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Clustering of atomic defects leads to changes in the microstructure of materials, and hence
induces drastic variations in their properties. In many technical fields, the role of defect
clustering is very significant, and is sometimes limiting to further progress. We present here
a comprehensive review of the theory of atomic defect clustering under non-equilibrium
conditions, particularly encountered during irradiation of materials with energetic parti-
cles, as well as during material processing by energetic sources. These conditions are met in
a wide range of technical applications, ranging from nuclear and fusion energy to micro-
electronics and surface engineering. We first present a general stochastic framework for the
evolution of atomic clusters, and show how this can be described within the context of
death-and-birth processes, This leads to the well-known master equation for microscopic
atomic clusters. In the limiting case of a Poissonian process for the transition probabilities
between cluster sizes, the master equation tends, in the macroscopic limit, to the mean-field
approximation embodied by the theory of rate processes. When atomic clusters grow or
shrink by the absorption of single atomic defects, a continuum Fokker—Planck approx-
imation can be derived. Within this approximation, the evolution of interstitial loops,
voids, bubbles, and general clusters of complex phasesis presented, and in some cases, good
agreement with experiments is obtained. It is shown that because of coalescence reactions,
the evolution of surface atomic clusters during atom deposition processes is best described
by kinetic moment equations, directly derived from rate equations. It is shown that
breaking the symmetry of space or time leads to drastic variations in the size and space
distributions of defect clusters. Examples are given for pulsed irradiation conditions, where
it is shown that non-linear rate processes enhance cluster formation during on-time, and
could lead to their dissolution during the off-time at high temperature. On the other hand,
fluctuations are shown to result in instabilities and spatial self-organization of defect
clusters, Description of pattern formation during irradiation, such as void and interstitial
loop lattices, is very well described by a Ginzburg—Landau type equation, reminiscent of
phase transitions under thermodynamic equilibrium conditions.
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1 INTRODUCTION

Clustering of atomic size defects in materials is a process which embodies
a rich variety of physical mechanisms, and which has significant impli-
cations to a wide range of material technologies. Strong deviations from
thermodynamic equilibrium conditions drive defects into agglomera-
tion, as an attempt to reduce the system’s free energy. Materials inevi-
tably contain atomic defects, in the form of vacancies, self-interstitials,
impurity atoms or insoluble gaseous species. In some situations, these
defects are externally introduced into the material. Examples of this can
be found in structures under neutron irradiation, or in materials that are
processed by ion beams, plasmas or other hi gh-energy sources.

Apart from the valuable insight gained by understanding mechanisms
of atomic defect clustering, advancing a multitude of cutting-edge
technologies is dependent on finding ways to modify the process of defect
agglomeration. Energetic neutrons bombard a number of critical
materials in nuclear fission reactors. Materials used as nuclear fuels,
structural materials, the pressure vessel as well as instrumentation
materials are all subjected to the generation of non-equilibrium con-
centrations of atomic defects. Energetic neutron collisions with lattice
atoms produce intrinsic lattice defects, as well as extrinsic impurities or
insoluble gas atoms. Likewise. in a fusion energy system, many materials
will be driven out of equilibrium as a result of intense neutron bom-
bardment. Examples are the first wall and blanket structure, plasma
interactive components, magnet materials, instrumentation and other
special purpose materials. In space and defense technologies, other
phenomena take place as a result of the interaction of radiation with
materials. For example, computer chips on board of space vehicles and
satellites are constantly being bombarded by galactic radiation. produc-
ing lattice defects, which can impair their function. Systems, which are
built around high energy beam sources (e.g., accelerators, electron beam
systems, laser beam systems, etc.), are also under the action of the same
conditions that drive materials out of equilibrium. More recently, several
material processing technologies take advantage of ion beams, plasma
sources or laser beams. Manufacturing of semi-conductor computer
chips is a prime example of such material modification techniques. It is
now recognized that the limitation on decreasing chip size is determined
by the concentration of atomic defects produced during implantation
or etching.




CLUSTERING THEORY 271

In this paper, we review theoretical developments in the treatment of
atomic clustering, with applications in two general areas. The first one is
the evolution of microstructure under irradiation conditions. The sec-
ond area of interest is atomic clustering on surfaces during deposition of
vapor or energetic atoms. To accomplish this task, we will first start with
a stochastic description of atomic clustering. Thus, we introduce the
general form of master equations and the corresponding rate theory
description. We show that if coalescence mechanisms are taken into
account, as in the case of surface atomic clusters, the master equation
description is necessary. One solution method, based on moments of
these equations, is discussed. In cases where the agglomeration of atomic
clusters is primarily a result of simple atom absorption or emission, a
very useful approximation is the Fokker—Planck theory. In phase space,
we represent the dimensionality of clusters by the number of atomic
species involved within. Thus, one-dimensional clustering means that
one species is involved. We focus on a coupled approach to nucleation
and growth, and look for ways to solvg for the evolution of the size
distribution in a given phase space. Thus, examples of one-dimensional
clustering will be given for interstitial dislocation loop evolution in
irradiated materials, and for the evolution of surface atomic clusters
during plasma-assisted deposition. In situations where we have helium
filled bubbles in solids, we develop methods to determine their evolution
in two-dimensional phase space.

The discussion highlighted above is based on a homogeneous space
and time state. Some very interesting features take place during atomic
clustering if space—time inhomogeneities exist. Pulsed or transient
irradiation of materials promotes certain non-linearities in atomic
clustering, and leads to drastic variation in the size and density of clus-
ters. On the other hand, spatial fluctuations in defect densities lead to
symmetry breaking, and the emergence of self-organized microstructure.
We will deal with these two areas in Section 6, followed by conclusion
and future outlook in Section 7.

2 GENERAL THEORY OF ATOMIC CLUSTERING

2.1 Birth-and-Death Processes

Under the non-equilibrium conditions that drive atomic defect
clustering, the size of each individual cluster grows or shrinks by
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a process of accretion or emission. The “step” which changes the
cluster size is controlled by fluctuations in the neighborhood of the
cluster. Thus, an appropriate framework for these events is the theory
of stochastic processes. Defect clusters are either “born” or they “die”
with each event. Many physical phenomena have similar character-
istics, and are generally described as birth-and-death processes. As
indicated earlier, the size of clusters is a main variable, and is randomly
distributed in this description. Each size may contain several atomic
species.

If the size of the transition step is by single atomic defects, then
AX < x. Here, Ax is the step size and ¥ is a vector of components
representing the cluster constituents. Clustering may occur via multiple
atom aggregation, and AX is still smaller than . Finally, the typical
case of coalescence is associated with a transition, where Ax is of the
same order of X.

In the master equation description, one assigns to the system a set of
transition probabilities describing the process of cluster size variation
insize space. Consider that the cluster size ¥ is discrete, and is represented
by a sequence of numbers, each describing the number of a particular
specie. Thus, instead of the vector notation, we use an index notation,
as follows:

Ciim... = Fractional concentration of defect clusters containing i
defects of type a, j defects of type 73, etc. Thus, the fractional
concentration of self-interstitial loops is simply denoted by €}, where i
is the number of self-interstitials in the loop. Cj; denotes the fractional
concentration of helium bubbles, where i represents the number of
vacancies and j the number of helium atoms. The notation can be
extended to more complex defect phases in the solid. Since Ciiktm.,, 15
fractional, it is precisely the probability of finding a defect cluster of
these constituents.

The transition probabilities, w, depend on a set of integers Ay |
which may be positive, negative or zero. and they describe the
step size Ax. The conditional probability of a transition describing
the change of the number (i, /. k,/,...) due to a step (Ay ) is given
by

w({(ifibeyl, - ..) = Byt } — (i) k, 1, .. }). (1)
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Thus in a time interval A¢, and considering all possible forward and
backward transitions, the probability function Cy;  will change as

ACjk. (1)
> w({(idikd,...) — A} — {ijkl ...})
.

= At % Ok ) —A,}-kg___}‘t)
- > w({idk, ...} = {(ik, ) + B i k.. ) 1)
A

(2)

The fundamental relationship, represented by (2) is the
Smoluchowski—~Chapman—Kolmogorov (SCK) equation [1], applied to
defect clustering. Taking the limit as Ar— 0, one obtains the master
equation, which now describes the birth-and-death process of the clus-
ter. Thus, the most general case of defect clustering can be described by
the following master equation:

Cija... (1)

D Wikl ) = A} — {ijkl...})
A

g
di

= x C({(i,j. ks -..) — Djwr.. }> t)

= Y w{ gk} = {(idoks ) + At NC sk}, 0)

A
(3)

It has been shown by Malek-Mansur and Nicolis [2] that if a Poisson
distribution describes the transition probabilities w, their microscopic
statistical averages become identical to the macroscopic system averages
used in reaction rate theories. Thus, the equilibrium laws of reaction rate
theory become exact consequences of the master equation.

Averaging over transition probabilities leads to the popular reaction
rate theory, which now discards important aspects of defect fluctuations.
These are related to the system size, range over which fluctuations
extend, and correlation length over which two parts of the system can feel
each other. We will later show that in a system that is macroscopically
homogeneous, locally, fluctuations break this homogeneity and lead to
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the emergence of spatial defect patterns. As soon as the system deviates
from the uniform state described by the spatially averaged rate equa-
tions, non-linear couplings between neighboring volume elements take
place. As a result, a spatially uniform description of defect concentra-
tions becomes inadequate.

2.2 Stochastic Fluctuations in Defect Fields

The starting point of the theory of microstructure evolution is the SCK
equation for a Markovian process [3] presented above. In the continuum
limit in size space, summations are replaced by integrals, and we have

%Er‘ = /[u(i’. X, 0)C(X, 1) — w(x, X, 1)C(x, 1")] d¥, (4)

where C(¥,1) is the probability distribution for the stochastic variable
X at time . The transition probability per unit time from state ¥ to
state ¥’ at time ¢ is w(¥,¥,¢). Equation (4) can be reduced to a
deterministic rate equation for the concentration of a specific defect
cluster (e.g., di-interstitials, di-vacancies, tri-vacancies and two helium
atoms, etc.), if the transition probabilities, w, are replaced by average
macroscopic reaction rates. This mean-field approximation does not
take into account the statistical nature of defect production, cascade
effects, and the arrival and absorption of single and multiple defects at
defect clusters.

Since defect clustering in irradiated solids is driven by the con-
centration of three types of monomers (vacancies, interstitials, and
helium), we would have a coupled hierarchy of discrete equations for the
probability distribution, C, using rate or master equations of the form
given by Eq. (4). The transition probability from a defect cluster size ¥
to x may be re-defined in the following way:

wEx ) =WFEx-%1)=

|
=
=i

|

~i
N

g

-u.]
e

(3)

2.3 The Fokker-Planck Approximation

In certain applications of Markov chains, the spacing between the states
is small, and the hierarchy of discrete master equations can be replaced
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by an equivalent continuum Fokker—Planck (F-P) equation. It is inter-
esting to note that except for small size interstitial loops, large defect
clusters have low mobility inside irradiated solids. On the other hand,
when we consider the formation of surface atomic clusters during plasma
orion beam deposition, the mobility of large clusters becomes significant.

In Eq. (5), we distinguish between slow (¥, ¢) and fast (F = x — X', 7)
variables. By expanding the function W(X —F, 7 t,7)C(X —7.1) in a
Taylor series for the slow variable, truncating to second order, and
integrating over an appropriate correlation time, 7, we obtain the F-P
equation

ac(x,1) 1 & 0 :

where

(ri(x, 1))y = %_/T/mr,-w(.?. r,t,7)dr dr, (7)
0 Ji

and

(ri(x, Ory(x,1)) = ?lﬂfrfxr,r,w(fc, r, t,7)dr.dr. (8)
0 Ji

The indices i or j represent the dimension in cluster size space (1-D
for interstitial loops and 2-D for He—V clusters). Equations (7) and
(8) give the first and second moments of the transition probabilities.
The correlation time, 7, is chosen to represent the appropriate physics
of the relevant transition (e.g., inverse of arrival frequency for single-
atom transitions or cascade-production frequency for cascade-induced
transitions). Equation (7) represents the elements of a drift vector, while
Eq. (8) is used to derive the elements of a dispersion tensor.

The following is a summary of the general procedure for the imple-
mentation of the theory. A set of rate equations for the concentrations of
single defects and small defect aggregates is formulated to represent
time-dependent nucleation. Larger-size defect clusters are treated by the
F-P approximation given by Eq. (6), with the transition moments
obtained in Egs. (7) and (8). Rate equations are coupled to the F-P
equation through a flux boundary condition, and the solution is
obtained semi-analytically as in [4] or numerically as in [5]. We will
proceed now with applications of the general theory to various impor-
tant situations of technical interest.
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3 INTERSTITIAL LOOP EVOLUTION
UNDER IRRADIATION

When pure materials are irradiated with energetic particles, self-inter-
stitial atoms are produced at the rate of atomic displacements. However,
few of these self-interstitials survive immediate recombination within the
cascade region, and one must take into account the fraction of surviving
defects. Under the conditions of electron or light ion irradiation, how-
ever, single interstitial atoms dominate over small clusters produced in
collision cascades. In the limit of Poissonian transition rates, master

equations can be cast as macroscopic rate equations, and rate constants
are obtained.

3.1 Rate Constants

In the jump method [6], the reaction between diffusion species proceeds
by a surface control mechanism. On the other hand, the rate constants
in the diffusion method are obtained by solving steady-state diffusion
(Eq. (6)). Defining the instability radius of a particular cluster, R, as the
radius at which point defects will inevitably be attracted towards the
cluster (interaction energy ~ kT'), then

R=Z(r)r, (9)

where r is the physical cluster radius and Z(r) is a size-dependent bias
factor (capture efficiency). Results of detailed elasticity calculations of
Wolfer and Ashkin [7] have been used in Eq. (9). The overall reaction rate
constant is obtained in a manner similar to that used to determine the
overall heat flux with series resistance [8].

Define x as the cluster size in atomic units. i for an interstitial, v for a
vacancy, | for a loop, and c for a cavity. For a spherical cluster in FCC
materials, the following impingement frequencies, K (s '), can be
derived [8]:

K7 (x)

ST o U —Fm
2216[Z  (x)]2 ( E ) (10)

= 1+0.1 12823‘1(-\'))\4!3 Iy i EXp _k-'r_

where v is the atomic vibration frequency, ET, the vacancy-interstitial
migration energy, k the Boltzmann constant, and 7 the absolute irra-
diation temperature. For large size cavities the reaction rate is purely
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diffusion controlled and the impingement frequency is proportional to
x' Interstitial clusters are treated as small spherical inclusions with the
application of Eq. (2) up to a maximum size z"* of few interstitials.
However, larger sizes can be considered as two-dimensional disks and
the interaction with point defects is only surface controlled. The relevant
impingement frequency is then

—_ 'ITI_

KL () = 135828 %) Sy exp( f T) (11)
The emission of vacancies from the surface of vacancy clusters is
included in this model. However. point defect thermal emission from
interstitial loops is not considered because of the small probability of this
process for small size loops. The only thermal dissociation process
treated is that for di-interstitial break-up. The emission rate of vacancies

from a vacancy cluster size x is given by

i) = K| (1TEE ) ), (12)

where a (cm) is the lattice constant, g (eV/cm?) the surface energy, and
C¢ the thermal matrix fractional vacancy concentration. Di-interstitial
and di-vacancy thermal dissociation rates are given as

ci (F, Kl.'l 2 E?\".zl 13

7vi(2) = KJi(2) exp ~%T | (13)

where E% and E% are the binding energies for di-vacancies and
di-interstitials, respectively.

3.2 Rate Equations

The basic limitation to the rate theory lies in the one-to-one relationship
between the number of simultaneous differential equations and the
number of species in a cluster. Computations with individual rate equa-
tions representing independent clusters become prohibitively expensive
for large sizes (see Refs. [9—17]). The need for correspondence between
theory and experiment has prompted the development of approximate
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computational methods for the kinetics of defect clustering. Kiritani [9]
developed a scheme for nucleation and growth, in which clusters within
a range of sizes are grouped together, and has applied the method to
vacancy agglomeration after quenching. Hayns [10] applied the Kiritani
grouping scheme to study the nucleation and growth of interstitial
loops during irradiation.

A different approach to the study of the nucleation and growth of
defect clusters has considered solving continuum equations rather than
rate equations. Wolfer et al. [11] demonstrated that rate equations
describing clustering kinetics can be condensed into one Fokker—Planck
continuum equation. The latter was interpreted as a diffusion equation
with drift terms. They showed that void nucleation and growth could be
both incorporated into such a unified formalism. Sprague e al. [12] were
able to describe vacancy clusters containing up to 3920 vacancies by
descretizing a diffusion-type equation with variable diffusivity. Hall [13]
investigated point defect agglomeration considering a different form of
the continuum description. Only cluster concentrations were expanded
in a Taylor series, and the resulting set of rate equations condensed into
one partial differential equation.

In developing the theoretical model for interstitial loop evolution,
we will follow the rate theory formulation of Ghoniem and Cho [8].
Separate rate equations will be constructed for single vacancies,
single interstitials and clusters of up to 4 vacancies and 4 interstitials.
Larger size defects, however, are treated by the one-dimensional
Fokker—Planck equation for both voids and interstitial loops. The
concentrations of single vacancies and vacancy clusters up to tetra-
vacancies are governed by

dg‘f = Py + K{(2)GCoy + (275(2) - K5(2)C)Co
'S 2(75(\0 —Ki(x)Cy) — Xi(‘gl\r(-")cvcﬁ)
== X5
+ ZypaD(CS — C,) — aC,Ci — K5(1)C2 — KL (2)C\Cxiy (14)
dCZv 1 C 2 c c s
¢ EKv“)Cv +7v(3)Cay + K{(3)CiCay + paDC3,

= K{\:rC\-'CEV = Kf(z)clclv = 75(2)C3v = PdDZvCZVs (15)
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dC.(x)
dr

=K{(x— 1)CyCe(x — 1) — {K{(x)Ci + K5(x)Cy + 75(x)} Ce(x)
+{K{(x+ 1)CG+~5(x+1)}Cc(x+1), x=3,4 (16)

On the other hand, the equations representing single interstitials and
interstitial clusters up to tetra-interstitials are given by

S =P+ KY2)C,Ca ~ KU(1)CE —aCiC
= K:(Z)C]C2l A Kf{Z)C.sz
- Y KINGCu = Y KS(X)CiCry ~ ZipaDiCy (17)
x=3 *=3
dCsi _ 1 iove2 o gt ' i
dr EKiQ)Ci +K,(3)CCsi — Ki(2)GiGyi — K,(2)CCai,  (18)
dc&fﬁ =Kj(x — )GiCi(x = 1) + %(x = )Ci(x = 1)

— {Ki(¥)Ci + K (x)Cy +7%,(x)}Ci(x)
+ K (x+1)C,C(x+1), x=3,4. (19)

With the following definitions: P, ;= production rate of surviving
Frenkel pairs (at/at/s), a=point defect recombination coefficient
(s~ ')=48u exp(—E\, /kT), K!f, = rate constant for i/v impingement
on loops/cavities (s '), pg=dislocation density (m ~?), D, ;= point
defect diffusion coefficients (m ~?), D,, = di-vacancy diffusion coeffi-
cient (m~ %) =uwa’exp{—ED/kT}, and C$,=di-vacancy thermal
concentration (at/at/s)=6exp{—(2E} — E}')/kT}. Di-vacancies are
assumed to be mobile, and to interact mainly with dislocations. The
definitions of the parameters in the equations and their numerical values
for steel are given in Table I. The sets of balance Eqs. (14)—(19) are easily
derived by considering production and destruction rate processes for a
particular cluster size. Only 4 single rate equations for interstitial clusters
and 4 similar equations for vacancies are used in this work. Larger size
interstitial loops and cavities are characterized using Fokker—Planck
continuum equations, as described below.
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TABLE I Input parameters for 316 stainless steel

Symbol Parameter Numerical value
a’|D; Recombination combinatorial number 48 [14]

Li(1) Interstitial-interstitial combinatorial number 84 [10]

LE(1) Vacancy—vacancy combinatorial number 84 (10]

1 Migration energy of a single vacancy 224x 10~ "°1[15]
ET Migration energy of a single interstitial 32x 105 [15]
E! Formation energy of a vacancy 2.56 % 1077 1[15]
Ef Formation energy of an interstitial 6.54 % 10~ 71 [15]
EY Migration energy of a di-vacancy cluster 1.44 % 10 "I [15]
2 Binding energy of a di-vacancy cluster 4x10°21[15]
E} Binding energy of a tri-vacancy cluster 1.2x 10~ " J[15]
a Lattice parameter 3.63x 10 "m[l0]
v Frequency factor for an interstitial 5.0 % 1072 [17]

vy Frequency factor for a vacancy 5.0 107 [17]

Zv Vacancy-dislocation bias factor 1.0[15]

Z; Interstitial-dislocation bias factor 1.08 [15]

g Surface energy 11/m? [15]

3.3 Fokker—Planck (F-P) Description of Large Loops

For the purpose of simplifying the analysis. we introduce the following
notations:

Ki(x) = 7,(x) + 4}(x) =Growth rate of an interstitial cluster by
either vacancy emission (7! (x)) or interstitial
impingement (3!(x)),
#y(x) = B} (x) = Growth rate of a vacancy cluster by vacancy
impingement,
Av(x) = B} (x) = Decay rate of an interstitial cluster by vacancy
impingement,
Ac(x) = v{(x) + Bf(x) =Decay rate of a vacancy cluster by either
vacancy emission or interstitial impingement,

where the impingement rates are given by

By = KiCie. (20)
Equation (16) for a vacancy cluster and Eq. (19) for an interstitial cluster
of any size “x” can now be lumped into one rate equation

gC—Idi(i) =Kic(x — 1)Ce(x - 1) - [Kre(x) + Ale(x)]Cre(x)

+ Ale(x 4+ DCrefx + 1)) sy, (21)
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Dropping the cluster subscript (l.c) and expanding the first and last
terms of Eq. (21) in a Taylor series up to the second term, Wolfer
et al. [11] showed that the set of equations (19) can be replaced by one
continuum equation of the form

acC J 0
- —a{FC—a{DC)}. (22)

where C is a generalized concentration for both types of point defect
clusters and the “drift” function is defined as:

F(x,t) = k(x.1) — A(x, 1) = Net point defect bias flux. (23)
And the “diffusion” function by
D(x,1) = }{x(x. 1) + A(x, 1)} = Average point defect bias flux. (24)

The last equation is used to represent both vacancy and interstitial
clusters, with the appropriate F and D functions, for sizes containing
more than four atoms. Equation (22) is the well-known form of the
Fokker—Planck equation that describes diffusion in a drift field [18].

3.4 Solution Methods of the F-P Equation

The Fokker—Planck formulation presented by Eq. (22) has been the
subject of investigation in various areas of physics [18-20], especially the
physics of a non-equilibrium system of particles [18]. This equation
describes the combined time-dependent nucleation and growth regimes
of the microstructure. However, even with the simplest initial and
boundary conditions, the equation proved to be difficult to solve ana-
lytically in its general form [19,20]. We will, in the following, introduce
two methods for solving the F—P equation in the present one-dimen-
sional case, and in later sections show how these methods can be
extended to more general clustering problems.

Direct Numerical Methods

Since the F-P equation is a partial differential equation (PDE), many
numerical methods can be used to solve it. We discuss here one direct
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method of solution, based on transformation of variables and finite
difference schemes. To realistically define the behavior of the micro-
structure at large irradiation doses, we introduce a new variable that is
related to the defect radius by a logarithmic transformation

u=1In(2r/b), (25)

where ris the cluster radius and b is the Burgers vector. Also, let us define
the following quantities: n =2 for loops, n =3 for voids; B, =/nb for
loops, B3;=3Q/4r for voids, where Q= b’ =atomic volume, x;=
number of interstitials in an interstitial loop, x. = number of vacancies in
a cavity, ry=interstitial loop radius, and r.=cavity radius. The fol-
lowing relationships can then be easily verified

re = (3Qxc/4m)' " (Bsxe)'/* = Lbex, (26)
n = (Qx/7b)"* = (Byx)"? = Lbem, (27)
or generally, for both cavities and loops

1
r=(B.x)'/" = %be” and u= nln(znx). (28)

™

oo 8. S8  Tad . .
Usmg. e ey e e obtain the following
equation:

m

ac 2e‘”“ [23'“ (BE(DC) - na(DC)) & (9(FC)] |

Bt n Y Ou A (29)

Equation (29)isquite general and shows independence of the cluster type,
except through D, Fand n. A numerical solution of Eq. (29) is sought at
discrete values of the variable u, where the partial derivatives are replaced
by central finite differences. With the discrete values of u defined by
u(k) = (k —4)h +u(4), k>4. And two new discrete functions defined
by W(k,)=(2e "“/rh)’D( j)= Diffusion function; and ®(k, j)=
(2n/m*h)e P D( j) + (1 /mh)e"* F( j) = Diffusion-drift function, and
h the step size, we obtain the following set of discretized equations:

%&") ={[¥ + @] (k. k — 1)}C(k — 1,1) — 29(k, k)C(k, 1)

+{[¥ + ®](k,k+ 1)}C(k + 1,1). (30)
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In comparing the results of numerical analysis with experimental data,
however, one would be interested in characterizing parameters such as
the total defect density, the average radius of both loops and cavities and
the dislocation density for loops or sink strength for cavities. The total
concentration of interstitial loops per unit volume N,,(1) is given by

Xy

Niat(1t) = /C‘(r r}dxm—ZC[\' HAx, Ax>1, (31)

Nt (1) = -g%ri C(x, r Ar. (32)

Fmin
The average radius of an interstitial loop is given by

Fimax Fmax

Ry~ C(r.y?Ar [ Y C(ro)rAr. (33)

Fimin Fmin
-

This numerical approach allows the study of defects containing up
to millions of atoms with very modest computational requirements.
Microstructure parameters, such as total defect concentration, average
size, defect distribution and moments, and total sink strength can be
calculated as functions of irradiation time. The results for the present
hybrid approach have been compared to previous detailed rate theory
computations. Various mesh sizes of the discretized Fokker—Planck
equation resulted in size distributions that compare well with rate theory
calculation [21]. Using material parameters representative of nickel (or
stainless steel), shown in Table I, a numerical simulation of various dose
rates is carried out. The concentrations of small size defect clusters is
found to reach equilibrium values after ~ 100 s of irradiation. However,
large size interstitial loops continue to develop with time, as can be seen
from Fig. 1.

A correlation with experimental data on heavy ion irradiated 316
stainless steel at 10~ ?dpa/s was finally conducted by Ghoniem and
Sharafat [S]. The numerical values obtained from the present model were
shown to match reasonably well with the experimental data of Williams
on ion-irradiated steel at 673 and 873 K. Interstitial loop fractional
concentrations are found to be smaller by 1-2 orders of magnitude
at 873K when compared to 773 K. The total loop concentration and
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FRACTIONAL CONCENTRATION (at/at)

o€ lopd 02 1P 102 i0*
IRRADIATION TIME (SEC)

FIGURE 1 Time dependence of interstitial loop clusters at 873K and 10~ *dpas,

dislocation loop line density are found to decrease, while the average size
increases with increasing irradiation temperature, which is qualitatively
consistent with fission reactor experiments.

Total interstitial loop concentrations, average radii and total dis-
location line densities were shown to be in reasonable agreement with the
experimental data. This can be inspected in Figs. 2 and 3. Moreover, the
qualitative behavior of the microstructure, displayed in Figs. 1-4, shows
the following trends:

(a) The concentration and density of dislocation loops decrease with
increasing temperature at the same dose and dose rate.

(b) Forafixedirradiation temperature and dose, the loop concentration
and dislocation density increase rapidly with dose rate.
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FIGURE 2 Comparison between theory and experiments (Williams) for loop con-
centration and dislocation density at 673K and 10~ *dpa/s.

(c) The average loop size increases with increasing temperature at
the same dose and dose rate, but decreases slightly with increas-
ing dose rate if the total irradiation dose and temperature are
constant.

(d) The growth speed of the interstitial loop distribution increases with
increasing temperature,

The previous qualitative features are consistent with experimental data
obtained from fission reactor [22] and simulation facilities [23], as shown
in Fig. 2.

Direct numerical solutions to the F—P equation can be challenging
because of the vast time and cluster space, which must be accurately
covered. Different approaches to the solution of the F—P equation have
been developed for a variety of applications. In this section, we outline
one such method, which is based on the development of equivalent
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FIGURE 3 Comparison between theory and experiments of interstitial loop param-
eters at 873K and 10~ *dpa/s.

kinetic equations for the moments of the distribution function. We also
apply this technique to the evolution of interstitial loops in irradiated
materials. The procedure has the advantage that it can be extended to
more complex clustering problems, such as the formation of bubbles or
complex phases in irradiated materials.

The moments method has been successfully used for the approxi-
mate determination of distribution functions, when described by
partial or integro-differential equations, as in the work of Sigmund [23]
and in that of Clement and Wood [24]. The zeroth moment of Eq. (22)
gives

dN

e LW 3
dr 5 (34)
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FIGURE 4 Evolution of the interstitial loop size distribution at high dose rates.

where
N:/ Cdx (35)

and is readily obtained by the direct integration of Eq. (34). N is the total
density of atomic clusters, regardless of their size. The upper bound has
been approximated as co for mathematical simplicity. Solution to the
second-order parabolic partial differential Eq. (22) is possible, provided

the following boundary and initial conditions are satisfied:
C(oo, ) =0,
AT (36)
Clx*,1) = Gailr) = C7,

or, J(xt) =J, and C(x,0) =0, x > x"
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The average size (x) is obtained as follows:

(x)N = ﬂm xCdx.

Taking time derivatives, we obtain

S0 =00 - (- Snn+ ZE @)
where (3) is the average value of the drift function 3 over the size dis-
tribution function C. The quantities with an asterisk are evaluated at
the critical size. The second and third terms of Eq. (37) give the effects
of nucleation on the average size. Here the symbol ( ) is used for aver-
ages over the distribution function, i.e., (n(x)) = [ n(x)C(x)dx, and
7(x) is any arbitrary function of x.
The rth central moment M, is given by:

M,N = /m(x — (x))"C(x,1)dx. (38)

Taking the time derivatives of both sides of Eq. (38) and using the initial
and boundary conditions, we obtain:

S = (= (0)™) 4+ e = 1)(D(x — (3))
r = ) S (NG — () - M) (39)
d
— er_l a(.\?)‘

Substituting for d(x)/d. a general equation for the rth moment can be
derived:

dM,
dt

Drer
N

= g [(In N)(x* "o (x))»" - = er—I{x* . <¥>)]

=r[(F(x = (x))"") = M,_{(F)] +r

[ = (o) — M,

2

+r(r — 1){D(x — (x))"°). (40)
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Now let us define the nucleation functions &,. the distortion functions
®,, and the dispersion functions 1, as,

prc* e
b= ()~ x) g N,
&= [ = ()~ Mo

+£(l“ N) [(x‘ —(x)) = M,_irM,_1(x* — (x))], (41)

@, =r[(F(x— (x))™") = M,-1(F)),
Y =r(r = 1)(D(x = (x)~2).

The complete system of moment equations can now be described as,
d
5 = (F) +4.

dM,
dt

(42)
=+ 0+, P=23,...,00

Since the distribution function is not known a priori, averaging
of functions can only be made in an approximate way. For an arbi-

trary function x, the average value over the distribution function is
given by

() = [ ncas
N]m[n(rn# ”’n((r>)+ cax, @)

(n(x)) = n((x) +ZM“d A

The dispersion function 1, is given by averaging the product of the
diffusion coefficient and the quantity (x — (x))" ~* over the distribution
function. Thus

k
" _r(ra—l)[D(t—(v)}'_’-FZk' dk[D(r—( X)) ]

] - (44)
(0
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The distortion function @, is given by

@, =r li‘f((x))(-‘f = ()

+Z wdfr[‘p("_("”r |

(x)

s MrWI(F{i
= [5(r—1 +Z k! dr"[F(t_ >Y_I”(.r>
. ( +ZM;; d (F)‘ )] (45)

The set of kinetic moment equations (42) can now be solved, together
with a set of discrete rate equations (e.g. Eq. (19)) for small cluster sizes
up to x". the size distribution can be readily re-constructed from the
moments [4]. An application of this method to the conditions of ion
irradiation is discussed in the next section, where the evolution of
interstitial loops can be directly compared to experiments.

Comparison of Moment Solution with Experiments

Hall and Potter [25] performed ion irradiation experiments on Ni, Ni—Si,
and Ni—Alalloys. A series of experiments were conducted, where 3-MeV
Ni*** jons were used to bombard samples at 465°C. The peak dis-
placement damage rate in their experiments was 3 x 10~ *dpa/s. A
standard set of defect properties has been used in calculations of the
density of interstitial loops (see Table I) and their size distribution by the
moment method.

The bulk of interstitial loop nucleation is achieved within a short
irradiation transient, on the order of 0.0001 dpa, as can be seen from
Fig. 5. The agreement with the experimental results of Hall and Potter is
achieved for an effective interstitial migration energy of 0.55eV, which
includes a trapping energy of 0.35eV. On the other hand, the average
loop diameter is shown to increase with irradiation dose, and to be in
good agreement with experiments. The effect of the di-interstitial bind-
ing energy on the growth speed of loops is shown in Fig. 6. Good
agreement with experiments is obtained for a binding energy value of
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FIGURE 5 Dependence of interstitial loop concentration on irradiation dose for
ion-irradiated nickel, Experimental data points are from Hall and Potter [25].
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FIGURE 6 Comparison between theory (solid lines) and experiments (dots) [25] on
the dose dependence of interstitial loop diameter in ion-irradiated nickel.

[.19 eV in this case. The distribution function of interstitial loops at 0.2,
1.0, and 1.8 dpa is shown in Fig. 7. In these calculations, only the effects
of single step atomic transitions are considered. A comparison with
experiments reveals that the spread of the size distribution is under-
estimated. Therefore, it is concluded that collision cascades play an
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FIGURE 7 Distribution functions of interstitial loop size at various irradiation
doses. Single step atomic fluctuations are assumed.

important role in the enhancement of the magnitude of fluctuations
absorbed by growing clusters. When their effect on defect fluctuations is
included, better agreement between the size distribution obtained from
theory and that measured experimentally is obtained [4].

4 FORMATION OF VOIDS AND BUBBLES IN METALS

4.1 Background

The formation of voids and bubbles in irradiated materials has occupied
a central position in the theory of microstructure evolution because of
the impact of volumetric swelling on the lifetime of irradiated structural
components. Traditionally, void formation in irradiated metals has
been theoretically analyzed in two distinct phases: nucleation and
growth. It has been implicitly assumed that the nucleation of voids
is a fairly rapid process, followed by a slower growth phase. Void nucle-
ation theories, as formulated by Katz and Wiedersich [26,27] and
equivalently by Russell [28,29], have been motivated by the classical
nucleation theory of droplet formation, developed earlier by Becker
and Doring [30] and by Zeldovich [31]. Void growth, however, has been
treated in the mean field approximation of identical spherical sinks that
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grow in the diffusion fields of point defects. Many investigators have
contributed to the rate theory of “average™ void growth [32-37], and
many features of experimentally observed cavity growth behavior were
explained or predicted. However, this mean-field treatment of voids and
bubbles is not adequate in general for a number of reasons, as given
below:

(1) The continuous production of gas atoms and point defects is in
contradiction with the termination of nucleation by a sudden
decrease in the vacancy super-saturation, as assumed in classical
nucleation theory.

(2) Classical nucleation theory predicts nucleation rates that are
extremely sensitive to parametric variations, such as surface
energy, super-saturation ratio and number of gas atoms within the
cavity.

(3) Rate theory of cavity growth is unable to explain size and space
distributions of cavities.

Application of the stochastic theory of defect clustering to the for-
mation of voids and bubbles in irradiated materials has the advantage
that there is no artificial separation between nucleation and growth. In
addition, information on the size distribution of cavities would be readily
available. Consider now the clustering of helium atoms and vacancies in
gas-filled cavities. Each cluster will be containing varying numbers of
helium atoms and vacancies. We will therefore be able to treat the pro-
blem in two-dimensional size space. Let us denote the cluster size by the
vector x, such that x = he, + ve,. hand v are the number of helium atoms
and vacancies in a cluster, respectively, and e; and e, are two unit vectors
along the respective helium and vacancy directions. When the transition
probability, W, and the cluster probability density, C, are both expanded
around the point (A, v). one obtains the 2-D Fokker—Planck equation
given by

acC
B +V-J=0, (46)
where

J = FC - V(DC), (47)

F= ["”‘] (48)

dayy
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is a drift vector and,

D — alﬁl" azili'l ( 49)
apy A2k

is a diffusion tensor. The first and second moments of the transition
probability are given by the components of Eqs. (48) and (49). Details
of the derivation of these equations can be found in [38]. It is noted.
however, that while cascade-induced fluctuations do not affect the
magnitude of the first moments (a,, and a;,), they increase the magni-
tudes of the second moments (ay;; and a,,,).

An approximate two-moment solution to the F-P equation is pre-
sented here for simplicity. Under these conditions, the rates of helium
(k¥), vacancy (k') and interstitial (k') capture, helium replacement
(k®), and vacancy emission (k*°) cah be used to compute the elements
of Fand D. These are given by

arp = k& — (K& + k&), (50)
ayy = k¥ (Kt + k), (51)
ayn = [k + k& + k*°), (52)
azny = § (K€ + K& + k%], (53)
Ay = Az = k¥, (54)

4.2 Approximate Two-moment Solution

The Fokker—Planck equation (Eq. (46)) must be solved for the evolution
of the probability density, C, in order to determine the nature of the
evolving HV clusters. A numerical solution, which is coupled with the
transient nucleation conditions, has been developed by Sharafat and
Ghoniem [38] for Eq. (46). Here, we present an alternate approximate
two-moment solution method to the F-P equation, appropriate for
the analysis of voids and bubbles in solids.
Taking the first moment of Eq. (46), we obtain

d{x) !
dr

(F(x)), (55)
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where the right-hand side represents the drift vector averaged over the
probability distribution function. The symbol () is used to denote this
average. Equation (55) is not a closed equation because of the depen-
dence of (F) on the unknown distribution function. However, to lowest
order, one can approximate this equation by

— = F((x)). (56)

The integration of Eq. (56) gives the trajectory of the average cluster in
the growth regime.
Let us define the variance matrix by

(6Xi6X)) = (XiXp) — (Xi)(Xp), ij=h,v. (57)

It can be shown that kinetic equations for the variance matrix are
given by

S (5x8%) = (Xiay) — (Xd{a) + (Xiand ~ ) an) + (ana). (59)

Equation (58) is again not closed, and expansions of the parameters
around their values at the average trajectory, (x), would result in an
open-ended set of moment equations. Although it is possible to develop
coupled equations for higher order moments (see [4]), it is sufficient here
to develop a lowest order expansion of Eq. (58)

S (sxi8%,) = any (). (59)

Equation (59) is the lowest order evolution equation for the variance
matrix. The second moments of the transition probabilities, a, ;;, are
the components of the diffusion tensor, and are to be evaluated at the
average trajectory x.

We will proceed here by reconstructing the probability density func-
tion from its zeroth, first, and second moments. The simplest recon-
struction procedure can be based on Gaussian functions, i.e.,

C(h, v, 1) = (6X;,6X,,v’ﬂ)_Iexp(—yz/Z). (60)
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where

1/2

(61)

(R

4.3 Comparison with Experiments

Figure 8 shows a comparison between the results of theoretical calcu-
lations and the experimental size distribution of helium bubbles in
irradiated 316 stainless steel under the conditions of the High Flux
Irradiation Reactor (HFIR)at 14.3 dpa, and at 450°C. The experimental
data are represented by the histogram, and are obtained from [39]. The
agreement between theory and experiments is achieved by considering
the influence of collision cascades on the fluctuations in atomic defect
absorption. Figure 9 shows another comparison between theory and
dual ion beam irradiation experiments for the total concentration of
helium bubbles. The parameter B in the figure corresponds to the ratio
of atomic displacements to helium re-solution back into the matrix.

10

PERCENT DISTRIBUTION (%)

0 |
0 10 20 30 40 50

CAVITY DIAMETER (nm)

FIGURE 8 A Comparison between computed and experimentally measured cavity
size distribution (histogram) at 14.3dpa under HFIR irradiation conditions at 450°C
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FIGURE 9 Comparison between theory and experiment on dual ion beam irradia-
tion at a displacement rate of 3 x 10~ *dpa/s. The helium-to-dpa ratio is S, and the
data is taken from the work of Ayrault er al. [40].

Note that the best fit to the experimental data is obtained when B= 1 (i.e.
helium in bubbles is displaced at nearly the same rate as matrix atoms.

The ratio of helium generation to the production of atomic defects
during irradiation is a significant measure of the effects of helium on the
microstructure. The He-to-dpa ratio is defined as the ratio of helium
generation rate (appm/s) to displacement damage rate (dpa/s). For the
HFIR, this ratio is 57, while it is of the order of 0.1 for the Experimental
Breeder Reactor (EBR-II). In Fig. 10, the probability distribution
functions for bubbles under HFIR and under EBR-II irradiation con-
ditions in steel are shown. The low He-to-dpa ratio characteristic of
EBR-II results in a much smaller spread in the size distribution in the
helium direction, as compared to HFIR conditions. This indicates that
gas-filled cavities in EBR-1I are mostly voids, while they tend to be near
equilibrium bubbles in the case of HFIR.
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FIGURE 10 Probability disiribution function for helium bubbles in irradiated stain-
less steel under HFIR and EBR-II irradiation conditions.

S EVOLUTION OF SURFACE ATOMIC CLUSTERS

5.1 Introduction

The general phenomenon of particle aggregation and clustering is
encountered in many seemingly unrelated research fields. For example,
this concept has been used to describe the particle size distribution in
aerosol physics [41] and star cluster size in astrophysics [42]. Other
examples are found in materials science (e.g.. in thin film formation
[42-44], swelling of nuclear fuel materials [45), metal clusters in metal
vapor [46], and in expanding nozzle flows [47]). The one feature these
systems have in common is that they may be characterized by the size
distribution of aggregates or clusters.

Microscopic processes (e.g., aggregation, coalescence, dissociation,
and evaporation) govern the shape of the size distribution of clusters and
its evolution in time. To learn about these processes and their relative
importance from the size distribution in a given system, it is necessary to
understand their influence on the aggregation kinetics. This can be
achieved via a detailed model that incorporates all potentially relevant
processes and allows the calculation of the size distribution. In this
section, we develop the kinetic equations for the aggregation of surface
atomic clusters, describing the early stages of thin film growth.
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5.2 Rate Equations

We consider here a system of clusters that are characterized by the
number of their constituents (typically atoms). Other degrees of free-
dom, such as the shape of clusters, are disregarded. The mobility of
atomic clusters on the surface is much higher than in the bulk, because
surface diffusion rate is many orders of magnitude larger than that in the
volume. Allowance is made for coalescence reactions where two clusters
combine to form a large one that contains the sum of atoms of the two
coalescing clusters.

Let C;(1) be the concentration of clusters consisting of i atoms at a
given time f. Depending on the system considered, the concentration
might be given as either the number of clusters per unit volume or per unit
area. Then the rate of coalescence per unit volume (or per unit area) of an
i-cluster with a j-cluster is given by K{(i, ))C,C;, where K(i, /) is a rate
constant that, in the general case depends on the sizes of both coalescing
clusters. A general conservation equation for the cluster concentrations
may be written as

i—1

Z NCCry— ZK:;)CC,JrQ,, (62)

J=1

M |

where Q; denotes an external source rate per unit volume (or per unit
area) of clusters (mostly monomers). In some systems, clusters may not
be entirely stable but rather dissociate spontaneously into fragments. In
that case. a term of the form

1 i—1 00
=32 FU.i=DCi= 3 Fli, )Cus; (63)
=1 =l

must to be added to the right hand side of Eq. (62). Here F(i, j) denotes
the rate at which a cluster of (i + j) atoms dissociates into two clusters of i
and j atoms. Finally there may be a possibility that clusters leave the
system altogether (e.g., due to evaporation off a surface). This process
may be accounted for by adding a term (—v,C)) to the right-hand side
of Eq. (62), where v; is the loss rate of an i-size cluster. Equation (62), and
its extensions by terms (63) and/or (—v,C)) has been surveyed in some
detail. Exact solutions are known for a few cases where the coalescence
rate is a bilinear function of the cluster sizes.
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To go beyond the limitations of these attempts, recourse to numerical
techniques is necessary. Straightforward numerical time integration of
Eq. (62) is possible, but the number of equations to be taken into account
may become very large, especially at large times. Another method of
solution is a direct Monte Carlo simulation [48,49].

5.3 Two-group Approach

We wish here to establish a method of solution for the agglomeration
equation Eq. (62). The method is based on separating the clusters into
two groups according to size: the first containing clusters with up to x*
atoms, and the second containing clusters with more than x* atoms. The
quantity x" is some small integer that may be suggested, in some cases, by
physical properties of the clusters (e.g., their stability). For the first
group, a set of discrete equations describes the concentrations of indi-
vidual cluster sizes; the second group is characterized by a set of equa-
tions for the moments of the distribution. In the work of Ghoniem and
Sharafat [4.5], only single atom transitions were considered. Here, we
relax this restriction in the general formulation. Consequently, we do
not approximate the evolution equation for large clusters by a Fokker—
Planck equation, but instead aim at deriving moment equations from
the original Eq. (62).

Introduce power moments Ny of the cluster size distribution accord-
ing to

1) = i *cit). (64)
=l

The concentration of all clusters irrespective of their size is denoted by
Np(t) and N (1) is the concentration of atoms contained in these clus-
ters. Multiplying Eq. (62) by i* and summing over all i, one obtains

ZZZC,CJ,Kz ) [(;+;) —f _;]+Z;"~'Q,-. (65)
je=]

=1 j=1

—Nﬁ

The intuitive meaning of this equation is clear by observing that, in a
coalescence event between clusters of sizes / and j, the moment N
changes by

(- —i* =i (66)
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In the following we classify clusters into two groups of sizes, i < x" and
i> x". For the large clusters we wish to use a continuous description so
we write C(x), instead of C;, for x =i > x". Sums over C; are replaced by
integrals over C(x)dx in the obvious way. Equation (62) then becomes,
approximately, for the small clusters,

8

= Ci 22;((;, —NCC— ZKU —-NCC;
e (67)
o f " dx K(i, x)C,C(x) + O

Next we introduce moments M. of the large cluster continuum,
M, = ] dxx*C(x). (68)

These are approximately related to the full moments, N, in Eq. (64), by

= M- iC (69)

i=1

Substituting Eq. (69) into the moment Eq. (65) and performing the
separation, we obtain

_Mk_ Zk-—C, ZZZCC XKI}){(I—}—]) — i —;]

=1 ,'_
+ Z]: C [\ dx C(x)K(i, x) x [(:‘H)k - —fk]
+%/71 dxdy Cx)C(y) x K(i,x)[(x + 1) = 2 = ]
+ i i*Q;. ol
=]

Our final goal is to obtain from Eqgs. (67)and (70) a closed set of equa-
tions for the small cluster concentrations C;,i= 1,2, ..., x", and the first
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few continuum moments My, k=0,1,...,n, where n is some small
integer. To achieve this, we need to express the integrals over the con-
tinuum distribution in terms of the moments M,

Consider the quantity

G= / m dx Clal), (71)

where g(x) is some arbitrary function. Our task is to obtain an approx-
imate expression for G in terms of the moments M, of Eq. (70). This
problem is, of course, of a general nature, but its solution is not unique.
An ingenious method to obtain bounds for G based on a representation
of C(x) by an array of delta functions is given in [50]. Here, however,
we wish to use a somewhat simpler scheme which gives accurate results
if the distribution C(x) is fairly localized and if g(x) varies only slowly.
Expand the function g(x) in a Taylor series around some point xg,

> 1 =
o, | n_(n) (n) v —v
B0 = Y2 (x = 508 x0) = §: €0 37 ) (o
(72)
Inserting this expression into Eq. (71) gives the desired result,

6= g0 3 (1) (o (73)

n=0 v=0

Although Eq. (73) s valid for any expansion point, the preferable choice
for xy is the average cluster size,

XQ—I‘=.‘E:M|/MU‘ (?4)

particularly so if the distribution C(x) is uni-modal,
i-1 i-1
5 € =§FZI K(j,i—j)CiCyj — Z K(i.j)CiC;
- [ n—v
Z;K“’-"’(: X)C; xZ( )( x)""'M, + 0, (75)

n=0 """
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where the symbol K" denotes that partial derivative,

m+n

(3]
Ko (x,3) = =2 K(x.y). 7
(35.3) = oy K5 (76)
Equation (70) may be treated similarly, and the result of this procedure
gives the following equation for the kinetic moments (see Ref. [53] for
details):

j
Zf +EZZCC; (i )+ 7" = i* =]
=1 fisl
_t‘ k-1 o) n
CrZ( )Ik .’Z 11 K({MJ({’ Z(")(_f)n_‘lMH\'
;=| =1 =0 " —0 \V
lk 1 k oc 00 1 mﬂ) L
= z(,)zz,— "(5,5)
I= m=0 n=0
xS (”’)(") R M My
p=0 v=0 \
+kaQ,'. (?7)
i=l1

Equations (75) and (77) are coupled sets of non-linear ordinary dif-
ferential equations for the small-size cluster concentrations and the
continuum moments. If we take only the first two terms in the Taylor
Series for K(x, y) into account (i.e., we truncate all terms with m,n > 2),
then the system is self-contained for any number of moments M,
k=0,1.....N,with N > 1, Since the coalescence rate K(x, y) is supposed
to be a smooth function of size for large clusters, this truncation is not
considered to be severe. We thus have a versatile tool to study numeri-
cally the kinetics of aggregation phenomena for a wide variety of phy-
sical systems.

5.4 Reconstruction of the Continuum Size Distribution

The general problem of reconstruction of distribution function from
moments is well established and arises in various areas of research such
as ion implantation [51]. A number of reconstruction schemes are
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available which technically might be classified as linear and non-linear.
In linear reconstruction, the function is expanded in a set of orthogonal
functions where the expansion coefficients are determined by the mo-
ment constraints. Making use of the orthogonality relations, the result
is obtained in closed form. One such well-known technique is the
Gram~—Charlier series expansion [52]. For functions close to Gaussian.
this method gives quite satisfactory results for highly skewed functions,
as will be shown here. One severe drawback inherent to all linear schemes
is that the reconstructed curve may assume negative values, which is
physically impossible for the true distribution function. Non-linear
reconstruction schemes assume a certain form for the unknown function
with adjustable free parameters to give the correct moments. This
method is especially powerful if, for instance, theoretical considerations
suggest some specific functional form. Certainly the reconstructed
function can be constrained to be non-negative.

The most general non-linear reconstruction method may be obtained
from the maximum entropy principle..The foundation of this principle
has been given by Jaynes [53]. It provides the means to select an unbiased
estimate in the sense of Bayes of the distribution given only the incom-
pleteinformation of a finite set of expectation values (moments). In brief,
the idea is to assign a function C(x) that maximizes the entropy S, where

S'is defined as
f dx C(x) C(( ")) (78)

and C(x) satisfies the moment constraints. In Eq. (78). p(x) denotes a
prior probability or measure [52]. Roughly speaking, p(x)dx is pro-
portional to the number of states within the interval (x, x + dx). In our
case, the continuous variable x represents the number of atoms in a
cluster, originally an integer, and thus we set p(x)=1. The entropy
in Eq. (78) is maximized subject to the moment constraints given in
Eq. (68), for k= 0,1,..., N, by introducing Lagrange multipliers Ak
in the usual way, giving the result

C(x) = r)exp( Z)\;‘ ) (79)

Indeed, if no constraints were given at all, N = 0, Eq. (79) would result in
C(x)=p(x) which is consistent, since p(x) is the prior probability.
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Equation (79) is a formal solution in the sense that the Lagrange mul-
tipliers Ak have yet to be determined from the moment constraints,

50 N
f dxx*exp(—z,\,x’) =M, k=0,1,...,N. (80)
=0

x*

Equation (80) comprises a non-linear system of equations for the Ak that
was solved numerically [53].

To validate the method, we use an example of the condensation of
atoms deposited on a substrate surface as it occurs in the early states
of thin film formation. For this system, an analytical solution is avail-
able [53]. In Fig. 11, we plot the distribution function together with the
reconstruction from its moments by the maximum entropy principle.
Good convergence is found even though the original distribution has a
sharp peak and is highly skewed. The reconstructed curves oscillate
somewhat around the true distribution, but the oscillation decays rapidly
with increasing number of moments. The constrained maximum entropy
principle gives a satisfactory reconstruction even of the sharp-peaked
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FIGURE 11 Reconstruction of the size distribution for constant monomer aggrega-

tion coefficient using exact moments (thick solid lines), and reconstruction (thin lines).
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test function presented here. The method has been successfully used in
the prediction of the early stages of thin film growth, including coales-
cence and ion bombardment processes [54,55).

6 SPACE-TIME INHOMOGENEITIES

The theoretical description presented in the previous section is adequate
as long as the system is homogeneous both in time and space. Any
situation, which may lead to breaking this space—time symmetry, is
capable of carrying the system into totally different regimes of behavior.
Many experimental observations on microstructure evolution have
shown that drastic changes take place under pulsed or transient irra-
diation. Also, it has been experimentally observed that the micro-
structure tends to be highly organized in regular spatial patterns, even
when the irradiation is steady. In this section, we explore first the effects
of pulsed irradiation on mlcrostruclure evolution under spatially uni-
form conditions. This is followed by a presentauon of spatial symmetry
breaking results, and the formation of self-organized microstructure.

6.1 Clustering During Pulsed and Transient Irradiation

A unique environment in which atomic defect clustering is particularly
interesting is the radiation environment of pulsed fusion reactors and
accelerators. The intermittent production of atomic defects results in

enhancement of second-order non-linear reactions during the on-time of

the pulse, while clusters which are thermally unstable would tend to
dissociate during the off-time. If the damage rate is kept to have a fixed
time-average value, radiation pulsing is therefore expected to produce
microstructure that is quite different from that produced by steady
irradiation. Of particular interest to damage analysis of pulsed fusion
reactor materials are the pulse on time (7, the pulse period (7},) and the
displacement damage rate during the irradiation pulse (P). Three pulsed
irradiation systems are chosen here to represent a spectrum of fusion
reactor designs with the same average damage rate. Selection of the
average damage rate as a fixed basis for comparison will clearly bring
about the special effects of the pulsed nature of irradiation. A description

of the main parameters of the three pulsed systems is shown in Table I
below.
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TABLE I1 Parameters of selected pulsed radiation systems

Irradiation concept Ton (8) T, (s) P(dpa/s)

Magnetic confinement fusion reactor 224 245 10°°
Simulation facility ( pulsed ion accelerator) 10-? 1 i
Inertial confinement fusion reactor (ICFR) 10-° 1 |
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FIGURE 12 Time dependence of small micro-void and interstitial loop clusters for
fusion reactor conditions.

The material parameters given in Table I are used in the following
calculations. An irradiation temperature of 450°C and an initial dis-
location density of 10'* m/m” are selected as reference conditions for the
comparison. The time evolution of interstitial loops and micro-voids for
typical Tokamak reactor irradiation conditions are shown in Fig. 12.
For very short times (less than 10~ *s), the concentrations of single
vacancies and interstitials increase linearly with time. As soon as diffu-
sion sets in, point defects are absorbed at microstructure sinks, or they
recombine with each other, thus modifying this linear dependence.
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It is noted here that only a small fraction of single interstitial atoms end
up in clusters, as interstitial loops. The nucleation and growth of self-
interstitial clusters during the first on-time of a pulsed accelerator is
shown in Fig. 13. The concentration of single interstitials peaks at 10 ps
then decreases afterwards as a result of mutual recombination with
vacancies. The concentration of di-interstitial clusters decreases imme-
diately at the end of the on-time as a result of thermal dissociation.
Larger and more stable loop interstitial cluster concentrations remain
roughly unchanged during the off-time, because thermal dissociation
rates are extremely small.

Under the irradiation conditions of ICFR, defect clustering proceeds
atavery rapid rate, because of the high displacement damage rate during
the on-time. The rapid build-up of defect concentrations during irra-
diation is followed by fast decay of the concentrations of single and
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FIGURE 13 Defect cluster concentrations under the conditions of pulsed accelera-
tors (P= IO"‘dpu,."s during | ms, and Th=18).
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di-interstitials during the off period. Due to the extremely high dis-
placement damage rate, as compared to the previous two irradiation
cases, the concentration of small defect clusters is vastly enhanced. The
average size of these clusters, however, is much smaller, because the total
amount of displacement damage is kept the same on average.

Since the irradiation conditions of the Tokamak system are repre-
sentative of steady irradiation, we will use it as reference. The effects of
irradiation pulsing on change from this reference case will be explored
here. The interstitial cluster size distributions for the three cases at the
end of an accumulated dose of 7 x 10~ ®dpa are shown in Fig. 14. It is
noted that the size distribution in the highly pulsed case (ICFR) is more
asymmetric than the other cases. At this dose, the peak size is only
around 4 atomsin the ICFR case, 21 atoms for the pulsed accelerator and
34 atoms for the Tokamak. A comparison of the average loop size for the
three systems is shown in Fig. 15. While the average loop size for the
Tokamak increases almost linearly after the initial transient, the size
develops almost in a “step function” fashion for the accelerator and
ICFR cases. The total loop concentrations are shown as functions of
irradiation time in Fig. 16. The loop concentration is shown to increase
at a much higher rate in the two pulsed systems, as compared to the
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FIGURE 14 Intersitial cluster size distributions for Tokamak, pulsed accelerator and
ICFR conditions at the end of an accumulated dose of 7 x 10~ "dpa.
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FIGURE 15 A comparison of the average interstitial loop size distributions for the
three systems.

Tokamak case. After a short irradiation period of 10s, the interstitial
cluster concentrationis 10'*m = for the Tokamak, 2 x 10*' m ~* for the
accelerator, and 4 x 10** for the ICFR. Such drastic variations in the
density and size of interstitial clusters can have some dramatic effects.
For example, the rate of irradiation hardening in the ICFR case is
predicted to be faster by a factor of almost 6000, as compared to
the Tokamak, because of the much faster rate of interstitial cluster
accumulation [56].

6.2 Symmetry Breaking and Self-organization

Numerous experimental observations on irradiated materials have
revealed the existence of partial or total spatial ordering of the micro-
structure under a variety of irradiation conditions. This self-organization
phenomenon appears to be influencing the formation of various types of
microstructure (e.g. precipitates, interstitial and vacancy loops, voids,
and bubbles). Complete isomorphism between the periodic structure
and the underlying crystal lattice has been observed. However, the
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FIGURE 16 Time dependence of the total interstitial loop concentration in the three
pulsed cases.

wavelength of the emerging microstructure pattern is typically 3 orders
of magnitude larger than the lattice constant. Over the past several dec-
ades, experimental observations have been made on bubble [57,58] and
void [59.60] lattices. More recently, systematic observations of defect
ordering in ion-irradiated nickel and copper have shown the develop-
ment of periodic defect walls. Strong anisotropic arrangements of
stacking fault tetrahedra and vacancy-type clusters were observed by
Jaeger and coworkers [61] in Cu on the {100} planes.

To account for the emergence of spatial patterns, we present here a
mode! for the interaction between the microstructure and point defect
diffusion fields. The model is based on the rate theory presented in the
previous sections, and includes spatial diffusion operators. Thus, spatial
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gradients are explicitly accounted for, and any fluctuations may be
amplified because of the influence of gradients. An appropriate model
here is to develop equations for mobile point defects coupled with
equations representative of elements of the microstructure. Consider the
model below.

3(‘,- )
v P—aCiCy + DiV°C; — DiCi(Znpn + Zivpy + Zupr),
ac, _ 2
2 = P(1 =€) =aCiC,+ D,V°C, — D(ZN(C, — Cin)pn
-+ Z\'V(Cv N CPV)PV < ZvJ(Cv o ¥ C‘\-J)P’[), (81)
dm -
T (2nN/|b))(D:iZyC; — D,Zy(C, — Cy)),
a =
-81!‘{ = (l/tb|r2;)[EP = pv(D,-ZNC;' = szw(cv — Cv!))s

where py is the dislocation network density, py the vacancy cluster
density, and py the interstitial loop density. ¢ is the cascade collapse
efficiency, o the recombination coefficient, » the burgers vector, rY
the mean vacancy cluster radius, and Z... are the usual bias factors.
Ghoniem and Walgraef performed stability analysis of the model
represented by Eq. (81) (see [62-64]). Space—-time perturbations are
introduced into this system, and linear stability analysis is performed. It
is found that because of spatial fluctuations in point defect concentra-
tions, the vacancy and interstitial loop cluster populations are unstable.
A critical wavelength for self-organization is obtained in the form
Di'(év\' i CVN) s
=) e

where (1 + B) is the dislocation bias factor, C,y is the thermodynamic
vacancy concentration near vacancy clusters, and C,y is the thermo-
dynamic vacancy concentration near dislocations. The wavelength
predicted by Eq. (82) decreases with increasing the dislocation network
density, cascade collapse efficiency, and displacement damage rate.
These predictions are in accord with experimental observations [57—61].

In the weakly non-linear regime, fluctuations in point defect concen-
trations given by Eq. (81) can be expanded in a power series in vacancy
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cluster density. This procedure is shown to lead to a Ginzburg—Landau
type equation for the order parameter o, representing space—time
microstructure density profiles, of the form

e Kb;_b“) — &g + V3)3]0+ vor — uo’, (83)

where b= Ble, & = pn/po. v= 2/(x0)*"%, u=2/(x0)"", and x¢= po/pn-
The homogeneous solution for the loop density is py, b is the critical
value of the bifurcation parameter at the instability, and g, is the critical
wave vector, Details of the theory can be found in [62-64].

Solution of Eq. (83) gives rise to spatial self-organization of the
microstructure density order parameter o. Figure 17 shows a direct
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FIGURE 17 Comparison between theory and experimental data of ion-irradiated
nickel [61]. The solid line represents the boundary between stable (random) void and
dislocation arrays, and self-organized microstructure.
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comparison between the theory and experimental data of ion-irradiated
nickel [61]. The solid line is based on Eq. (82) for the onset of spatial
instabilities, and represents the boundary between stable (random)
void and dislocation arrays, and self-organized microstructure. The
recombination limit (dashed line) is calculated by Abromeit and
Wollenberger [65]. Figure 18 shows the steady-state solution to Eq. (83)
for the spatial distribution of vacancy cluster densities. Agreement
with the experimental work of Jaeger and coworkers [61] is readily
achieved when a small degree of anisotropy in point defect migration is
included.

Time
(or dose)

FIGURE 18 Computed time evolution of vacancy cluster patterns under irradiation.
On the left column, isotropic point defect diffusion is assumed, while 1% anisotropy
in interstitial diffusion is assumed on the right.
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7 SUMMARY AND CONCLUSIONS

The theory of defect clustering under non-equilibrium conditions is
deeply rooted instatistical physics, and is shown to bear fruitful results for
the study of a variety of interesting physical phenomena. Starting from
basic understanding of stochastic fluctuations in defect fields, it is shown
that one can formulate master equations at the microscopic or atomic
level. These equations can be treated in a more macroscopic sense by
equivalentrateequations, in the limit of Poisson probability distributions
for transitions between states. Under irradiation, diffusion in the bulk of
large defect clusters is slow, and the transitions between states are shown
to be just between nearest neighbors. A useful approximationis obtained.
which is shown to be the Fokker—Planck continuum theory. Several
solution methods have been presented for a hybrid scheme that links the
rate equations with the continuum F-P equation. The method of
moments is particularly useful, because it is relatively simpler than other
numerical methods. Inaddition, the methed allows for direct comparison
with experiments on the evolution of the size distribution of defect clus-
ters. The theory is shown to be successful in explaining experimental
observations on size distributions of interstitial loops under irradiation.
The influence of collision cascades is shown to be important, and results
in increased dispersion of the size distribution probability function.
The evolution of vacancy and interstitial clusters is shown to proceed
on two different time scales. While interstitial clusters form very rapidly,
the time scale for the formation of vacancy clusters is many orders of
magnitude longer, mainly reflecting the magnitude of the respective time
constants of interstitials and vacancies. Good agreement is obtained
with experimental data on irradiated materials for the main parameters
of the interstitial loop populations. The present theory is also applied
to the more complex conditions of void and bubble formation in irra-
diated materials. It is shown that the deviation of the helium bubbles in
neu-tron-irradiated materials from their equilibrium conditions is pri-
marily a result of the ratio of helium-to-displacement damage rates.
Under the conditions of a low ratio (i.e. EBR-II), most helium bubbles
can be regarded as voids. On the other hand, for higher ratios, helium
bubbles are somewhat over-pressurized, particularly for small sizes.
Clustering of surface atoms during deposition processing of thin
films is studied within the same framework. In this particular case,
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the mobility of atomic clusters on the surface is sufficiently high, and
a Fokker—Planck approximation is not applicable. Instead, we show
that the moments of the distribution function can be obtained directly
from the hierarchy of rate equations. Kinetic equations can be developed
for the evolution of the moments, which completely describes both
nucleation and growth of surface clusters. The basic difficulty in this
application is shown to be the ability to reconstruct the distribution
function from its moments. The method of maximum entropy is used.
with additional constraints on the size distribution to obtain a unique,
non-negative distribution function. The method is shown to be suc-
cessful, when compared to exact analytical solution of a particular case.
Eight to ten moments were shown to be sufficient, in the extreme case
of a highly peaked distribution function.

An important feature of defect cluster formation in materials under
non-equilibrium conditions is self-organization in regular spatial pat-
terns. When space—time symmetry is broken, non-linear processes play a
critical role in altering the microstructure. Under transient or pulsed
irradiation conditions, the density of small interstitial clusters is greatly
increased, while their size decreases, as compared to steady irradiation.
On the other hand. at high enough temperatures, small vacancy clusters
may actually dissolve during the off-time, and the net result is a much
smaller amount of vacancy agglomeration into voids. It has been shown
that pulsed irradiation at sufficiently high temperatures can lead to a
smaller amount of swelling, as compared to steady irradiation.

Spatial fluctuations in the concentrations of point defects are shown
to result in non-linear coupling with the relatively immobile features of
the microstructure. Gradients, which develop in the concentrations of
mobile point defects, result in self-organization of vacancy and inter-
stitial defect clusters. One important ingredient which seems to be
sufficient, even though not necessary, and which leads to spatial self-
organization is the preferential production or absorption bias of freely
migrating interstitials. The direct production of vacancy clusters in
collision cascades, coupled with diffusion-reaction of mobile point
defects lead to spatial instabilities. The emerging wavelength of the
organized microstructure decreases with increasing dislocation network
density, cascade collapse efficiency, and displacement damage rate.
These predictions are in accord with experimental observations. Itis also
shown that a small degree of diffusion anisotropy of interstitial atoms
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results in alignment of the organized microstructure along crystal-
lographic directions, as observed experimentally.
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