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ABSTRACT

The stability of short-range reactions between two dislocations of parallel line

vectors which glide on two parallel slip planes in BCC crystals is determined. The

two dislocations are assumed to be infinitely long, and their interaction is treated as

elastic. The interaction and self-energies are both computed for dynamically moving

dislocations, where the dependence on dislocation velocity is taken into account. The

stability of the reaction is determined as a function of the following phase space

variables: relative angle, relative speed, dislocation mobility, Burgers vector,

separation of slip planes, and external force. It is found that the dynamic formation

of dislocation dipoles or tilt wall embryos occurs only over a small range of the

investigated phase space. Inertial effects are shown to be important at close

separation, because of the large force between the two dislocations comprising the

dipole or tilt wall embryo. Destabilization of the dislocation dipoles or tilt wall

embryos is found to be enhanced by externally applied stresses or by stress fields of

neighboring dislocations.
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1. Introduction

In the Dislocation Dynamics (DD) methodology, plastic deformation is determined

as a consequence of the motion and interaction of large collections of dislocations. As

such, dislocation motion inside the solid is dictated by mutual interaction via long-range

forces, as well as the externally applied stress. While the long-range interactions between

dislocations may proceed at relatively long time scales, dictated essentially by the applied

strain rate, short-range reactions are inevitably fast due to inherently large elastic

interaction forces at close separations.

It has been shown by both experiments [1,2] and computer simulations [3,4] that

short-range reactions play a pivotal role in the formation of organized deformation

patterns. The walls of dislocation cells and persistent slip bands contain dislocation

dipoles, which are surprisingly stable. Recently, one mechanism for the formation of

dislocation dipoles has been theoretically proposed [5]. Stable dislocation dipoles have

also been experimentally observed during plastic deformation of BCC Ta [6] and V [7]

crystals. Dipoles can further react with other dislocations to form more complex

dislocation structures. The conditions for the dynamic formation of dislocation dipoles are

thus extremely important for understanding localized plastic deformation.

So far, the majority of DD models [8-13] treat the dynamics of short-range

reactions in a phenomenological fashion. The models vary in their details of treating long

range interactions, but generally they do not go beyond phenomenological rules when it

comes to short-range reactions. These rules are indirectly inferred from experimental

studies. The critical distance between two dislocations of opposite Burgers vectors below

which they annihilate each other is difficult to determine. However, in copper for example,

this distance is taken to be ten times the magnitude of the Burgers vector, because no

dislocations separated at smaller distances have been observed under the electron

microscope [12].
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The dynamics of short-range reactions can be rigorously studied only when various

modes of energy dissipation or exchange are taken into account. Because the elastic

interaction force during short-range encounters is expected to be very large, energy

dissipation or exchange mechanisms for dislocations moving close to the sound speed

must be accounted for.

In this paper, we solve the equations of motion of two dislocations interacting at

close range. For this purpose, we include two features which are not considered in DD

simulations so far. These are: (1) the elastic interaction between the two dislocations is

based on the stress fields of moving dislocations. Significant spatial distortion of the static

elastic field occurs when dislocations move near their terminal sound velocity; (2) the

kinetic energy of moving dislocations introduces inertial forces as a result of self-energy

variations. Our studies show that these effects can be very significant.

In Section 2, we develop the governing equation of motion for relative motion of

two dislocations. Using the stability theory, we define the critical separatrices separating

stable dislocation reactions and bypass; the critical separatrices are defined by the initial

conditions of the dislocations. We discuss applicability of the results in Section 3.

2. Formulation and Numerical Calculations

We first formulate the equation of relative motion for two infinitely-long

dislocations gliding on parallel slip planes; the two dislocations have parallel line vectors

and mixed characters. As an application, we solve the equation with physical parameters

for a body-centered-cubic (BCC) crystal, Ta.

2.1 Equation of Motion

Since this study focuses on two idea dislocations that are infinite long and parallel,

we need to develop an equation of two dimensional motion. The coordinate system for the
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two dimensional motion is shown in Figure 1. To investigate their relative motion, we

choose the origin of the coordinate system to move with one dislocation; this dislocation is

effectively rest in our coordinate system. The two dislocations are assumed to have the

same magnitude of Burgers vector, but they may have different characters. The angles

between the Burgers vector and line vector of the two dislocations are α and β for the

moving and rest dislocations, respectively. At any moment, the net force per unit length

(  
r 
F ) acting on the moving dislocation can be written as:

  

r 
F = −

1
M

r 
v +

r 
F el +

r 
F ext −

r 
F Peierls (1)

where   
r 
v  is the dislocation velocity, the four terms on the right hand side correspond to a

drag force which opposes motion, an elastic interaction force, an external force, and the

Peierls barrier force. The dislocation mobility, M, is a taken to be a temperature dependent

constant.

In an adiabatic motion of the dislocation, the first law of thermodynamics dictates

that the change in its self-energy (Wself ) is equal to the work done within a short distance

(  d
r 
r ). Thus [14]:

  dWself =
r 
F • d

r 
r (2)

where dWself  is the change in self-energy of the dislocation. The energy change rate is

therefore given as:

  

dWself

dt
=
r 
F •

r 
v (3)

where the self-energy consists of the strain and kinetic components, and t is time. For a

dislocation moving along a straight line on a slip plane, the self energy is an explicit

function of the glide velocity [15], and equation (3) can be re-written as:

F =
1
v

dWself

dv
dv
dt

=
1
v

dWscrew

dv
+

1
v

dWedge

dv
 
  

 
  

dv
dt

(4)

where v is the dislocation speed, Wscrew  and Wedge  are the self energies of screw and edge

components of the dislocation, respectively. These are given as [15-17]:
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Wscrew = ε
cos2 α

γ t

ln
R a

r0

 

 
  

 
  (5)

Wedge = ε sin2 α
Ct

2

2v2 16γ l + 8γ l
−1 + 2γ t

−3(1− 6γ t
2 − 7γ t

4)[ ]ln R a

r0

 

 
  

 
 (6)

where

γ t = 1−
v 2

C t
2 ,    γ l = 1 −

v2

Cl
2 (7)

and C t =
µ
ρ

 is the transverse speed of sound, C l = 2µ + λ
ρ

 is the longitudinal speed of

sound, ε =
µb2

4π
 is an energy factor, b is the magnitude of the Burgers vector, µ  and λ are

Lame’s constants, ρ is the mass density of the solid, R a  is a cutoff distance of elastic

energy (usually taken as the crystal or microstructure dimension), and r0  is the core radius

of the moving dislocation.

Upon differentiation of equations (5) and (6) with respect to v, we obtain:

1
v

dWscrew

dv
= ε cos2 α

1

γ t
3C t

2 ln
R a

r0

 

 
  

 
 (8)

and

1
v

dWedge

dv
=

ε sin 2 αC t
2

v4 7γ t + 25γ t
−1 −11γ t

−3 +3γ t
−5 − 8γ l − 20γ l

−1 + 4γ l
−3[ ]ln Ra

r0

 

 
  

 
    (9)

The ratio of the inertial force and dislocation acceleration can be interpreted as the

effective mass. It is noted here that in the low velocity limit, equations (8) and (9) reduce

to those for the effective mass of screw and edge dislocations, respectively, as introduced

by Frank [16] and Weertman [17]. However, we do not use the effective mass formulation

here and replace it with a more general energy approach, as given by equations (1), (4),

(8), and (9) above.
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Starting with the stress field of a moving dislocation given in reference [15], the

elastic interaction force along the glide direction (i.e., x direction in Figure 1) is shown to

be:

Fel = ε 2x
rt

2 γ t cos α cosβ − sinα sin β C t
2

γ tv
2 1 + γ t

2( )2
− γ tγ l

4rt
2

rl
2

 

  
 

  
 
 
 

 
 
 

(10)

Using equations (1)-(10) and introducing the dimensionless variables F'ext = Fext
b

ε
,

M' = M
ε

bC t

, V =
v
Ct

, X =
x
b

, R t =
rt
b

, and R l =
rl

b
, the equation of motion (equation 4)

can now be given in the following explicit form:

K
dV
dX

ln
Ra

r0

 

 
  

 
 = −

V
M'

+ F' ext +Γ (11)

where

K =
sin 2 α

V3 7γ t + 25γ t
−1 − 11γ t

−3 + 3γ t
−5 − 8γ l − 20γ l

−1 + 4γ l
−3[ ]+ cos2 α

V

γ t
3  (12)

and

Γ =
2X
R t

2 γ t cos αcosβ − sin α sin β
1

γ tV
2 1 + γ t

2( )2
− γ tγ l

4R t
2

R l
2

 

  
 

  
 
 
 

 
 
 

(13)

It is noted that the dimensionless equation of dislocation motion, equation (11), is

highly non-linear in the velocity. Solutions of this equation will be considered for short-

range reactions where the pair elastic interaction of the two dislocations dominates. Any

measurable effects due to the Peierls barrier are assumed to be included in the external

force. The influence of the effective external force on the stability of the short-range

reaction will also be studied in the following section.

2.2 Numerical Results for BCC Crystals

As an application of this work, we study short-range reactions in a BCC crystal,

Ta. For a BCC crystal, the angles α and β are related, since a Burgers vector can only be
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one of the 
1
3

< 111 >  vectors. On any given {110} slip plane, there are four possible

combinations of the Burgers vectors for the two dislocations. Because the line vectors of

the two dislocations are identical, β can take only one of the following four possible

values:

β =

  α             

  α + 1800   

α + 1200

α + 300o

 

 
 

 
 

(14)

The dislocation mobility has been measured to be 4.2x104 (Pa sec)-1 in Nb at room

temperature [18]; the dislocation character was not identified in this work. A much smaller

value, 3.3x103 (Pa sec)-1, was obtained by Urabe and Weertman [19] for edge dislocation

mobility in Fe. According to Urabe and Weertman [19], the mobility of screw dislocations

in Fe is only about a factor of two smaller than that of edge dislocations near room

temperature. Based on these experimental observations, we estimate the dislocation

mobility to be in the range of 103 to 105 (Pa sec)-1 in BCC crystals. In this work, we

choose 105 (Pa sec)-1 as the reference value for the mobility of dislocations, regardless of

their character. The sensitivity of the results to dislocation mobility is tested by performing

calculations using a lower mobility (10 times lower). Taking µ = 69 GPa ,

ρ = 16600 kg / m3 , and b=2.86 Å for Ta [20,21], we estimate that M'  is about 50. Unless

otherwise mentioned, we use λ = 149 GPa  [21], R a =10000b , h =10b , F=0, and

r0 = 4b  in this study. The cutoff radius, R cut , shown in Figure 1 is chosen to be 500b so

that pair interaction of the two dislocations dominates over interactions with other

neighbors. As the angle β is shifted by 120o, the shape of elastic interaction field is not

affected if the coordinate α is also shifted. Therefore, the following analysis will focus on

two of the four possible combinations: (1) two dislocations are parallel (parallel line

vectors and same Burgers vector); and (2) the two dislocations are anti-parallel (parallel

line vectors and opposite Burgers vectors).
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2.2.1 Stable Dislocation Structures

To find stable dislocation structures, we first calculate constant force contours for

two parallel dislocations at zero velocity; the results are shown in Figure (2a). When α is

close to 90o, the zero force configuration at θ=90o is stable since a small deviation from

this configuration will be restored by the elastic interaction force. For example, if the

moving dislocation is given a small positive displacement away from θ=90o along the x

direction, it will be accelerated towards θ=90o by the elastic interaction force. In contrast,

the other zero force configurations are unstable because the elastic interaction force

amplifies a deviation of any small magnitude. As a result, two parallel dislocations can

form a stable cluster with one dislocation on top of the other with θ=90o. To form such a

stable cluster, the two dislocations must be close to be edge in character. A special case is

the formation of a tilt wall embryo when the two dislocations are pure edge in character.

The elastic stress field for two anti-parallel dislocations are opposite in sign to that

for two parallel ones. As shown in Figure (2b), the constant force contours are similar to

those of Figure (2a). Zero force configurations are the same, but the non-zero force values

have the opposite sign. As a result, the zero force configurations which are stable for two

parallel dislocations are unstable for two anti-parallel ones, while those which are unstable

for two parallel dislocations are stable here. When the two dislocations are close to be

edge in character, they can form a stable cluster with one on either side of the other. As a

special case, two anti-parallel edge dislocations can form a dipole at either θ=45o or

θ=135o. If the two dislocations are close to be screw in character, they can form a stable

cluster only with one on top of the other. This configuration is similar to that of the tilt

wall embryo. However, the two dislocations which are close to the screw character may

rotate themselves to facilitate cross-slip. Because of the high probability of cross-slip for

screw dislocations in BCC crystals, this stable configuration will not be given further

consideration.
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As a dislocation moves at a high speed, its elastic stress field deforms with respect

to a stationary observer. The elastic interaction force field of the two dislocations also

deforms. This effect is shown in Figure (3a) for two parallel dislocations. Comparing

Figure (2a) and (3a), we note that these elastic interaction fields behave in a similar

fashion, although the locations of the zero force configurations are shifted. A similar

behavior is observed when we compare Figures (3b) and (2b) for two anti-parallel

dislocations. Therefore, stability analyses for zero velocity and finite velocity dislocation

interactions are similar.

2.2.2 Typical Trajectories for the Moving Dislocation

For the special case of two anti-parallel edge dislocations, we study the trajectories

of their relative motion with various initial conditions. The position and velocity of the

moving dislocation are traced for three different initial velocities (all are scaled to the

transverse speed of sound): (1) V0=0.8; (2) V0=0.6; and (3) V0=0.5. The initial position

for all the three cases are the same, i.e., they all start at θ=60o. As shown in Figure (4a),

the moving dislocation with an initial velocity of 0.8 heads towards the right and cross the

cut-off circle defined by r�R cut. The pair interaction is relatively weak beyond the cut-off

distance, and the moving dislocation is considered as having bypassed the rest one in this

study. For a smaller initial velocity (0.6), the moving dislocation converges to θ=45o which

corresponds to one dipole configuration, after crossing the symmetrical position θ=90o

four times. For an even smaller initial velocity (V0=0.5), the moving dislocation converges

to θ=135o which corresponds to the other dipole configuration, after crossing the

symmetrical position θ=90o three times. It is interesting to note that the initial positions of

the three trajectories are identical. The final positions of the moving dislocation are

entirely different because the initial velocities are different. This indicates that the

phenomenological rules which are based on separation or force in the DD methods [8-13]

must be modified to account for the effects of detailed dynamics on the final stability.
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As shown in Figure (4b), tracing the dipole formation at θ=45o takes more than

35000 integration steps before the trajectory converges to θ=45o within 1o, if the

maximum displacement in each integration step is limited to 0.1b. Although implicit

numerical integration methods may reduce the number of integration steps by an order of

magnitude, the computational effort is still enormous. During a DD simulation, only a few

integration steps can be afforded for a dislocation to move 500b.

To account for the velocity dependence during short-range reactions and keep the

DD simulations computationally feasible, a bridging method is necessary. As can be seen

in Figures (4a) and (4b), there must be a critical initial velocity between 0.6 and 0.5,

slightly below which a dipole forms at θ=135o and slightly above that a dipole forms at

θ=45o. The trajectory corresponding to the critical velocity is a separatrix. It is therefore

desirable to determine all such separatrices in order to predict the final configuration of

two reacting dislocations according to their initial conditions. In the following sub-

sections, we define the critical separatrices and present numerical results for short-range

reactions involving two parallel or anti-parallel dislocations.

2.2.3 Formation of Tilt Wall Embryos

For simplicity of presentation, we use two pure edge dislocations for description of

the critical separatrices. As indicated by the elastic interaction force, the solid line in

Figure 5, a tilt wall embryo can be formed at θ=90o. To form such a tilt wall embryo, the

moving dislocation must be able to approach the stable configuration and be trapped there.

Therefore, the following conditions must be satisfied:

(1) The moving dislocation must not cross the zero force configuration at θ=45o if

it moves towards the right, i.e., V�0 at θ=45o. Otherwise, the dislocation will cross θ=45o

and it will be further pushed away from the rest dislocation by the repulsive force at

θ>45o.
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(2) The moving dislocation must be able to cross the zero force configuration at

θ=45o if it moves towards the left, i.e., V�0 at θ=45o. Otherwise, it will not approach the

stable configuration due to the repulsive force at θ>45o.

(3) Similar to condition (1), the moving dislocation must be V�0 at θ=135o if it

heads towards the θ=135o from right.

(4) Similar to condition (2), the moving dislocation must be V�0 at θ=135o if it

heads towards the θ=135o from left.

By setting the final velocity to zero according to the four conditions above and

solving equation (11) backwards in time, we obtain the critical separatrices for two

parallel edge dislocations, as shown in Figure (6a). The area enclosed by the four critical

separatrices is a stable domain, and the rest are unstable. If the moving dislocation starts

with an initial condition that is within the stable domain, a tilt wall embryo will result

regardless of how the two dislocations approach each other.

2.2.4 Formation of Dislocation Dipoles

Similar to the analysis of tilt wall embryo formation, we describe dipole formation

using two anti-parallel pure edge dislocations. The elastic interaction force of two

dislocations as a function of their relative position is shown in Figure (5) as a dotted line.

There are two stable configurations for the dipole, in contrast to one stable configuration

for the tilt wall embryos. Due to the symmetry, we will only discuss the critical

separatrices for dipole configurations at θ=45o. The critical separatrices for the other

dipole configuration can be obtained by a transformation of θ to (180o-θ) and V to (-V).

In order to form a dipole at θ=45o, the moving dislocation must be able to approach this

stable configuration and be trapped there. Therefore, the following conditions must be

satisfied:

(1) The moving dislocation must come to rest before reaching the cut-off circle

(indicated by θR in Figure 5), if it moves towards the right, i.e., V�0 at θ=θR. Otherwise,
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the moving dislocation is taken as having bypassed the rest one and will be treated by the

DD simulations.

(2) The moving dislocation must come to rest as it approaches θ=90o from the

right at the final stage, i.e., V�0 at θ=90o. It is worth mentioning here that this condition

need not to be satisfied every time the moving dislocation approaches θ=90o. In fact, the

moving dislocation can cross θ=90o several times, as shown in Figure (4a) before finally

converging to the stable position at θ=45o.

Setting the final condition to be V=0 according to the two conditions above and

solving equation (11) backwards in time, we obtain the critical separatrices for dipole

formation at θ=45o. By using the symmetrical transformation, we also derive the critical

separatrices for dipole formation at θ=135o. The results are shown in Figure (6b). The two

solid lines at θR and θL merely indicate the border of the phase space we are interested in

(i.e., the phase space within the cutoff circle).

If the moving dislocation starts with an initial condition corresponding to the

shaded area in Figure (6b), it is determined to form a dipole with the rest dislocation at

θ=45o. It is interesting to note that a small perturbation of either velocity, position, or both

can change the dipole configuration from θ=45o to θ=135o or vice versa.

2.2.5 Sensitivity Analyses

So far, this section has been devoted to the analysis of two edge dislocations with

a constant dislocation mobility, a zero external force and a constant separation of slip

planes. The effects of these four factors are investigated by varying them in equation (11).

As the two dislocations become mixed in character, the fraction of stable domains

may change. Taking the angle α to be 45o, we calculate the critical separatrices and plot

them in Figures (7a) and (7b) for two parallel and anti-parallel dislocations, respectively.

The only difference between Figures (6) and (7) is the angle α. For two parallel
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dislocations, it is easy to see that a much smaller fraction of the phase space is stable when

the angle α is away from 90o. In other words, two parallel edge dislocations are much

more likely to form a tilt wall embryo than two parallel dislocations of mixed character.

The fraction of stable domains for two anti-parallel dislocations is not strongly dependent

on the angle α. However, the partition of the stable domain is much finer when α is away

from 90o. As a result, an even smaller perturbation in either velocity, position, or both will

change the final stable configuration from θ=45o to θ=135o or vice versa. This work shows

that stable dipoles and tilt wall embryos still form if dislocations are of a mixed character,

although under much more restrictive conditions. This finding expands the well-known

concept of dipole and tilt wall formation for only edge character dislocations.

To investigate effects of dislocation mobility on the stability analyses, we repeat

the calculations for Figure (6) with a mobility that is ten times smaller. The critical

separatrices for two parallel and anti-parallel edge dislocations are shown in Figures (8a)

and (8b), respectively. Comparing Figures (6) and (8), we note that: (1) the fraction of the

stable domain is much larger with a lower mobility, for both parallel and anti-parallel

dislocations; and (2) the partition of the stable domain for two anti-parallel dislocations is

much coarser. These effects are attributed to the more efficient energy dissipation with a

lower mobility.

A non-zero external force can enhance or reduce the formation of a stable

dislocation cluster. Qualitatively, increasing the separation H is similar to decreasing the

mobility, since both give rise to a smaller net force on the moving dislocation. Therefore,

we demonstrate the effects of the external force and the separation H on the stability

analysis by studying a critical condition when no stable configuration exists. As shown in

Figure (5), the maximum magnitude of the elastic force at H=10 is 0.076. If an external

force of this magnitude or larger is applied, the total force will be either positive or

negative everywhere. With the elimination of all zero force configurations, a stable cluster

will never form. Taking the critical external force as the maximum magnitude, we calculate

it as a function of the separation H. As shown in Figure (9), a strong external force
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(greater than 0.01) is needed to eliminate all zero force configurations as the separation is

smaller than 50b. However, a much smaller external force have the same effects at a larger

separation.

3. Conclusions and Discussions

Inertial effects on dislocation interactions are accounted for by balancing the elastic

self energy change of the moving dislocation with the work done on it. It is worth

mentioning that this treatment is general and applies to both high and low velocities. In the

low velocity limit, the treatment is identical to that given in references [16,17]. The inertial

effects are extremely important during short-range reactions, although they may play a

minor role during slow motion of dislocations. The trajectory with an initial velocity of 0.6

in Figure (4a) is reproduced without considering the inertial effects (setting the inertial

force to be zero). The result is shown in Figure 10, together with the trajectory in Figure

(4a) for comparison. It is noted that the moving dislocation reaches an unreasonably high

speed (about four times the transverse speed of sound) during a short-range reaction if

inertial effects are omitted. Therefore, large errors in DD can be expected if the inertial

effects are ignored.

The results presented in Section 2 are based on solutions of a dynamic equation

which takes inertial effects into account. It might appear that one can directly solve this

equation in DD simulations. However, the moving dislocation does not approach a

minimum energy configuration directly even if it starts from a stable domain. Instead, it

oscillates many times before converging onto a stable position. Therefore, it takes an

intensive computational effort to track the trajectory of the moving dislocation. As shown

in Figure (4b), it takes 35000 integration steps before the trajectory converges to θ=45o

within 10 . In a DD simulation, only several integration steps are taken for a dislocation to

displace 500b in order to simulate plastic deformation of relevant strains and strain rates.

Therefore, it is necessary to develop physical rules of short-range reactions and use them
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as input in DD simulations. This can be accomplished by using the results of stability

analyses, as presented in this work.

The critical separatrices can be parameterized in terms of dislocation character,

position, velocity, mobility, and external force. A look-up table can therefore be generated

and used as input for DD simulations. In DD simulations, two dislocations which are

within R cut  are checked for short-range reactions according to their characters, positions,

velocities, mobility, and external forces. If the state defined by these parameters fall into a

stable domain, they will immediately be brought to the corresponding stable configuration,

such as a tilt wall embryo or a dipole configuration. Otherwise, their trajectories are

updated according to the DD methods. Such a bridging method enables DD simulations to

capture details of dislocation microstructure evolution without a substantial sacrifice of

computational efficiency.

As demonstrated in Section 2, the external force can eliminate configurations of

stable dislocation clusters. In DD simulations, the external force is defined as the total

force from external loading and from interaction with all other dislocations excluding the

one in short range reaction. When the two dislocations are very close, the change of their

elastic interaction energy as a function of the angle θ  comes mainly from the pair

interaction. The elastic interactions with other dislocations, if they are relatively far away,

do not change much as a function of the angle θ . Therefore, it is reasonable to treat

contributions from other neighboring dislocations as a constant external force in studying

stability of dislocation short-range reactions.

This study aims at illustrating the necessity of investigating short range interactions

in details. Therefore, several assumptions have been made without rigorous justifications,

and these will be discussed here. First, the character of the two dislocations are assumed

to be fixed during the short-range reaction. A dislocation can rotate during its motion

depending on the net force on it; therefore, the two dislocations will not always stay

parallel. The second severe assumption is that the two dislocations always glide on parallel
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slip planes. Cross-slip of pure screw dislocations is therefore excluded in the model. Even

if the dislocations are edge or mixed type in character, they can climb under their high

mutual stress, which is possible during the short-range reactions. Third, the mobility of

dislocations should depend on the dislocation character, which is not considered in this

work. Finally, the velocity dependence of elastic stress field is assumed to propagate at

infinite speed. We will generalize the present work to alleviate these restrictions in future

studies.
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Figure Caption:

Figure 1: Coordinate system and configuration of the two reacting dislocations. The

center of the coordinate system coincides with the reference dislocation.

Figure 2: Contours of constant force for (a) parallel; and (b) anti-parallel

dislocations.

The five contours are for the reduced elastic force (Fel/ε) equal to -10-2

(“ ”), -10-3 (“ ”), 0 (“ ”), 10-3 (“ ”), and 10-2

(“ ”), respectively.

Figure 3: (a) Zero interaction force configurations for two parallel dislocations with

V

equal to 0.0 (“ ”), 0.5 (“ ”), and 0.9 (“ ”),

respectively; (b) Deformed contours of constant interaction force for the

two

parallel dislocations with V equal to 0.9, with the legends the same as in

Figure (2a).

Figure 4: Typical phase space trajectories with initial θ at 60o and V=0.5

(“ ”),

0.6 (“ ”), and 0.8 (“ ”), respectively. The velocity as a

function of the angle θ is shown in (a), and the number of integration steps

as a function of θ is shown in (b).

Figure 5: Static elastic interaction force as a function of the angle θ for two parallel

edge dislocations (“ ”), and anti-parallel edge dislocations

(“ ”), respectively.

Figure 6: Critical separatrices for (a) two parallel edge dislocations, and (b) two anti-
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parallel edge dislocations.

Figure 7: Critical separatrices for (a) two parallel dislocations with α=45o, and (b)

two anti-parallel dislocations with α=45o.

Figure 8: Critical separatrices for (a) two parallel edge dislocations with M' =5, and

(b) two anti-parallel edge dislocations with M' =5.

Figure 9: Critical external force necessary to eliminate all stable configurations as a

function of separation of slip planes.

Figure 10: Comparison of two trajectories: (1) that with an initial velocity of 0.6 as in

Figure (4a) (“ ”); and (2) that with the same condition but omitting

the

inertial effects (“ ”).
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Figure 1: Huang et al
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Figure 2a: Huang et al
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Figure 2b: Huang et al
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Figure 3a: Huang et al
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Figure 3b: Huang et al
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Figure 4a: Huang et al
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Figure 4b: Huang et al
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Figure 5: Huang et al
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Figure 6a: Huang et al
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Figure 6b: Huang et al

stable

unstable

unstable



31

Figure 7a: Huang et al
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Figure 7b: Huang et al
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Figure 8a: Huang et al
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Figure 8b: Huang et al
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Figure 9: Huang et al
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Figure 10: Huang et al


