynamic time steps is that both
the Euler and leapfrog methods are accurate only to first
order.

IV. RESULTS

Figure 2 shows atomic trajectories at different times
after the initiation of a 60-eV Cu PKA in copper along
the [110] direction in a (001) plane at 300 K. The initial
and ending positions of lattice atoms are marked by open
circles. Their trajectories in between are connected using
line segments. In this figure we do not show boundary
atoms for clarity of demonstration. The figure shows
that the length of the linear replacement collision se-
quence (RCS) reaches its final value after ~0.15 ps. A
linear replacement chain of 10.5 displaced atoms, the
equivalent of a net displacement of about 25 A along the
[110] dlrectlon, is produced. The initial speed of the
PKA is 135 A/ps The average kinetic energy available
for the RCS is about half of the initial PKA energy. The
average speed is about 95 As ps. If the subsequent slow-
ing down of the RCS is considered, it is clear that the
propagation speed of the RCS is faster than can be ex-
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FIG. 3. Total, kinetic, and potential energies as functions of
time for a collision cascade induced by a 60-eV Cu PKA in

copper.
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FIG. 4. Comparison of RCS propagation with those of a lon-
gitudinal elastic (sound) wave and the initial PKA.

plained by the speed derived from the kinetic energy
alone.

Figure 3 shows the total energy for the same 60-eV cas-
cade as a function of time. The total energy of the system
starts at about 160 eV, which includes 60 eV of PKA en-
ergy; the balance represents the thermal energy content
of the system of particles. The energies displayed in Fig.
3 are divided up into kinetic and potential components to
show the exchange of these components as the cascade
slows down. The total system energy remains constant
until boundary effects become significant at about 0.3 ps.
Beyond that time, a fraction of the cascade energy is dis-
sipated in boundary regions. It is also shown that the ex-
change of potential and kinetic energies occurs on a time
scale of about 0.05 ps.

Figure 4 shows. the propagation of RCS and the longi-
tudinal elastic (sound) wave as functions of time. Also in-
cluded is the expected position of the PKA if we assume
that its energy is not dissipated in the cascade and that it
is free streaming at the initial speed. The propagation of
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FIG. 5. Kinetic-energy partitioning as a function of time for
the collision cascade.
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FIG. 6. The maximum kinetic energy associated with any of
the atoms during the collisional phase of cascade evolution ini-
tiated by a 60-eV Cu PKA in copper.

the RCS clearly indicates that, in near-displacement-
threshold interactions, focused collision sequences sub-
side very fast (on a time scale of about 0.1 ps). The speed
of cascade-energy propagation is much faster than the
average thermal phonon (sound) speed. The longitudinal
elastic wave speed v is calculated for isotropic copper us-
ing the relationship?®

v,=VE/p, - - )

where E is the modulus of elasticity and p is the specific
density for copper. The speed of cascade-energy propa-
gation is also faster than the speed of higher-order
knock-on atoms. The collective motion of participating
atoms in a linear RCS through the simultaneous potential
field is responsible for this propagation speed. The
many-body interaction helps in this collective motion be-
cause of its long-range nature.

Figure 5 shows the total cascade kinetic energies for all
of the atoms in the simulation system (including bound-
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FIG. 7. Cascade kinetic energies as functions of time for two
computational cell sizes.

RECOIL DIRECTION (deg)

FIG. 8. Comparison between calculated displacement thresh-
old energies along different directions at 10 K, and experimental
data of King and Benedek (Ref. 12). A defect resistivity value
~2.8X107* O cm is used in obtaining the experimental data.

ary atoms) and for the atoms in the computational cell
only {excluding boundary atoms) for the same 60-eV cas-
cade. It can be seen that boundary atoms are not
influenced by the existence of a collision cascade until the
end of the collisional phase. Therefore, the total system
energy remains unchanged until the cascade energy
reaches the boundary. The total system energy for the
computational cell decreases because a fraction of the en-
ergy is channeled into the boundary atoms. This behav-
ior also ensures that there is no energy reflection to inter-
fere with the cascade dynamics and indicates that the
selected size of the computational cell is adequate.

Figure 6 shows the maximum kinetic energy associated
with any of the recoils in two computational cell sizes
(545 and 1301 atoms) for the same 60-eV collision cas-
cade. Both simulations show that the duration of the col-
lisional phase is approximately 0.15 ps. The kinetic ener-
gy of any of the atoms, at the end of this collisional
phase, is well below the energy necessary to cause an

- atomic displacement. Figure 7 shows the cascade kinetic

energy for two computational cell sizes. The cascade ki-
netic energy for the larger computational cell is summed
over atoms which correspond to those in the smaller
computational cell. At 300 K, the initial thermal energy
content in the small computational cell is about 20 eV.
Near thermalization is achieved at the end of the kinetic
phase.

In Fig. 8, we compare the results of our calculations to
the experimental measurements of King and Benedek!?
on copper at 10 K. Our simulations indicate that, while
the displacement threshold energy is around 20 eV for
copper, substantially larger energy is needed to displace
copper atoms along the [111] and between [110] and [100]
directions. Our calculations are quite consistent with the
experiments of King and Benedek'? who used a defect
resistivity value of ~2.8 X 107% Om cm to obtain the dis-
placement threshold surface.
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V. CONCLUSIONS

This study of the collisional phase of low-energy cas-
cade evolution shows the following: (1) The development
of a replacement collision sequence, which leads to a
stable Frenkel pair, is completed in about 0.1 ps. (2) The
initial propagation of a RCS is much faster than the lon-
gitudinal elastic (sound) wave in copper and is even faster
than the initial PKA speed, showing that cascades propa-
gate through collective atomic motions. (3) The close
agreement of our MD results with the experimental data
on the displacement threshold surface indicates the use-
fulness of this composite potential for the simulation of
low-energy ion-solid interactions.
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APPENDIX

The spring constant k is derived as follows. The uniax-
ial stress-strain relation is given by
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c=Ee,

where o is the stress, E is the modulus of elasticity, and €
is the strain, given by 0 =F/ A4 and €=8I/l, where F is
the force, A is the area where the force is exerted, [ is the
length, and &/ is the elongation. Considering a slab of
unit area, and a length of a lattice constant /,, we can
rewrite the first equation as

The total number N, of atoms contained in this slab is
v, _( N

N = e = -
a Ia [+ lg c l%

where N, is the number of atoms in a unit cell. The last
two equations yield the force per atom f as

F  Ely8l
=——=——=k§l
f Na NC 8
The “equivalent” spring constant is then given by
El
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N,
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