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ABSTRACT
Under monotonic loading of unidirectional ceramic-matrix composites, it has been observed that
periodic matrix cracking takes place if the matrix strain-to-failure is below that of the fibers.
Furthermore, |it has been found that interface debonding, frictional slip and the subsequent bridging of

trix cracks control the overall response of this class of materials. At elevated temperatures,
hawever, fiber and/or matrix creep is expected to dominate the micro mechanical behavior Lnd, in
, the macroscopic deformation response of the composite. In this paper, a micro mechanical
model is developed to study the effects of fiber creep on fiber-matrix interface debonding and fiber
frictional slip. The model is particular to composite systems whose fibers exhibit much faster creep
rates in comparison with matrices. The model is applied to predict the creep response of composites
loaded beyond the matrix cracking stress. It is found that the macroscopic creep response is
characterized by a secondary creep regime which is associated with slow propagation of interface
debonding cracks, followed by a tertiary creep regime during which rapid growth of debonding
represents an instability mechanism.

INTRODUCTION

erarnic-matrix fiber-reinforced composites exhibit single and multiple fracture behavior under
mpnotonic loading (Aveston et al., 1971). In the present work, focus will be on ceramic
cqmposite systems which exhibit multiple matrix fracture, i.e., fibers can sustain the load
ing capability of the composite following the first matrix cracking event. Such composite
stems are characterized by fibers which have larger strain-to-failure in comparison with the
matrix. Nicalon-CVD (CVI) SiC composites exhibit this type of behavior. In this class of
camposites, interface debonding and frictional slip between fibers and matrix are criticaimicro
mechanical phenomena which control matrix cracking and hence the low-temperature strength
and toughness of these composites. The work of Aveston et al. (1971), Aveston and Kelly
(1973), Kelly (1976), Budainsky et al. (1986) has focused on predictions of the matrix cracking
stress under different interfacial conditions. Several micro mechanical models for fiber debpnding
and slip have been developed by Marshall et al.(1985), Gao et al. (1988), Sigl and Evans (1989),
Hutchinson [and Jensen, (1990), Kim af al. (1991) and Zhou et al. (1991). These models are
generally time-independent and were developed to obtain load-displacement relationship at the

(Najmabadi et al. 1995)). Elevated-temperature mechanical properties of these materials are
expected to be influenced by the time-dependent inelastic response of the micro constituents of

for creep which is lower than that of CVD SiC. This experimental finding has triggered
experimental (Henager and Jones, 1993) and theoretical (El-Azab, 1994) high-temperaturk time-
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mechanics

natrix crack growth studies is Nicalon-SiC composites. A time-dependent micro
odel was developed by El-Azab (1994) to obtain the relationship between the crack

bridging tractions and the crack opening displacement, which considers fiber creep in the crack
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idging zone to result in a time-dependent response of loaded matrix cracks. The present work
imilar procedure to study the overall load-deformation response of one dimensional

]

mposites. Following this introduction, a short description of fiber and matrix creep
aracteristics is presented. The underlying assumptions for the present model and its
velopment are then included and the paper concludes with a thorough presentation and
scussion of the model results and conclusions.

REEP CHARACTERISTICS OF CVD SiC AND NICALON FIBERS

CVD SiC has been tested for creep in compression in the temperature range 1550-1750°C
arter and Davis, 1984) and in bending in the range 1200-1500°C (Gulden and Driscoll, ‘1971).
1e bending|creep data are considered here. The creep rate of CVD SiC in compression eTxhibits
power law| dislocation mechanism-type creep with a stress exponent of 2.5, while the data of
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Gulden and Driscoll (1971) exhibited a diffusional creep law of the form

. oD,Q,
£ = 13.3 ——— @
deg
where o is the applied stress, D, is the diffusion coefficient for the rate-controlling species,

Q| is the atomic volume, k is the Boltzmann constant, T is the absolute temperature and dg

is

also tested fa
the creep strg

e grain stze. An activation energy of 640188 KJ/mole was measured. Nicalon fibers were
or creep by DiCarlo and Morscher (1991) (see also DiCralo (1994)). It is found that

in, £, for Nicalon fibers is given as function of stress, time and temperature by

g = Ao exp — | @)
R, T
8
where Rg is the gas constant. For stress in MPa, temperature in K and time in seconds, A =
8.316, and the apparent activation energy is Q0 = 2.91 KJ/mole and p = 0.4. The stress

exponent for
unity in the

Nicalon fibers is slightly different from unity (DiCralo, 1994), but considered to be
present analysis to allow the use of linear viscoelasticity theory. Creep data for
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rs and CVD SiC were compared (El-Azab and Ghoniem, 1995) and it is found that
s exhibited creep rates which are several orders of magnitude higher than CVD SiC
or the same temperature and applied stress. It is thus concluded that, as far as
D SiC composite is concerned, the matrix creep can be totally ignored in
with fiber creep below 1400 °C.

DESCRIPTION

1ows a schematic of a unidirectional fiber composite, which is loaded beyond the
ing stress. The matrix is periodically cracked and fibers are bridging matrix crack
natrix crack density is a function of the applied stress, o, and the mean distance
matrix cracks is denoted by 2 L. Composites with initially bonded interfaces are
In such ceramic composites, residual misfit stresses exist, which arise during
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assumed to represent the residual misfit and considered to be a part of the matrix strain. Thus,
an initial macroscopic strain component in the composite will be present, and must be accounted
for in calculating the composite macroscopic strains under externally imposed loads. This will
be clarified later during the analysis. Now assume that the composite temperature is above the

tenperature%ﬂueshold for fiber creep, and the applied stress, o,, is acting along the fiber

manufactun;L\g. In the present analysis, an inelastic strain component, denoted by ¢, , is

direction. Due to symmetry, consider only a composite length L, (i.e., half the distance
between two matrix crack) starting at one of the matrix cracks. The composite is expected to
respond in the following way (see Figures 1 and 2). Between the matrix crack faces, the applied

stress is fully taken by fibers, so that the local fiber stress, o £ is given by
o = 0, ! f 3

where f is the fiber area fraction on the matrix crack. In unidirectional composites, f itself is
the volume fraction of fibers. At the onset of matrix cracking (initial loading), the fiber-matrix
interface is dEbonded over a certain length ¢. Over this length, fibers undergo slip relative to the
matrix so that at matrix crack surfaces fibers are partially pulled-out of the matrix. This partial
slip process| contributes to the overall macroscopic strain of the composite and depends on
interfacial conditions, the residual misfit strain, and the applied load. Over the distance 11‘ - ¢

ip between fibers and matrix is not allowed and the axial deformation of the composite over
s length is more restricted. Fiber creep will primarily lead to relaxation of the residual misfit
strains and an additional deformation in response to the applied load. Therefore, fiber creep will
result in a time-dependent overall deformation under constant applied stress. Calculating this
deformation| for the composite, however, is not straightforward and requires detailed/ micro
mechanical analysis of the associated time-dependent debonding and slip processes'in the
composite, which is the main objective of the present work.

MPTIONS AND DEVELOPMENT

tion
e compaosite (fiber/matrix) cylinder depicted in Figure 2 is used to simulate the response of
the macroscopic composite. Due to symmetry conditions, a length L is considered for analysis.

e fiber radius is denoted by R and the outer radius of the matrix around the fiber is R,. This

geometrical 1dealization has been used by many authors to model the micro mechanics of fiber
debonding and slip (Marshall et al., 1985; Gao et al., 1988; Sigl and Evans 1989; Hutchinson
and Jensen, 1990; Kim at al., 1991 and Zhou et al., 1991), and recently by El-Azab (1994). The
work mentioned above has only dealt with the micro mechanics problem under static conditions
with no fiber creep. The present work is a generalization of the previous literature to inchjxde the
effects of fiber creep on the micro mechanical response.

Hutchinsan (1994) used the concentric cylinder model as geometrical idealization for
composites with hexagonal arrays of fibers in matrices, with periodic boundary conditions on the
cylinder side|of the form

u, = const, and o, = 0 at r = R, @

MODEL ASSU
r

wﬁere u, is the radial displacement, and the constant is the radial displacement above the debond
front. The stress components have their conventional meaning for cylindrical coordinates (see
Ffiure 2). At the matrix crack surface, the fiber end is subject to a stress ¢ £ and the matrix is

stress free. At z = L the composite cylinder is subject to a zero axial displacement condition

u, = 0. f O’r ( '1'2_0 ) is take to be zero, the model represents an isolated cylindrical cell and is

more suitable for the single fiber composite analysis. For simplicity, the isolated cylindrical




cell boundary
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conditions are considered here. An interface debonding zone develops whose length
ndent, and over which relative slip is permissible between fibers and matrix. The
ction is assumed to follow a Coulomb-type law of the form

T = -Ug ®

where g is the normal pressure at the interface, and g is a friction coefficient. In this model,
we neglect gradients in shear stresses in the matrix compared with normal stresses over the
debonded zone, which is valid as long as the axial stress in the matrix varies slowly over
distance comparable to the fiber radius. In this case, the axial, radial and azimuthal stress at any
section normal to the z-axis are characterized by a Lamé problem solution. The fiber and matrix
stresses are given by

o, =

! ff [G) i f]rand % - 1_~qf [(%) ‘ f] ©

where superscripts (subscripts) f and m refer to fiber and matrix, respectively, and r is the
radial distance from the fiber center. It is to be mentioned that all stresses, strains and
displacements depend on time, ¢, and the axial coordinate, z. The corresponding matrix strains

are

wh
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formulation

given by

1 + v \%
m — m m _ m m
g = e,,,a,.j + —— o, —_ ouaij )
Em m

ere the non-elastic term &, is associated with normal components only, which represents an
tropic shrinkage term. This induces matrix clamping around the fiber. With the current

of the problem, only normal stresses in fiber and matrix are considered tLamé

problem). The detailed form for fiber strains are written as

where vy, is

is defined by the creep strain at time ¢ per unit stress in a one dimensional creep experiment,
which is given by Eq. (2). The first term to the right hand side of any of Eqgs. (8) represeﬁts the
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1
=g = ——[(1 - Vvi)g - vfa{]
E
f
+ i - ¢ )[(1 - Ve)q(t') - veo!l (o )]dt'

= i[a{ - 2qu] + Jod(t - ¢ )[0'{(1‘ ) = 2vpeq(t! )]dt' 8)

E;

the Poisson's ratio of fibers for creep strains, J (¢) is the creep compliance, which

component, while the second term represents the creep strain component.

e solution for the stress and strain distributions are found in two different regions:

e and the
r-matrix

en by

fand ¢ < z < L.For 0 < z < (£, the field quantities are functions of

axial coordinate z, and the condition of continuity of radial displacement at the
interface must be satisfied. This condition is written as
! el (z,R, 1) = € (z, R, 1) ®
The axial equilibrium for both fiber and matrix is also written as
do’ 27 1 - f "
—_—z - — - _ —z 10)
Jz R f oz

r £ < z < L, the field quantities are independent of the axial coordinate and both the
lial and axial displacements are continuous at the interface. The axial equilibrium condition is




fol + 1 - fro' = g, an

For 0 < z < ¢, by using Eq. (5), the condition (9), and the equilibrium Eq. (10), the
following equation can be obtained for the interface pressure g (z, ¢)
dg(z,t) 2 uc .
. Log(z, 1) + cOI,’dJ(t - 1) x
oz
dg(z, t') 2pvg
1 - v - gz, t' ) {dr' (12)
[( fe ) oz R ,

where ¢, an
time at whic|

d ¢, are given in the appendix. The lower limit of the integral 7, represerts the
h the debonding crack front reaches a particular location z and depends on z!itself,

since the debond crack is assumed propagating. Eq. (12) can be solved by the method of
Laplace transform, where the Laplace transform of the convolution integral can be found by

shifting its limits by an amount . Details of the inversion are given by El-Azab (1994), and
the transformed equation is written as

dg(z, s)

2u o - c,,vfcsj(s) . 2ua(s)

dz

transform of
go, s

where ¢,, ¢

R |1 - ¢~ Vfc)sj(s) a(z. s) = TQ(Z,S) (13)

where s is the Laplace parameter. Eq. (13) has a solution of the form ‘

2#“(5)2) 14)

gz, s) = é(O,S)exp( R

By applying the continuity of the radial displacement at z = 0, and taking the Laplace
!

the resulting relationship, it can be shown that § (0, s) is given by

N o3 En N ¢ + c3Vesi(s) 95 15)

ca +c3(l — ve)si(s) s cg + s (1 = vy )sI(s) s

s and c4are included in the appendix. For further manipulation, let Eq. (15) be

rewritten in the form

(e}
§(0,s) = &(s) %" + 6, (s) —sf— (16)

This equation can not be analytically inverted to the time domain. An approximate analytical
inversion method (Schapery, 1962 and Pipkin, 1986) is used to obtain the time-dependent
solution. Leaving out details, the final form of the time-dependent axial distribution of the

interface pre

where a (¢
sJ(s) by
J(t) = [
pl~ 0.4

sure over the debonded zone is given by

2
q(z,t) = [al(t)s,,, + az(t)af] exp(—lw-tl—i—tﬁ) )

, a;(t) and a, (r) are obtained from their Laplace transform by replacing

J(t) according to the Schapery's inversion formula (Schapery, 1962)
sJ (s)]s=0_ s;p» Which is a good approximation if J () behaves as ? with
. Using the axial equilibrium conditions, it can be shown that the axial fiber and

matrix stress distributions can be written as

, o (t)g, + a2(t)of [ (Zua(t)z) ]
o, = 0; + exp| —m™ | - 1|,
a(t) R

ad o = (o, - of) (18)
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shown later that the three components of fiber stress (o/ and

J

o, = 0',’ , ) are sufficient to predict the overall macroscopic strain of the

!

on in the interval £ < z < L can be obtained by using the axial equilibrium
11), and the continuity of the radial and axial displacements at the fiber-matrix
he final results for the interface pressure and the axial fiber stress are found to have

t) = A(t)o, + B (t)g,, and q(t) = A, (t)o, + B,(1)g, (19
), By (1), A, (1) and B, (t)are given in the appendix.

Propagation
2t of matrix cracking (upon applying the external load), the fiber-matrix interface is
ver an initial length £(0), if the applied fiber stress is above the debonding
Due to fiber creep, the interface debonding crack propagates due to relaxation of the
ressure. The time-dependent debond crack length is found in the present study by
> energetics of the composite cylinder loaded under fiber creep condition. It is
determine the debond length in this case, since the interfacial friction energy
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rm depends on the debond crack length as a characteristic length. Details of the
¢ found elsewhere (El-Azab, 1994), and the time-dependent debonding crit?rion is

found to have the form |

onent at

e

du: .
43, = RO'f + 2pu ';Joq(z, t )z 20)

de
in/which 3, is the interface debonding energy, &° is the elastic fiber displacement comp

= 0, which is given by the integral of the elastic axial strain component of the fiber, u, is
e relative slip between fiber and matrix (not including the slip component associated with fiber

&N
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e t f.e
é b €,

w(z) = [[ez .0 - e, .0k 1)
here the superscript € refers to non-creep components. The debond criterion (20) becomes
entical to the debond criterion developed by Gao at al. (1988) if no creep effects are present. It

as® |
de

low and just above the debonding front, which will be distinguished by the superscripts + and
respectively. The final form of the debonding relationship is found to be

= (z,t)Mz + [[ e (z, t)dz, and
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and — are dependent on the fiber and matrix stress components just
de

n be shown that

434E _ 3 _
_Rf = af[af—a}—2vf(q —q*)]—-(af-cf)x
- - E - 2Vnufq”
|:Efs,,, + 0f - 2veq - é (om + —I—Z'qu)] 22)
in|which the subscripts f and m refer to fiber and matrix quantities, respectively, and, in

adi
ing

dition to the interface pressure ¢~ and g*, only axial fiber and matrix stress components are
cluded. Eq. (22) is a transcendental relationship for the instantaneous debond length ¢ which




comes through the factor n = exp(

2pua(er) e

R )by substituting the solutions for ¢4~, o7

d o;, from Egs. (17) and (18), respectively,at z = ¢.
order to implement the relationship (20), the interface normal stress must be guaranteed to
be compressive at all times below the debond front. Otherwise, a frictionless debbnding

relationship

should be utilized. Under such circumstances, the debonding criterion will include

the fiber radius R as the only characteristic length, which is found to have the form

(I\p

434E;

R = af[a, - of + 2qu*] 23)

is relationship gives no information about the debonding length.

verall Composite Strain

So far the

odel development yields the axial distributions of the time-dependent stresses and

the strain fields in the fiber and matrix. With the interface pressure being determined, other fiber

str

shown that

esses (radial and azimuthal) stresses can also be found. Referring to Figure 2, it can easily be

e apparent composite strain along the fiber direction is determined as the spatial

average of the fiber strain over the representative interval 0 < z < L, ie.,

by
()Y

™}

arg

be

1 1
E(1) = " e (z, 0)dz + 7 kel (z, 1)dz 24

which, based on Eq. (8), can be fully determined by utilizing the solution for ¢ (z, }) and
of (z, t) gverthe intervals 0 < z < fand £ < z < L. These solutions ar given

Egs. (17) and (18) and (19). By using these equations and carrying out the integrals, the

1)

erall composite axial strain can be determined from |

10 RI[nce, ) - 1]
cra{S,,(t) -t § (1) L —————Z;wt(t)
R 1 . 6, t') - 1
+ = — Qi@ - )Sz(t')[n( L) ]dt'
L 2u o(r')
¢ . '
_L_)_j{,J(t - 1) % () dr'
P a(e')
¢ .
+(1 - -(L’—))[Pl(t) + hice = 0P )dt']}
¢ R (£,1) - 1
+£,h{R,,(t)—(i£l + R1(t)z_—_[n 2pa (1) ]
R 1 . 6, t') - 1
+ = — [ -1 )Rz(t')[n( £ ]dt'
L2y a(t')
! . '
CEO e ey B
a(t')

£(t P
+(1 - —(L—))[le + hd - 10, )dt']} 25)

where S, (1), §(t), S,(t), Py (t), Py(t), R, (t), R(t), Ry(t), Qy(t)and Q, (1)
e included|in the appendix. Prior to matrix cracking, the apparent axial composite strain can
determined from
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E(1) = o [Py + [ice - et yar ]

+£th[Q1(t) + o J(t = 1), (2 )dt'] (26)
xpressions (25) and (26) yield the overall strain of the composite relative to the undeformed
te. Assuming that no external stress is applied to the composite, and that fiber creep is not
srable. In this case, the composite will undergo uniform axial deformation determined by the
sfit effect, which can be either an overall shrinkage (if matrix is shrinking around fiber) or
ngation (if fiber is expanding inside the matrix) in the axial direction. Let this strain

coKponent, hich exists prior to application of the external load, be denoted by ¢,. If the

posite temperature is raised so that fiber creep becomes operative and no external load is yet
vlied, misfit residual stresses will be relaxed, and the composite will undergo time-dependent
formation towards the unstrained condition of the matrix, which in the present case is elastic.
is means that, under fiber creep conditions and in the absence of external loads, the composite
jergoes time-dependent axial shrinkage, whose ultimate value is determined by the viscoelastic
axation moduli (or creep compliances) of the fibers. If fibers behave as ideal viscoelastic
id, ultimately the residual stresses can be completely relaxed. The second square bracket in

(26) represents these effects. The value of this bracket at time zero determines ¢,, while its
ue at any time determines the time-dependent deformation of the composite along the axial

ection as a function of time if fiber creep is operative under the influence of the residual
sfit. In the present analysis, the overall creep deformation of the composite under the effect of

external loads will be measured relative to the initial state of the composite prior to applying the
ﬂe p p pplying

ernal stress or triggering fiber creep, which are assumed to take place at the same m?ment.
is means that the time-dependent overall creep strain of the composite along the axial

ection, which is denoted by €, (), is given by

E. (1) = E(1) - g, 27
, by the expression (25) (for cracked matrix) or (26) (for uncracked matrix) minus the value of
second square bracket in Eq. (26) at time zero. It can be easily verified that £, is given by

B (0) - 2v.B,(0)
g, = — 12~ ¢, (28)
Ey

ere B, (0) and B, (0) are given by B, (¢) and B, (¢), respectively, at time zero (see
dendix).

SCUSSION OF RESULTS
he model is applied to study the short-term creep behavior of Nicalon-SiC composites which

ve the following properties: E,=180GPa, E,=380GPa, v;=0.2, v, =0.18 and Poisson’s

io for fiber creep vfc=0.4. The fiber volume fraction f=0.4, fiber radius R=7pum.

cording to Evans (1994), the matrix of unidirectional Nicalon-SiC composites starts to
dergo periodic cracking at about 122MPa. At about 250MPa, matrix cracking saturates at 9.5
cks per mm. Over the matrix cracking stress range, the crack density varies fairly linearly
h the applied stress. Previous studies (e.g., Budiansky et al., 1986) have shown that, in

general, the matrix cracking stress depends on the composite residual misfit strains and the

int
fri

rface conditions. Although this necessitates selecting consistent values for residual misfit,
tion coefficient and interface debonding energy, values for parameters are not available. El-

Azab (1994) nsed the following parameters, which are adopted here: Coulomb friction coefficient

u:

-0.1, interface debonding energy S,= 0.053,, where S,=50J/m?, and misfit values in the




500 to -700 ue), which corresponds to a difference in thermal expansion coefficient

d a temperature changes in the range 500-700 °C.

hows the short-term creep behavior of Nicalon-SiC composites as a function of
and stress, in the absence of matrix cracks (Eq. (26)). The load 140MPa is above
acking stress. It is included here to show the trends in composite creep at such high
ix cracking is not allowed. It will be shown later that the presence of matrix cracks
causes much higher creep strains even under lower loads. Figure 3 shows that the creep strain is
a monotonically increasing function of time. This, however, is not always the case at lower
stress. In 1?’ the composite creep strain may be a decreasing or increasing function of time

range (&=
of 106 K-!
igure 3
temperature
the matrix cr
loads if matr

the relative effects of the applied load versus the misfit effects. At low applied
gh misfit values, the overall strain of composite with an intact matrix can be a
unction of time. The ultimate creep strain of composites in the absence of matrix
termined by the fiber viscoelastic behavior. If the stresses in the fiber can be
elaxed due to creep, then the ultimate creep strain of the composite is bounded by

posite loaded at 130MPa with matrix cracking (Eq. (25)). In this case, fibers carry the
t the matrix crack surface and interface debonding takes place. Fibers creep is faster
onded length, which leads to further relaxation of the matrix clamping over the
ne and, in turn, accelerates the overall creep of the composite. As the misfit is
ixed, debond cracks propagate faster, which leads to a tertiary creep mode for the
This mode is characterized by unstable interface debonding. As the debond length ¢
he mean guage length L, the composite creep rate is found to be faster than the bare

ate (subject to o o, / f) because matrix clamping around fiber is not

a
zlaxed.
in composite creep as the debond length ¢ approaches the guage length L depends
ve speeds of relaxation of the interface pressure (which leads to loss of interface
contact) and debonding propagation speed. If debonding propagates faster, which is expected to
happen at higher applied stresses, the debond length ¢ approaches L prior to complete
relaxation of| the interface pressure. Under such circumstances, the creep strain of the composite
can reach values which are higher than those of the bare fiber. This can be attributed to the fact
that fibers are subject to radial and azimuthal compression which assists axial deformation. On
the other hand, if relaxation of the interface compression is faster than debonding propagation,
which is expected to take place at lower applied stress, loss of contact can take place before ¢
approaches L. Prior to loss of contact, the composite creep strain is contributed partly by the
accelerated fiber creep below the debond front and partly by the composite creep above the debond
front which is limited by matrix clamping. Figure 5 illustrates these effects. The corresponding
debonding behavior is shown in Figure 6. The effect of temperature on creep of the composite
is shown in Figure 7. In general, it is observed that the lower the temperature the longer it
takes to severely propagate debonding, and in turn the tertiary creep stage is delayed.
In Figure 8, the effect of the residual misfit on composite creep is shown, where the onset of
unstable interface debonding is delayed at higher misfit strains. Adjusting the value misfit
stxfain, which is usually difficult to control, represents a trade-off in optimizing ceramic
composites. | The optimum values of misfit for maximum matrix cracking stress are given by
Budiansky et al. (1986). At high-temperatures, however, it is usually desired that the composite
has as much misfit as possible to sustain loads for longer periods, which seems to be
detrimental t

on the relati

o other composite properties. In some applications, such as fusion, heterogeneous
materials such as Nicalon-SiC composites will be subject to differential time-dependent
changes between fibers and matrix, as well as differences in creep rates between
\atrix. This would require special optimization techniques to control the overall
he composite.

dimensional
fibers and m
behavior of {




the tertiary creep regime observed here, which is attributed to unstable interface
he composite is expected to follow the bare fiber creep response since the end of this
complete loss of contact between fibers and matrix. Therefore, a stable creep
. cted to start following this regime, during which the actual composite failure will
be|completely determined by the fiber failure. It is to be mentioned here that the tertiary creep in
metals leads to rupture. ‘

. (25) shows that the creep of composites with matrix cracks can be represented in the form

£ (1) o, J;(L(o,), £(t, 0,),t) + g,J,(L(a,), £(t, 0,),t) — ¢, (29)

where J; and J, depend on temperature as well. Generally, J; and J, are non-linear functions
of the applied stress since the guage length L and the debond length ¢ depend non-linedrly on
the applied stress. It must be noted that these two function depend the creep temperature as well.
Prior to matrix cracking loads, Eq. (26) implies that the creep strain of the composites depend
linearly on the applied stress and the misfit strain. These observations should be considered in
characterizing creep of such ceramic composites.

Following
debonding, tl

ONCLUSIONS

A micro
debonding

echanical model is developed to study the effects of fiber creep on the interface

d frictional slip in ceramic matrix composites. The model is applied to study the
erall creep behavior of unidirectional fiber composites at high temperatures which

yond the matrix cracking stress. It is found that the overall response is characterized
ary creep regime followed by a tertiary creep regime during which the interface
nd slip dominates the creep behavior of the composite. This tertiary regime is

by loss of contact between the fiber and matrix due to relaxation of the interface
severe debonding of the interface, which represents instability (soft?ning)

mechanisms associated with the tertiary creep regime.
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APPENDI
This appendix includes the constants and functions which are used throughout the text.

¢, and ¢, first appeared in Eq. (12):

e

c
c| = - —T,
c

4
¢ — Egfv,

G = —T—.

€a

¢,|, 5 and ¢, first appeared in Eq. (15):

¢ = E, (1 - f)vf,

ey = E, (1 - f)E,

cg = E,(1 - £)1 = v+ El+ v, +f0-yvy)l

Al (1), A, (1), By (t)and B, (t) first appeared in Eq. (19):




A () = E[a () - vua (] 1 4,
A1) = E[-b (1) + vyby ()] 1 A,

B(1) = E/E, (1 - ety - a ()] 1 4,
By(1) = |EE,(1 - £)[b, (1) = b()] 1 4,

Al = a (b (1) = ay(1)b (1),

q(t) = ¢4 + c3(1 - Vfc)J(t),
ay(t) = P2ley + Epfv, ] = 263V, J (1),
b(t) = tcep - c3vfc.l(t),

by(t) = fE, + (1 — f)E, - cJ(1).

S (t), $(t), S,(t), P(t), Py(t), R, (1), R(t), Ry(r), @ (t)and Q, (1) first
appeared in Eq. (25) and used in Eq. (26):
1 a, (1) . J (1)

fEf a(t)fEf f

1
Sl(l) = aL(t_)( ._2ij’

Si(t) =

JE; a(r)
1
5oy = __<_>( i ZVﬂ),
f a(t)
o (t)
R (t) = |- —,
a(t)Ef
1
Rl(t) = M( - 2Vf]’
Ef a(t)

1
Ry(t) = al(t)(a(t) - 2vfc),
Py = [4) - 2va,(0] 1 E,
Pz(t) = [Al(t) - 2Vch2(t)],
o (1) = [B() - 2vB ()] 1 Ep

0, (1) = [B(o) - 2v.B, (1],
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FIGURE 1: SCHEMATIC SHOWING PERIODIC MATRIX CRACKS IN UNIDIRECTIONAL
COMPOSITES.
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FIGURE 2: CYLINDRICAL CELL MODEL.
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FIGURE 3: CREEP OF NICALON-SiC COMPOSITES WITH NO MATRIX CRACKS.
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FIGURE 4; CREEP OF FIBER AND CRACKED COMPOSITE AT 1100 °C AND 130MPa . THE
INSTANTANEOUS DEBOND LENGTH IS ALSO SHOWN.
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FIGURE 5: COMPOSITE AND FIBER CREEP STRAIN AS FUNCTION OF TIME AND APPLIED
STRESS AT 1100 °C. (MATRIX IS CRACKED).
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FIGURE 6: EFFECT OF APPLIED STRESS ON THE DEBONDING PROPAGATION IN NICALON-
SiC COMPOSITES AT 1100°C.
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FIGURE 7: EFFECT OF TEMPERATURE ON COMPOSITE CREEP AT 130MPa.
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FIGURE 8: EFFECT OF MISFIT STRAIN ON CREEP OF NICALON-SiC COMPOSITES AT 1100°C
AND 130MPa.
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