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ABSTRACT

Recent trends in manufacturing ceramics in the form of composites have demonstrated the possibility
of controlling the energy-of-fracture of the composite by enforcing dissipation mechanisms (e.g.,
debonding of reinforcements and friction on internal surfaces) over damage zones (extended process
zones) surrounding the matrix cracks. The evolution of a damage zone around a matrix crack whether
under monotonic loading, cyclic loading or fiber creep conditions proved to have a great impact on
matrix crack propagation. A theoretical framework is developed to study the evolution of matrix
cracks in ceramic-matrix composites and the associated systems of debonding cracks which are
subject to frictional interfacial stresses. The developed theory is an analog extension of the theory of
plasticity. It aims at determining the evolution speeds by using the orthogonality relationships for
quasi-static evolution of stable crack systems with account for energy dissipation on internal surfaces.
The methodology is outlined for ceramic-matrix composites under two different conditions; (i)
monotonically increasing external load, and (ii) fiber creep in the bridging zone of the matrix crack
under time-independent external load.

INTRODUCTION

In fiber-reinforced ceramic-matrix composites (CMCs), the formation and propagation of a
matrix crack is controlled by an extended process zone which surrounds it. The size of this zone
is dictated by fiber debonding, slip and fiber failure activities in the crack wake. This process
zone may extend over the entire matrix crack for small-size matrix flaws which grow during
material loading. The concept of crack bridging in ceramic composites evolved around the micro
mechanical processes of fiber debonding and slip, and several different types of treatments were
devised to deal with the effects of fiber-bridging on the toughening behavior in this class of
materials. Reviews of the relevant literature are given by Cox and Marshall (1994) (see also
Marshall et al., 1985; Marshall and Cox, 1987; Cox and Marshall, 1991; McCartney, 1992a,b).
Under monotonic loading conditions, the evolution of the fiber debonding/slip zone is coupled
only with the applied stress as a loading parameter. At elevated temperatures, different kinetic
processes (e.g., interface creep in composites with glassy interfaces (Nair and Jakus, 1988; Jakus
and Nair, 1988; Nair et al., 1991; Nair and Gwo, 1993) and fiber creep (Begley et al., 1995; El-
Azab, 1994) influence the overall response of matrix cracks. Under fiber creep in composite
systems with weakly bonded interfaces, evolution of the debonding profile around the matrix
crack is expected, even prior to matrix crack propagation under a fixed external load. The
continuous evolution of debonding cracks in such material systems results in increased internal
surfaces over which energy is dissipated by friction, and thus maintaining the crack tip shielding
capability. Previous studies (El-Azab, 1994; Begley et al.,1995) have shown that relaxation of
fiber bridging tractions leads to transient response of matrix crack opening and propagation. In
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particular, the work of El-Azab (1994) showed that, under fiber creep conditions, initially sub-
critical matrix cracks exhibit a behavior characterized by an incubation period during which the
matrix crack opening and the tip stress intensity increase with time. Following this incubation
period, a transient and a steady-state growth regime were observed.

Matrix cracking in ceramic-matrix composites and associated fiber debonding and slip represent
a damage state which needs to be carefully treated. So far, that fact that matrix and debonding
cracks co-exist in the same material, and that these cracks simultaneously evolve in response to
the same external load have not been considered in studying the overall cracking behavior of
ceramic-matrix composites. The ultimate path to failure, particularly in composite systems
with complex fiber architectures, may be determined by the debonding and slip response at the
fiber-matrix interface, and a proper treatment of debonding evolution is thus very important in
analyzing cracking failure of the composite. During stable growth, it has been assumed that
both matrix and debonding cracks are under two different types of loads. Fiber stress acting on
an idealized single fiber cell causes interface debonding and/or slip to propagate, while a net
stress (applied stress minus bridging stress) acting on the matrix crack faces leads to matrix crack
propagation. These two problems were treated separately and coupled only via kinematic
constraints (see for example Budiansky et al., 1986; Nair, 1990; Budiansky et al., 1995, where
idealized conditions are assumed). Considering the fact that matrix and debond cracks comprise a
system of co-existing cracks which simultaneously respond to external loading agents, the
growth rates of these cracks with respect to the loading parameters must be simultaneously
determined using the same field solution. The main goal of the present work is to develop and
outline a formal procedure for determination of the evolution rates of a system of matrix and
debonding cracks. These rates are determined starting with the system potential energy
functional, which depends on all crack lengths (areas) and loading parameters.

Figure 1 illustrates the problem studied here. A matrix crack which is initially subcritical
under the effect a mode I remote loading is considered, along with a system of debonding cracks
which develop at the instant of initial matrix crack opening. Unidirectional composites are
considered here just to illustrate the method but the method itself is applicable to damage
evolution in ceramic composites with any fiber architecture and under different loading
conditions. The cases treated are: (i) Time-independent case: evolution of debonding cracks prior
to and during matrix crack propagation under monotonic loading, and (ii) Time-dependent case:
evolution of debonding cracks prior to and during matrix crack propagation under constant
external load and fiber creep in the bridging zone. In case of monotonic loading, debonding
cracks evolve depending on a quasi-static loading parameter, which is essentially the applied
load. Under fiber creep conditions, the crack system evolves as a function of time and is
controled by fiber creep rates. For this purpose, the time-dependent strain energy release rates are
derived for the individual cracks, and propagation of any of the cracks is considered to take place
at a constant strain energy release rate. In case of no fiber creep, time will be considered in the
sense of varying the applied stress. The main features of the approach followed here will be
emphasized during the course of formulation.

Following this introduction, a brief outline of the quasi-static evolution problem in multiply-
cracked ceramics is formulated. An application to the evolution of crack systems in ceramic-
matrix composites under the conditions of monotonic loading and time-independent loading with
fiber creep in the bridging zone of a matrix crack will then be given. The manuscript concludes
with discussion of different aspects and applicability of the proposed method to treating more
complex problems.

QUASI-STATIC EVOLUTION OF CRACK SYSTEMS

Consider a loaded linearly elastic material, which contains a crack population of number N,
where N may be considered a function of time to account for the possibility of nucleation of
new cracks during loading and/or evolution. This situation is schematically shown in Figure 2.
In fiber-reinforced ceramic-matrix composites, debonding cracks appear in the system if the
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matrix crack is evolving. The assumption of linear elasticity will be relaxed later when creep
effects are considered. Assume that crack nucleation and evolution follows the Griffith theory of
brittle fracture. Let P denote the potential energy of the of the system under consideration. The
potential energy of the cracked domain will generally depend on the number of cracks as well as
the individual crack lengths (areas). Let the volume of the domain be denoted by V and its

boundary be denoted by dV. To illustrate the method, consider an applied traction 7 = AT,
where A is a time-dependent loading parameter, and T, is a fixed spatial traction distribution
function. The potential energy of the systems can be written in terms of the strain energy
density function, W ( £), and the applied traction as follows :

: P = [W(eav - [, AT, ads 0
where W () is a quadratic function of the strain tensor ¢;. @ is the displacement vector

around the boundary. Let ¢, i = 1, .., N, denote the instantaneous lengths (areas) of the
individual cracks in the system. The strain energy release rate of the individual cracks can be
represented in terms of the rate of change of the system potential energy with respect to the

individual crack lengths as follows
dP

8 = -—, )

o¢;
Let the crack length (area) vector ¢ (:) represent the evolution for the crack systems, which at
t = 0 yields the initial conditions. Furthermore, assume that the potential energy of the

system and the strain energy release rates for the individual cracks can be computed. The
evolution problem can then be stated as follows: find £ such that

IP(E, A .
;= —-—(a———l, = 0if3 < S,.ad ¢ 2 0if8, = 3, (3)
7.

1
where the superimposed dot indicates the time derivative (right-hand derivative) and 3, are

i

material constants. For one crack, 3 < 3 is a convex function in a one-dimensional real

space. For a system of N cracks, the vector 8 < 3. is also convex in an N-dimension real
space, and, by analogy to elastoplasticity, we obtain the normality condition for brittle fracture
in the form (Maugin, 1992)

-;fo(g—g‘)ZO )
for every 3 < fﬂc and some arbitrary vector 3" within the critical hypersurface 3 = flc.

The aspects of similarity between elastoplasticity and brittle fracture are explained by Maugin
(1992). The following orthogonality relation can easily be drawn from Eq. (4)

23, =0 )
The result (5) is true with or without summing over i. So, as in plasticity, the problem can be
posed in terms of velocities, that is: assuming that the actual state of the system is known, and

given the time-rate of change of the loading parameter 4, the system evolution speed vector, ¢,
is the unknown of the problem. The problem (5) has the trivial solution i?,. = 0 if

3 < fsc even if 57'5,. # 0. The non-trivial solution for the problem (5) can be found by

considering §,. = 0, and hence, by using the Eq. (2), we have
. o_dfec Ay _
ST T [ o ] =0 ©
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Therefore, the evolution speed of the system can be found by rewriting Eq. (6) in the form

X 32P(E, 1) . _3*P(%, 1) .
TS 0¢;9¢; ljo= 4 .97 for i = 1,.., N ¥))

The invariance of the strain energy release rate vector during growth, i.e., the condition

Si = 0, corresponds to a fixed yield surface in elastoplasticity (perfect plasticity) with no

kinematic or isotropic hardening. However, as far as the overall load-displacement response is
concerned, stable crack growth under the influence of dissipative mechanisms might exhibit a
hardening character. In brittle fracture, the invariance of the strain energy release rate vector
implies invariance of the stress intensity factor vector for the propagating cracks. According to
Maugin (1992), the system (7) has at least one solution if the second order partial derivative

5 =
. P(E, ). .. - . . . . o
matrix Q_BI(W_) is positive definite, and this solution is unique if the individual second
.i .j
‘ PP, A) . . ,
order derivatives oo, e strictly positive. The result (7) can be easily extended to find
." ,j
the evolution speed for a system with a number M of time-dependent loading parameters
(A = A k = 1,.., M) Inthis case, the potential energy of the system depends on
‘the vector 1, sothat P = P(7, 1), and the system evolution speed can then be found by
solving the system
yo92P(P, L) . ¥ 92P(7, 1) _
-2 2,3, ¢ = g,l A ETETH fori = 1,..,N ®)

In general, the evolution relationships (7) and (8) yield finite growth speeds as long as the
solvability conditions for these systems are met. The onset of unstable growth can be studied
by investigating the properties of the coefficient matrix to the left-hand side of these
relationships. Certain physical conditions may affect these coefficients in such a way that
matrix ceases to be positive definite, i.e., becomes singular. A discussion on possible extrinsic
factors (or bifurcation parameters) which may affect the growth stability of crack systems in the
ceramic composite type considered here will be given later. The general results of this section
-will now be generalized to study the problem of a matrix crack and a system of debonding cracks
in ceramic matrix composites in two situations: (i) monotonic loading and (ii) time-independent
external loading with fiber creep in the bridging zone.

EVOLUTION OF CRACK SYSTEMS IN CMCS UNDER MONOTONIC LOADING
Consider a ceramic matrix composite with a matrix crack which extends between — ¢ and ¢

along the x —axis, under the influence of a remote loading mode I applied stress o,. As shown

in Figure 1, a system of debonding cracks develops during the initial opening of the matrix
crack. The formation of debonding cracks allows partial slip of fibers close to the matrix crack
surface, thus allowing matrix crack opening. Two different models can be used to study the
evolution of this system. In the first model the crack system consists of a matrix crack and a
"super-debonding" crack. The latter represents all debonding cracks in the systems and has an
area A;,. This model will be referred to as the "two-crack model". In the second model, the
individual debonding cracks are considered separately, which is referred to as the "multiple-crack
model". The two-crack model is convenient to study evolution in composite systems in which
fibers in the bridging zone do not fail. This model will be considered first to illustrate the
method, and the treatment for the multiple-crack model will be outlined in the end of this
section.
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Let ¢, ( x) denotes the length of debonding cracks on one side of the matrix crack at point x.
In this case, the debonding profile on the entire matrix crack can be represented by

£i(x) = Al(x) ©

where 7 ( x )is a fixed spatial profile function (dimensionless) and A has units of length. The

parameter A is a parameter which is a function of the applied load (or time) and whose growth
rate is to be determined as a function the external load. The total debonding area around the

matrix crack is the integral of the fiber density f / R ( f = fiber volume fraction and R is
the fiber radius) times the local debonding crack area (2 (sides) x 2 @R, (x)) over the entire
matrix crack, which is written as follows

Ap = A%fc?(x)dx = AL (10)

where L is a dimensionless geometrical factor. The potential energy of the system is given by
P = [, W(gav - (1 = f)o, [ 8udx + f[_ o;8dx + Jsf’tudST (11)
where §,, is the matrix crack opening displacement, &, is the fiber displacement (unbridged
crack opening displacement),  is the slip displacement over the interface debonding crack, o,

is the fiber stress, 7 is the interface friction stress and S is the area over which 7 is acting

(basically S, = Ap). In deriving Eq. (11), the following scenario is assumed. Step 1: assume
that both fibers and matrix are cut over the distance — ¢ to ¢. This allows breaking the problem
down to two parts: uncracked domain subject to the remote stress, and a cracked domain subject
to o, acting on the full cracked area between -c¢ and c. The solution for the uncracked
domain does not include any singularities. For the cracked domain (both fiber and matrix are
cut) the crack opening displacement is basically given by the solution for unbridged crack
problem. Step 2: to reach the final bridged configuration, a distribution o is applied to join
fibers from both sides back. Simple energy considerations will then lead to expression (11).
During the second step, debonding cracks develop thus dissipating energy by friction (friction
term in Eq. (11)). Using the divergence theorem, the strain energy term can be found in terms
of the net work done through boundary tractions, and eventually, the variation of the potential
energy of the system is written as follows

1 c 1 c 1
P = -~ - [0, [0, 96,dx + B fI., o,08dx + 3 jsf 7 0u dS, (12)

It can be shown that the second order partial derivatives of the potential energy with respect to
matrix crack length and debonding crack area are given by

%P 1 . 3%, 1 e 2’8,
- ? ) (- f)o-”j“ dc? d - 2 f'[“ 9 ac?
1 9%u
-3 s, T = &
P 1 c 9%8 1 9%u
-—=— = = - f)o, odx - = T — dS
3.412) 2 f I_c BA% 2 J-Sr (9AZ') T (13)
P 1 ¢ 926, 1 *u
T g - 2o L. o T 2 ks, = Agae Bt
_ o '
B 8cz9AD
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where the unbridged crack opening displacement & ris assumed to be independent of debonding

area, Ap,. This assumption will be considered valid when formulating the multiple crack model

with no fiber creep. As will be shown later, under fiber creep conditions, only the instantaneous
part of the fiber displacement will be considered, which will be dependent on the debonding area.

By using Eq. (10), A, can be replaced with A so that the last two equations in (13) are written
as

3*p 1 c 928, 1 o
_-87 = E(l—f)duj_cw-dx—gjstfmdsr
3%p 1 c 925, 1 *u
“anae - 20 Dol oo e - g g s a4
__ap
dedA
For the present case, the result (7) can be rewritten in the form
7P o PP on P
o’ 80, oA do,  acdo,
2 2 2 as)
a°P  oc d°P A J°P
ddA do, N do, dAda,
where the loading parameter A is replaced with 0,, and the system evolution speeds Birc and
a
AA : Y &
are to be determined. The partial derivative can be evaluated as follows
J0, dcdo,
82P 1 ¢ d8 1 4 aof asf 3251_
= - =1 - —mdx - —_— —_—
3cdo, 7 0= DL e+ 27 [30'" et % Fae, |F
(16)

1 atr du %u
ta3 ks [az v acaaa]dS’

The unbridged crack opening profile is given by & s = Qo, Ve? - x? where Q depends on

3%s 95
the compliance tensor of the composite. Therefore, L . L —f-, and the second term
dcdo, o, odc
: \ L - atp
to the right-hand side of Eq. (16) can be further simplified. In a similar way, Thio. can be
a

determined as follows

a*p 1 ¢ 98, 1 ot ou %

= - = - —_ - -— — — | dS 17
IAda, AL el 30, on T T Gase, | ¥ 4D
The evolution speeds of the system can then by determined by solving Egs. (15) using the
o JdA

partial derivatives in Egs. (14), (16) and (17). The system evolution speeds 8; and 30
a a
depend on the critical strain energy release rates for the matrix, Sme = 2(1 = f)v,,and
debonding 3, = 7, (v, and v, are the fracture energies of matrix and interface,
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respectively). This can be verified by rewriting two partial derivatives 3ed0, and IATG, in
the form

J*p Some 1 ¢ 00y 9bf 1 a7 7 | du
dcds, 0, ) fL. o, dc &+ 3 jsr d, o, | o i
1 0%u
+ 2 57 30, & )
d*p S,.L 1 *u 1 ot T | ou
dAdo, o, T3 ISYT dAdo, B + 35 JS: do, o, | oA Be
oP oP
where use has been made of 3, = - > and 3, = - TR Egs. (14) through (17)
D

yield the solution to the evolution problem provided that all partial derivatives in Eq. (15) can be

determined.
The results can now be specialized to the multiple-crack model. Divide the entire matrix crack

(length= 2c)into N,intervals. On the interval k, which is bounded by two nodal points x;
and x, , , consider a super-debonding crack which has an area of
A, = 2(sides) -—f—z [t 2aRe, (x)dxe = AL 19)
7R

where symbols have the same meaning as previously defined. In this case, Eq. (12) can be
rewritten for a multiple debonding crack system as follows

1 c 1 C 1 &
# = -5 - o[ dx v 5 1[0k + 5 3 snonds Q0

The second order partial derivatives of the potential energy with respect to matrix crack length
and debonding crack areas are then given by

%P 1 ¢ 3% 1 928,
A AU AL P~ e RO =
1 Nd azuk
-3 k=ljsk'tk '—ac—z ds,
9*p 1 ¢ 3%6, 1 N %,
T AN, 2 (- oL, aA,.aAjdx T2 ,E, Js, 7 OA;OA B
9%p
= - (includingi = j)
A jOA, an
9*p 1 ¢ 928, 1 N %u,
" - 2O Deloga o g Bk g
A

The evolution speeds can now be found by solving the system of equations
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FP a N p oA a’p

acz ao-a - _]=| 3(.‘31\] aO'a - acao—a
G =1,...N,) (22)
PP ac N 3%p oA a’p ‘
dcdh; Jo, j=1 9Ai0A; do, 0A;d0,
The partial derivatives 2~ and —2F— (i = 1 N Iso be evaluated
p Tl 3c30, n 990, i = 1,.., N;) can also be evaluated as
before.

To determine if the system of cracks is stable at any loading stage, the solvability criterion
stated previously must first be checked. If the crack system is stable, then we proceed to
determine the speed vector as follows. First is to determine the strain energy release rates for the
individual cracks at a particular loading stage. This step determines the number of cracks which

are evolving at the given load (see Eq. (3)). In general, if a number N, cracks out of a total
number N are critical, then an algebraic system of size N; x N, must be solved to determine
N; evolution speeds, as follows

N 32p(7 or; ’P(i, o
N9 (,Ua)_z=_(_.a_)fori=1,..,N1 (23)
j=1 af,-afj aoa 8[,.86”

Whenever a crack is sub-critical its velocity is automatically zero. In composite systems of
more complex fiber architectures different groups of cracks evolve then saturate over different
ranges of loading. This has been confirmed experimentally by Daniel and Anastassopoulos
(1995). The muitiple-crack model can be useful in studying evolution of debonding cracks in
composite systems where fibers are allowed to fail at any stage during loading. In this case, the

nufnber N, can be varied at each load level. Let the system (22) or (23) be rewritten in the form

- 8 q
-Q ¢ = 24)
dJdo,
where the matrix Qand the vector q are given by
o’p ) oP )
P = an q . = —
T Y o
the evolution, 7, of the crack system at a load level a: can then be determined from
.- - . dgq
{ - L, = —jg;:’ Q 1 307 dO’a (26)

where 7, is the state of the crack system at load level c,.

The formulation so far is exact, and it describes the system consisting of the matrix crack and
the. debonding cracks in a very general sense using the system potential energy. In order to
implement this method, it is required to have a full solution for the unbridged crack opening
profile, slip profile, fiber stress profile, and the bridged crack opening profile, which is actually
a difficult task. No specific assumptions have been made about the interfacial friction. Thus,
the theory presented so far is amenable to different simplifying assumptions as far as the
interfacial friction is concerned. A Coulomb-type friction or a constant friction stress model
can be used for further development of the solution.

EVOLUTION UNDER FIBER CREEP CONDITIONS
In the previous section, it is assumed that no time-dependent effects are involved and the
system quasi-static evolution rates are determined with respect to a monotonically increasing
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applied load. In this section, the same problem is solved under constant applied stress with fiber
creep in the bridging zone of the matrix crack. The formulation here starts with global energy
balance relationships for a system of evolving cracks. In addition to the frictional dissipation,
viscoelastic effects associated with fiber creep resuit in viscous dissipation. The material
temperature will be assumed independent of time, so that thermal energy terms can be excluded.
Consider a viscoelastic body with an evolving crack population of instantaneous areas A, (t)

(k=1,..N). The energy balance for this crack system can be written in the form
N
E,IA,‘S,“ + oy (e (av = [y, T (1)ds @7)

in which S, are the critical strain energy release rates of the individual cracks, the volume
integral represents the rate of change of stored mechanical energy of the system (viscous
dissipation is included), and the surface integral represents the rate of work done by boundary
tractions. The boundary traction is assumed to be time-independent. However, the formulation
can easily be extended to account for time-dependent traction boundary conditions. The stress,
strain, displacement fields are generally time-dependent. In the present case, the boundary of the
material is considered to be the sum of all crack areas, part of which is undergoing pure mode II
opening under the influence of a friction stress which may be just a constant or dependent on the
spatial position over the surface. In the absence of crack growth, the relationship (27) is an
identity. For an elastic material, the volume integral is essentially the rate of change of the
elastic strain energy. By breaking strain and the displacement fields into instantaneous (elastic)
and remainder parts, it has been shown by Golden and Graham (1990) that, in Eq. (27), the terms
assomated with non-instantaneous strain and displacement parts cancel from both sides of the
balance relanonshlp, which reduces Eq. (27) to

ZAkSkC + [yo5(0 e (nav = [, TE (1) ds (28)
k=1

where the superscript « denotes the elastic (instantaneous) parts of the strain and displacement
fields. The relationship (28) has the form of the energy balance during quasi-static crack
propagation in an elastic material, with the volume integral representing the rate of change of
elastic strain energy. Using the divergence theorem, that particular term can be rewritten in the
form

ey (g (nav = %%fva,-j(t)s;(t)dv %%ja‘, T (1)ds (29)
Therefore, Eq. (28) can be reduced to

i AS, = % Joy Tl (1) ds (30)
which can be rewritten in the f,:J;xln

é OASy = % [y, Tiow (t)ds @31
By differentiating both sides of ;Eq. (31) with respect to A;, we get

1 o (1)
S = T TG (32)

which means that a functional ® can be defined such that the strain energy release rate for a
particular crack is defined by
IR
3 = -3 Ty (33)

where the functional R has the form
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The results (33) and (34) have the same forms for time-dependent boundary tractions. These two
results are analogous to Egs. (2) and (1), respectively. Therefore, the evolution problem
described by Eq. (3) can now be applicable with P replaced by R. In addition, the results (5)
through (8) have the same form under fiber creep conditions, hence the system evolution can be
studied in terms of the partial derivatives of the functional R.

The |analysis presented in this section aims at determining the effects of fiber creep in the
bridging zone on the stability and propagation of the matrix crack, which motivates considering
a timerindependent external load. Consider a unidirectional composite which has a matrix crack
extending between - ¢ and ¢ along the x -axis, under the influence of a time-independent
remotT loading mode I applied stress 0,. Using the arguments presented in the previous

section, the variation of the functional R can be written in the form

1 1 1
M = -~ - fo, [, 96,dc + 5 f[, op985ax + 2 [5,79u" ds, (35)

where (all terms have been previously defined (see Egq. (11)). In the previous section, although
0, and 7 are treated as external tractions only 0, is considered to be the only independent

loading parameter. However, o, and  are implicitly treated as external loads in the sense of

having non-zero partial derivatives with respect to o, (see Egs. (16) and (17)). Here‘, o, and t

are explicitly treated as external loading parameters, and Eq. (8), rather than (7) is used to study
the system evolution. The reason this is pursued here is that fiber creep leads to variations in
the fiber stress and (generally) in the interfacial friction stress eventhough the external stress is

kept fixed. It is to be noted here that in general o, 6; and 7, respectively, should be written

as 0, | = O'f(x,t;aa,c), 5; = 5;(x,t;o'a,c)and T = 1(x,¢,2;0,,c),

where 2 is a position coordinate along the axial direction of each fibers over its debonded zone.
If 7 is chosen to be a material property, it will not be considered a loading parameter, and the
results will be simpler as shown in the end of this section.

Toc the analysis further, a multiple-crack model will be considered with multiple loading

parameters, in which the integral terms containing 0, and 7 in Eq. (35) are discretized. The
reason is that the profiles of the relevant stresses and displacements can not be described by the

same shape functions at all times. To justify this step, Figures 3 and 4 show representative
evolution results for fiber stress and debonding profiles, respectively, which are calculated using

the present method under certain simplifying assumptions, which will be discussed later.

However, based on these two figure, it is clear that the shape of the fiber stress and debonding
profiles|change dramatically during matrix crack propagation.
Let the matrix crack (length = 2 ¢) be divided into N,intervals. On the interval k, consider a

super-débonding crack which has an area of '

A (1) = 2(sides)L2f::’" 27RE, (x, 1)dx = A, (1)L, (36)
7R

where, in the present case, A, is a function of time. Rewrite Eq. (35) in the form

M = —%(1 - fro, [0, 86, dx
(37

+ = f 2 o dsde + = Y i1, Juy dS;
2 T 2 57
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@n

where 0, is the fiber stress over the interval k, and &, and u; are, respectively, the elastic

fiber and slip displacements over the same interval. For the sake of simplicity, the number of
intervals for the second and third terms in Eq. (37) is taken to be the same. Now, the functional

R| takes the form R = R(c, A, 0, (1), 7, (1), . .). The following partial derivatives
can be immediately obtained

R 1 c 928, 1 N 9%
T ac? 2 (- f)G“L‘ ac? & - 2 sz;'] 5 Ok 52 &
1 N . azuk
- 2 kg] -[Skrk P) 2 k
*R 1 c 9%, 1 N %5,
NS z - De L, aA,-aAj‘ix T2 f,g'll"k % FA.A;
1 N azuk IR . L .
-3 zx ‘[Sk TN as, = - aAjaA,. (includingi = j)
(3%)
’R 1 ¢ 9%5, 1 N 328,
“ana =20 Daloan - g IR o gy
1 N o*u, IR
T2 ,E’, Js i o T T Fam,
Let the fiber stress over the interval k be represented in the form o, = %‘,,‘:(z)c}k, where

T7 (+) is a time-dependent amplitude and &, is a shape function. Similarly, let 7, be

represented by the product of a time-dependent amplitude X ,f (+) and a shape function 7,. In
this case, Eq. (37) can be rewritten in the form
1

™ = -2 U - fo, [, 85, dr

" o " 39
+ = f 2 Ef B 508 dx + o X Xk 5T 0wy dS;

27 6 ! 2 = '

Hence, the amplitudes 2,‘: (1) and ):,f (+) are the time-dependent loading parameters. Having

cansidered this, the functional ® now has the form ® = R(c, 4,, 2° (1), 27 (1)), and
the system evolution can be studied by modifying Eq. (8) to include these vectors, which yields
-3 PR(E, 57,57, _ Ni[zg PR(E, 57, 5T 55 IR, 3°, i’)]
st 94;0¢ 1 i 92;0 37 ;9 Xf
fori = 1,..,N (40)
where N is the total number of cracks in the system which consists of the matrix crack plus a
number N, of debonding cracks, i.e, N = N, + 1, and the vector

7 = (c, Aiij o= 1, .., Ny). Inorder to determine the evolution speed vector, £, it is

2 5 §0 ¥7
. R(¢L, ,
further required to find expressions for the partial derivatives 9 (a[ 922“ 27) and
: 0 2k
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xplained later. Using expression (39), the two partial derivatives can be written as follows
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Define the following matrices

I?R *xR 2
o _ 2R i Qf - IR

where R = R, 3°,. %5
Eq. (40) can then be cast in the form
-Q? = Q3 +Q" 3T (43)
and the evolution, ¢ (t), of the crack system at time ¢ is given by
B - 24, = —fetanet ey 2ray + oty B ] ar s

where ?(to ) is the system state at time t, (assumed known).

e friction stress 7 is strongly dependent on the micro mechanisms of interface debonding
and the mode of opening of debond cracks. It is also dependent on the residual stresses in the
composite and whether or not the composite includes an interphase between the fiber and the
matrix. As far as modeling the interfacial friction is concerned, two trends appeared in the
literature; a constant friction model which assumes that interfacial friction is dominated by
surface roughness and is purely a material property, and a Coulomb friction model in which the
interfacial friction stress depends on the normal pressure at the fiber-matrix interface. Under the
assumption that 7 is a material property, it can be taken out of the friction integrals in Egs.

(37). (38), (39) and (41). Also, the vector 3% becomes identically zero. In this case, the results
can be summarized as follows. Eq. (38) reduces to
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Eq. (39) reduces to
1 c
M o= - = (- o, [0, 36,dx
1 Ny x _ r N
+ E z JX:H o-k35kdx + 5 kgl Isr 3uk dST
Eq. (40) reduces to
y o PR(F, I°) . PRI, 3°
_ 3(3912)ef=i2" (1, 5%
j= it d¢;0 zk
and Eq. (41) reduces to
I*R 925 T 35,
=-—1— oo 4 + = U0 5, —L i
33 37 (- 1o IfaaZ" MERA
1 N P 3% T N u,
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1 W/ el = 6’25k T 0/
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The matrix Q; a Teduces to zero, and Eq. (43) reduces to
-Qf =Q°3°
and the evolution vector, £ (), is given by
€(t) - (1) = -[QT (') Q7+ ) X (¢ ) ar
SOLUTION PROCEDURE
The method outlined in the previous two sections assume that the functionals P and R and
their second order partial derivatives with respect to the instantaneous loading parameters and
crack areas can be determined (see, for example, Eqs. (45) and (48)). This implies that the
67
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matrjx crack opening profile, 8, (x; 7, 1), the fiber displacement, & (x; Z, %), and its
instantaneous part, the fiber stress profile, 0, (x, t) and its time-derivative (and 39), the slip

displacement profile, u (7; 7, X ), and its instantaneous part and the interfacial friction stress
profile, 7(7; ¢, 1), (and 37) are available at any system state (7 is the position vector

describing the debond surface, 7 is the crack system evolution, and 1 is the loading parameters
vector). Moreover, the relationships among these field variables are such that the involved
derivatives are obtainable. This is actually the difficult part as far as the implementation of the
current method is concerned. In the worst case, a numerical treatment may be needed for
implementation, which is yet to be investigated. A growth rate equation for a matrix crack
under a time-varying bridging traction which was derived by El-Azab (1994) is quoted here to
confirm the fact that a complete field solution is required to obtain an evolution speed. This
growth equation has the form

aag(x,t;a) BUB(x,t;a)
-1.5 - 5 R
a A= a da 1 (e ot
T ko = [, T &+ 5 [ T & 6D

where the matrix crack extended between — a and 4 on the x-axis, 4 is the crack speed, and
K)c is the critical stress intensity factor. The growth rate & can be found using such a

relationship if the bridging stress profile, Ogp(x, t; c),is available.

The |steps which must be taken to determine the growth stability and growth rates are as
follows. First, the strain energy release rates for the individual cracks must be found in order to
determined which cracks are evolving. Second, the coefficient matrix must be checked to
determine the growth stability, which may be affected by extrinsic factors such as finite fiber
strength, fiber rupture due to excessive creep, residual thermal stresses in the composite, notch
size if| the matrix crack, or damage in general, is evolving from that notch, specimen size
relative to the dominant matrix crack size, etc. These parameters may act in such a way that
growth stability exhibit bifurcation at different applied load ranges, or at different evolution
stages. So, generally speaking, in addition to their dependence of crack length and loading
parameter vectors, the functionals P and R depend on a bifurcation parameter vector @ as well,
ie., = P(Z,%;®)and X = R(?, X; @®). In case of fiber creep, the constant
applied load may itself be a bifurcation parameter as well. Third, the growth rates can be
determined, depending on the circumstances, using Eq. (15), (22), (23) or (40), and the current
state of|the crack length vector can be determined using (26) or (44).

A SPECIAL CASE
The fracture models for matrix crack in unidirectional fiber composites assume that the matrix

crack is subject to an applied opening stress ¢, and a closure bridging stress Gy which is

related to the crack opening displacement (and its rate of change under fiber creep conditions)
(Cox and Marshall, 1994; Marshall et al., 1985; Nair et al., 1991; Begley et al., 1995;
Budiansky at al., 1986; Budiansky at al., 1995). An idealized concentric cylindrical cell have
been commonly used to deduce the relationship between the bridging stress and the crack
opening displacement under different fiber-matrix interface bonding conditions. While these

authors |have assumed that the bridging stress is defined by the relationship 6, = fo s El-

. Azab (1994) has defined the bridging stress based on some thermodynamical arguments,
however, used the same micro mechanical model to implement that definition. For the sake of
the present analysis, it is important to mention here that the unit cell micro mechanical models
have assumed that debonding along each fiber-matrix interface is driven only by the local fiber
stress, which is synonymous to saying that the debonding within a unit cell is described the cell
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gwn potential energy, and proceeds independent from debonding in other cell. To carry this
argument further, let us be specific to the work of El-Azab (1994), since his formulation
includes all energy terms used here in constructing the functionals P and R, although the
argument applies to all the previous work. First, the assumption that debonding in different
cells propagates independently under the influence of local fiber stress implies that the

3P o'

or
e, o0de,

natrix in, say, Eq. (38) is diagonal, and the system speeds are basically uncoupled. Moreover,
s far as the evolution of the matrix crack is concerned, the forms of the functionals P and R
emain basically the same. However, with regard to debonding cracks, since debonding is driven

y the cell own fiber stress, these functionals are separately written for each cell, which is
2
m

ade,

derivatives are non-zero only for i = j, which means that the coefficient

o=t o =

quivalent to assuming that the derivatives of the form also drop, i.e., terms that include

(o]

he applied stress (o, fc 8, dx) are not included. Proceeding with these simplifications,

‘igures 3 and 4, respectively, show some representative results for the fiber stress and the
volution of the matrix and debonding cracks under fiber creep conditions and fixed applied load
n unidirectional Nicalon-SiC composite. Debonding is shown only on one side of the matrix
rack. No fiber failure is assumed and fibers are bridging the entire matrix crack. The loading
onditions are: temperature = 1125 °C, initial crack length = 120 R, final crack length = 200 R,

xternal stress = 1.75 EfAe,h s Efis the fiber modulus, Ae, is the residual misfit strain,

@ O O &= =

.

E A, =90MPa. The curves labeled 0 to 4 represent evolution prior to matrix crack

ropagation, while curves number 5 to 9 are evolution states at different times during matrix
rack propagation. The interesting observation to be reported here is that, the continuous
volution of debonding around a matrix crack is a dictates the rate of dissipation by both
nterfacial friction and viscous deformation of the fibers. This ultimately impacts the time-to-
ropagation (incubation time) and the growth rates matrix cracks. A final remark to be made in
his context is that, even under the restricting simplifications stated here it has been difficult to
igorously deal with this evolution problem. A method, whether analytical, numerical or
ybrid, is yet to be developed to deal with this type of problem.

o wlllien B =M o B bl N o Wl o |

)ISCUSSION AND CONCLUSIONS

The present work represents a first step in establishing a formal methodology to deal with
ebonding and matrix damage evolution in ceramic-matrix composites. This type of damage has
critical role in determining the behavior of matrix cracks and/or the ultimate path to failure in
his class of materials. Eventhough the debonding contribution to the fracture energy of a
eramic-matrix fiber composites may be negligible, the nucleation and evolution of interface
ebonding cracks control the frictional energy loss, which is the main contribution to the
oughness in such materials. Proper accounting for interface debonding processes is thus very
mportant. Previous fracture mechanics or energy methods (Nair et al., 1991; Budiansky at al,,
986; Budiansky at al., 1995) have dealt mainly with debonding and matrix cracks separately,
vhich is not proper. In composites with complex fiber architectures (e.g., in braided and woven
omposites), the nature of cracking is complex and matrix cracks are not straight. The
ssociated debonding and slip damage can not be studied using simple micro mechanical models
vhich have been developed for unidirectional composites. Moreover, matrix cracks themselves
nay be subject to strong frictional stresses due to different sorts of irregularities and depending
n loading direction. This is where the method proposed here could be promising, even if it can
nly be implemented numerically.

| - |
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Finite speeds for matrix and debonding cracks are obtainable as far as the solvability criterion
for the system evolution equations (Eq. (7) or (8)) is met, that is; the second order partial
derivatives (with respect to crack length) are strictly positive. It is to be mentioned here that,
¢rack growth (under constant load) is unstable in the counter-example of a monolithic ceramic

ith no energy dissipative processes. It is also worth noting that the existence of a finite
growth rate vector is a direct implication of two factors; direct bridging (terms containing fiber
tress) and frictional dissipation (terms containing frictional stress). Stable evolution of the
ystem means that finite increments in the externally imposed tractions (no creep case) or a
ecrement in fiber bridging forces and/or friction stress (creep case under constant external load)
an only cause finite increments in the crack system lengths (areas). In general, all components

f the vector ¢ may not be growing during evolution. While this situation is not likely to be
chieved in unidirectional composites with matrix cracks perpendicular to fibers, it is highly
robable that this actually be the case with complex cracking configurations.

Although a unidirectional composite is assumed here to illustrate the method, it will only take
change of notation to generalize this method to treat most complex composite systems.
oreover, no specific assumptions have been stated as far as the nature of interfacial friction is

onsidered, hence, constant or Coulomb friction models can be used with the present theory. In

ddition, no restricting assumptions about the material anisotropy, homogeneity, or any residual
thermal or non-thermal stresses are included during the formulation, therefore, it could be
pplicable under different varieties of materials conditions. Fracture mechanics models, for
xample, assume that the material around the matrix crack will remain uniform and
omogeneous during loading and evolution, even fibers debond, slip, creep or even fail, which
ay not be an accurate approximation. Energy methods ((Nair et al., 1991; Budiansky at al.,

1986; Budiansky at al., 1995)) adopted what is called steady-state matrix cracking, which

ssentially proper for large matrix cracks and fibers which do not fail in the far crack wake.
ther energy-based treatments (Aveston et al., 1971) did not consider the matrix crack length to
e a parameter of the problem, which may not apply to real test specimens or structural
omponents with cracks of finite length.
While the direction of interface debond cracks is pre-determined in composites with weak
interfaces, matrix cracks may not propagate in a well behaved manner, i.e., could exhibit strong
r weak kinking character. The present method can actually be implemented in such a way that
ack kinking criteria are included and, in addition to evolution speeds, propagation paths can be
etermined. The method developed here is also amenable to consideration of finite fiber stress in
the bridging zone, which means that growth instabilities associated with failure of fibers with
nite strength or fiber failure due to excessive creep can also be analyzed. Other extrinsic factors
such as residual stresses, notch size (unbridged zone size), overall specimen dimensions, etc., can
also be included as bifurcation parameters which affect the growth stability, i.e., bifurcation

parameter vector @ must be included in the arguments of the functionals P = P(?,A: ®)

and R = R(?, 7»; ®). An additional benefit which can be immediately recognized for the
procedure outlined here is that, in a system with many cracks information about the effects of
evolving sub-groups of cracks on the growth saturation of other sub-groups can be determined at
different loading or creep stages. Also, this method can be used, along with an appropriate
averaging methodology, to predict the overall stress-deformation response of composites with
evolving damage under increasing loads. The formulation presented here is exact. Different
approximations may then be utilized to model the composite and to obtain the results for the
strain energy release rates and the field profiles.
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FIGURE 1: A MATRIX AND DEBONDING CRACK SYSTEM IN UNIDIRECTIONAL
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FIGURE 2: SCHEMATIC SHOWING MULTIPLY-CRACKED MATERIAL.

72



NAL

)
!
5
!
!
|
|
.‘
i
|
]

1.3 T T T T T T T
[ Initial debonding 0 ]
L profile UL i g de SR 4
1.25 o e V«/vk i
[ o 1 Y. W ]
. b |
© 1.2 AN 7
@ e | | ]
= w b l] l:
w 1450 | o il 31 : l ‘ 7
<] . Pyt ‘I
- 3 | i \ i
1.1 : b “
9 l v
1.05 L ".', > 5 6 78 o]
[ I Initial matrix \ b
;'= crack length _
1 L I | 1 I I 1 ]
-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

FIGURE 3: FIBER STRESS PROFILE DURING INCUBATION AND PROPAGATION OF A MATRIX

FIGURE 4: DEBONDING PROFILE DURING INCUBATION AND PROPAGATION OF A MATRIX

xlc

final

CRACK IN NICALON-SIC COMPOSITE.

CRACK IN NICALON-SIC COMPOSITE.

73

T T T T T T T ]
F . :
L —A— ]
[ —~ s > ]
s 2 = ]
r e T T T~ \\ e
[ 2 - < €0 O- 5 & ]
[ / / o-"o'. i O"vo % 1
-/ s D ]
[ s 000006 0. o ]
. ;a :
+ " “y -
-_/ £ Initial debonding \_-
[ A profile Initial _matrix ]
- crack length =

I 1 L 1 1 I

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1
x/c
final




	10.pdf
	11.pdf
	12.pdf
	13.pdf
	14.pdf
	15.pdf
	16.pdf
	17.pdf
	18.pdf
	19.pdf
	20.pdf
	21.pdf
	22.pdf
	23.pdf
	24.pdf
	25.pdf
	26.pdf
	27.pdf
	28.pdf
	29.pdf
	30.pdf
	31.pdf
	32.pdf
	33.pdf
	34.pdf
	35.pdf



