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Curved Parametric Segments 
for the Stress Field of 3-D 
Dislocation Loops 
Under applied mechanical forces, strong mutual interaction or other thermodynamic 

forces, dislocation shapes become highly curved. We present here a new method for 
accurate computations of self and mutual interactions between dislocation loops. In 
this method, dislocation loops of arbitrary shapes are segmented with appropriate 
parametric equations representing the dislocation line vector. Field equations of 
infinitesimal linear elasticity are developed on the basis of isotropic elastic Green's 
tensor functions. The accuracy and computational speed of the method are illustrated 
by computing the stress field around a typical (110)-[111] slip loop in a BCC 
crystal. The method is shown to be highly accurate for close-range dislocation interac­
tions without any loss of computational speed when compared to analytic evaluations 
of the stress field for short linear segments. Moreover, computations of self-forces 
and energies of curved segments are guaranteed to be accurate, because of the 
continuity of line curvature on the loop. 

1 Introduction 
Numerical simulations of plastic deformation with disloca­

tion distributions are computationally very challenging, espe­
cially for engineering levels of strains, strain rates, and volumes. 
This particular aspect has been recognized in most Dislocation 
Dynamics (DD) simulations, either in 2-D (e.g., Ghoniem and 
Amodeo, 1988; Wang and LaSar, 1995), or in 3-D (e.g., De-
Vincre and Kubin 1994; Kubin et al., 1992; Ghoniem and Baca-
loni, 1997; Zbib et al., 1998; Schwarz, 1997). Development of 
efficient yet accurate numerical techniques for DD simulations 
of plastic deformation is still in its infancy, especially in compu­
tationally intensive 3-D applications. 

Dislocations in real crystals are generally curved because of 
their strong mutual interactions, externally applied stress fields, 
as well as thermodynamic forces resulting from gradients or 
changes in local chemical potentials. Moreover, extensive ex­
perimental evidence indicates that dislocation lines are generally 
curved, especially under the action of an externally applied 
stress, and at temperatures exceeding 0.2-0.3 of the material's 
melting point. 

In some special cases, however, long straight dislocation seg­
ments are experimentally observed. This is particularly true in 
materials with high Peierel's potential barriers normal to spe­
cific crystallographic orientations (e.g., Si), or large mobility 
differences between screw and edge components (e.g., some 
BCC crystals at low temperature). It is apparent that very large 
curvature variations are expected, especially for strongly inter­
acting dislocation loops. The accuracy of computing the dy­
namic shape of dislocation loops is thus dependent on how 
dislocation lines are discretized for field and force calculations. 

In DD simulations of plastic deformation, the computational 
effort per time step is proportional to the square of the number 
of interacting segments, because of the long-range stress field 
associated with dislocation lines. It is therefore advantageous 
to reduce the number of interacting segments during such calcu­
lations. Recent 3-D calculations of dislocation interactions using 
straight segments are based on analytical solutions of the elastic 
field of either mixed segments, e.g., Zbib et al., 1998) and 
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Schwarz and LeGoues (1997), or just screw and edge disloca­
tion segments, e.g., DeVincre and Kubin (1994). Zbib et al. 
(1998) have shown that the length of each straight segment is 
roughly limited to the range of 50-200 units of Burgers vector. 
Longer segments may have substantial force variations, thus 
limiting the usefulness of one single equation of motion for the 
entire segment. Meanwhile, singular forces and stresses arise 
at sharp intersection points of straight segments, which result 
in divergence of the average force over the straight segment as 
the segment length is decreased. When the dislocation loop is 
discretized to either screw or edge components that move on a 
crystallographic lattice (Devincre and Kubin, 1994), the accu­
racy of strong dislocation interactions is compromised because 
line curvatures are crudely calculated. In addition, motion of 
dislocation segments on a fixed lattice produces inherent limita­
tions to the accuracy of the overall dislocation dynamics. 
Schwartz (1998-1 & II), on the other hand, has recently devel­
oped an adaptive method to reduce the segment size when dislo­
cation interactions become strong. Using a modified form of the 
Brown formula (Brown, 1964) for the self-force on a segment, 
Schwarz circumvented the field divergence problem for very 
short segments. His work shows that substantial curvature and 
reconfiguration of interacting dislocations take place when one 
dislocation line closely approaches another one to form a junc­
tion, dipole, or other configurations. However, the number of 
straight segments required to capture these processes is very 
large, and the segment size may have to be on the order of a 
few Burgers vectors. 

In this work, we develop a new and efficient computational 
method for calculations of the elastic field of arbitrary-shape, 
3-D dislocation loops, in which the total field is the sum of 
constituent parameterized curved segments. A new procedure 
is presented where interconnected curved segments approximate 
the complex shape of a dislocation loop. Various conditions 
can be invoked on the shape functions that represent the loop, 
as desired by particular Dislocation Dynamics requirements. 
Since the shape of each segment is parameterized, a wide variety 
of representations can be used, in much the same way as the 
Finite Element Method (FEM) in continuum mechanics. Hence­
forth, we will term this method of computations simply the 
Finite Segment method (FSM), and will advance it for various 
types of parameterized curves, which will become important in 
specific applications. We present the differential geometry of 
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Fig. 1 Geometric representation of an arbitrary 3-D dislocation loop Fig. 3 Elements of a standard parametric curve 

loops in Section 2, followed by a summary of the calculation 
procedure of the elastic field in Section 3. Several test cases for 
the accuracy and speed of our proposed method are then given 
in Section 4. Finally, conclusions and discussions are outhned 
in Section 5. 

2 Computational Geometry of Dislocation Loops 

2.1 Cubic Spline Parametric Segments. The core of an 
arbitrary-shape, 3-D dislocation loop can be represented as a 
continuous line, as shown in Fig. 1. Define the dislocation line 
vector, ^, as the tangent to the dislocation line. The Burgers 
vector b is prescribed as a displacement jump condition across 
any surface bounded by the dislocation line. Assume that the 
dislocation line is now segmented into («,) arbitrary curved 
segments, labeled (1 < i < «,). Now consider only one seg­
ment, AB, as shown in Fig. 2. 

We wish to compute field quantities (displacement vector, 
stress, and strain tensors) at point Q. For the parametric curve 
AB, the coordinates (x') of any point P on the line are repre­
sented by a set of parametric equations, as: 

where the index (' is for coordinate direction, and j for a polyno­
mial power. The parameter u determines the coordinates of any 
point on the curve. For a cubic polynomial, both / and j are 
limited to 3. Summation is assumed over repeated indices. Gen­
erally, the coefficient matrix a,j is 3 X 4. When the parameter 
u varies smoothly between 0 at A and 1 at B, another equivalent 
parametric form of the segment AB is given by: 

P ( M ) = r ' = F|P(0) + FjPCl) + F,T(Q) + F,Ti\) (1) 

where: 

F, = 2u^ - 3u^ + I, F2= -2u^ + 3u^, 

Fj = « ' - 2M^ + U, F4 = U^ - u^ 

are shape functions. Definitions of the position ( P ( 0 ) , P ( 1 ) ) , 
and tangent (T(0) , T ( l ) ) vectors at both ends are shown in 
Fig. 3. The tangent vector is obtained as: 

T(«) = 
dP(u) 

du 

and: 

In component form, the position vector is given by: 

x'l = F,P,.(0) 4- F2P^(l) + F,T:(0) + FJi{\) 

The arc length vector is given by: 

rfr= dxle, (i = 1, 2, 3) 

where: 

dxl = {F,,„P,(0) + F2,.Pdl) + F,,,TdO) 

+ F,,J,{l)}du (2) 

F|,„ = 6(M^ - u), F2,u = -6(u^ - M) = -F | ,„ , 

Fxu = 3u^ - 4u + I, F4,, = 3M^ - 2M 

Therefore, the radius vector R is given by: R = X/e, = r - r ' . 
Once the parameter u is known, the entire differential geome­

try of the segment is determined. As will be shown next, the 
elastic field is only a function of this geometry. We will use 
the method of Green's tensor functions for an isotropic elastic 
medium to solve for the elastic field. It will be shown to be 
dependent on higher order derivatives of the radius vector R. 

2.2 Other Parametric Forms. Under certain conditions, 
more convenient parametric forms can represent a dislocation 
loop. For example, a dislocation loop emitted from an isotropic 
Frank-Read source (i.e., all segments have the same mobility, 
regardless of their character) can be approximated as an ellipse 
or a planar circle. If additional thermodynamic forces exist in 
the material, such as a vacancy supersaturation driving force, 
the circular loop becomes a helix. Such circumstances are often 
observed in quenching or irradiation experiments. By properly 
choosing the coordinate system to be on the loop's glide plane, 
the following parametric representation may provide a good 
approximation for the case we discussed earlier. 

X, = a cos (61), X2 = b sin (6), X3 (3) 

Fig. 2 Coordinates and notation for an Isolated curved segment 

where a, b, and c are constants. It is clear that proper selection 
of the constants can lead to circular, elliptic, or helical loop. 

A continuous closed or open dislocation loop can be repre­
sented by a set of interconnected parametric curves. The exact 
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forms of these parametric curves depend on certain imposed 
geometric conditions on the loop. For example, if we demand 
curvature continuity, along with continuity of the first and sec­
ond derivatives of of the position vector with respect to the 
parameter u, the tangent vector in Eq. (1) is completely deter­
mined. Thus the nodal positions on the loop will determine its 
shape. These details are not presented here, but will be given 
in future publications. Under some other conditions, as in most 
BCC crystals at low temperature, the expansion of the Frank-
Read source is quite anisotropic, and edge-type segments have 
a much higher mobility as compared to screw-type segments. 
Long, nearly straight segments are often experimentally ob­
served. A much simpler parametric representation is to use the 
general form of Eq. (1), with the following shape functions: 
Fi = 1 — u, F2 = u, Fj = F4 = 0. We will demonstrate the 
utility, numerical accuracy, and computational speed of each 
representation. 

3 Isotropic Elastic Fields of Parametric Loops 

3.1 Line Integral Representation of the Stress Field. 
Evaluation of the elastic field around an arbitrary-shape disloca­
tion loop requires explicit development of the equations of elas­
ticity for each finite segment. Since the stress components trans­
form as second order tensors, the total stress field of the loop 
can be obtained by linear summation of the fields for individual 
segments. The procedure is quite lengthy, and is described in 
sufficient detail by Ghoniem and Bacaloni (1997) and Ghoniem 
(1999). In this paper, however, we highlight the main equations 
that are necessary to carry out stress field and interaction force 
computations. In this procedure, we first rewrite Burgers dis­
placement equation for a loop in index tensor form. The dis­
placement vector is then differentiated to obtain the elastic strain 
in an isotropic material as a line integral. The stress tensor is 
computed from the linear relationship between the strain and 
stress in an isotropic elastic material. The line integral for each 
stress component is finally discretized by parametric segments, 
and the total stress field computed by numerical quadrature 
integration over each segment. In the case of a planar circle, 
an ellipse or a helical loop, line integrals are computed with 
just one parametric equation. Summation of field contributions 
from loop segments is not required in these cases, since the 
entire loop is represented by one closed segment. 

On any surface 5", descriljed by a set of points r ' , and which 
terminates at the dislocation line, the displacement vector com­
ponents can be obtained as surface integrals of the derivatives 
of the Green's tensor functions Ui,„, in the following form; 

,(r) = b, j CijM^Ar - r')dSj (4) 

Fig. 4 Loop area (S) and solid angle O subtended by the loop 

Umir) = bt J [XSijSi,, + G(6it6j, + duSj,,)] 

STTG 
Okml^.pp} 

\ + G 

\ + 2G' 
dS'j (8) 

Equation (8) can be further developed, since the third order 
derivative of the radius vector represents a third order tensor 
of the form: Rp^i = -2A', / |R|- \ and the solid angle subtended 
by the loop (see Fig. 4) is given by: 

ids. (9) 

Using Stokes theorem, together with Eq. (9), the surface 
integrals in the displacement equation can be readily converted 
to line integrals. The displacement vector components can now 
take the form: 

M( = — 

+ hfh'''''-m ~ \ 
^hnnPn^.n dh (10) 

In the infinitesimal deformation approximation, the linear strain-
displacement relation is given by: 

where, for isotropic elastic materials, the elastic constants Cyu 
are given as: 

and the Green's tensor functions are: 

Utm — 
1 

87rG 
X + G 

(5) 

(6) 

where X and G are Lame's constants, Sij are the Kronecker 
delta functions, and i?.t„, are successive derivatives of the radius 
vector R. Differentiating the above expression with respect to 

j , we obtain: 

Ulcm.l — 
1 

STTG 
(7) 

From Eqs . ( 2 ) - ( 5 ) , w e derive a surface integral representation 
of the displacement vector components, u„, as: 

e&- = 2 («i.y + % i ) (11) 

Now performing the derivatives, and inserting the result in Bq. 
(11), we obtain: 

Uij = 
biUj 

47r 

+ ith'"''''' m 
m ~ \ 

^kmn"n'^,niij dh (12) 

and: 

b,nj + bjili 1 ^ [ 1 . , , 

+ <^iub,R.ppj) + 
m 

m ~ I 
ikmnbnR.,, dh (13) 
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It is shown by Ghoniem and Bacaloni (1997), and by Ghoniem 
(1999) that: 

^ J ~ 2 I i^.ppiidSj' - R^ppijdSi') = 2 Q^ tjkiR.ppidlk' ( 14 ) where: 

which can be used to derive the strain components in line inte­
gral form, as follows. 

e,y = — 0 - - (ejkibiRj + embjRj - embiRj 

Vfl 
ejkibiR,i),pp H 7 £ic:mb„R,,„ij 

m — \ 
dk' (15) 

The dilatation is obtained by letting i = r andy = r, thus: 

1 m — 2 

STT m 
— y ik„mb„R.mrrdlk (16) 

J A 
Oil = ^ I [g\+ g2 + g^ + g4]du (20) 

gi ~ b„P^„ppti„,Xdl]ldu) = b„R,^ppei,„„xl„ 

2 2 
83 — z " b„R_„,ijei:i„n(dlic/du) = b„R,„ijeic,mX'k,u 

I — V \ — V 

g4 1 - V 

2 

1 - V 

b„8ijR,,„ppekm„{dl[l du) 

"n^ ij'^ jnpp^kmnX k,u^*^ (21) 

Ghoniem and Bacaloni (1997), and Ghoniem (1999) devel­
oped explicit forms for the stress field components in detail, 

when the linear stress-strain relationship is finally used in the An example of just one component is given below: 
form: 

G f 

b2[ -IR.m + -—^ iR.223 + ^,333)) + bJ 2R,m - - ^ {Ran + R.i3i) 

2 2 
~b\ (^,223 + ^,333) + ^3 "; (^,221 + ^,331) 

\ — V \ - V 

2 2 
+ b\ (/?,222 + •'?,332) ~ ^2 "; (^,221 + R.33\) 

I — V \ — V 
XXu 

) du (22) 

fJij = 2Ge,j + Xe„i5,j (17) 

and Eqs. (15) and (16) are substituted into (17), we finally 
obtain the following compact line integral form for the stress 
components: 

Oij - —-̂  Q) - R,,„pp{ej,„„dli' + ei„,„dly 

m 
Skim(R,i, bi]R,ppm)dlk (18) 

Several equivalent forms of the line integral representations 
are available in the literature (see, for example, Hirth and Lothe, 
1982) for a compact vector representation, or deWit (1960) for 
formal procedures. However, the intent in this section is to 
describe a new computational procedure in sufficient detail to 
allow for actual numerical calculations, rather than formal theo­
retical developments, as will be shown next. 

3.2 Explicit Forms for the Stress Field of a Parametric 
Segment. The closed-loop line integral for the total stress field 
of a dislocation loop will now be written as a sum of open line 
integrals for individual segments, as: 

>) A J B 

(19) 

For just one segment, such as AB, the line integral is found 
to contain only four functions of the following form: 

The integral arguments, R^uj, Ra-n, etc. represent successive 
derivatives of the radius vector with respect to the coordinate 
system 1, 2, 3. Details of this procedure, as well as explicit 
forms of parametric integrals similar to Eq. (22), are all given 
elsewhere (Ghoniem (1999)) and will not be repeated here. 

4 Computational Accuracy and Speed 
One of the objectives of determining the stress field around 

dislocation loops is to calculate the associated Peach-Koehler 
force on neighboring loops (interaction force), or on themselves 
as they change shape (self-force). To assess the influence of 
various discretization methods on the accuracy of the stress 
fields, and hence on the P-K force itself, we present here results 
of calculations for a representative example of an isolated slip-
type loop. 

Consider a typical slip loop in a BCC crystal, and assume 
that the loop is perfectly circular on the (110) slip plane. The 
Burgers vector is directed along the [111]-direction. The loop's 
radius is 200 b, where b is the magnitude of the Burgers vector. 
All length scales are measured in units of b, and all stress 
magnitudes are in units of the shear modulus, G. To demonstrate 
the accuracy and computational speed of various loop segmenta­
tion techniques, we choose to discuss the distribution of only 
one stress component. The following results are for the shear 
stress, ai2, referred to the (llO)-slip plane, where the 1-axis is 
[010]-direction and the 3-axis is the [110]-direction. 

Figure 5 shows the shear stress distribution in the vicinity of 
the (110)-[111] slip loop, calculated for a number of linear 
segments (n,) of 4, 10, 200 and 1000, respectively. The order 
of Gaussian quadrature integration is denoted by {q) on the 
figure. Calculations with an increasing number of linear seg-
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Fig. 5 Influence of the number of straight segments (n,) and quadrature 
order (q) on the shear stress distribution around a (110)-[111] slip loop 
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Fig. 6 Converged field error as a function of the number of straight linear 
segments, at two different distances from the dislocation loop edge 

ments show that the stress field is convergent with the number 
segments («,,). It is interesting to note that while the shear stress 
is singular exactly at the dislocation core, a consequence of the 
displacement jump condition, it is not entirely symmetric with 
respect to the radial distance away from the core. The value of 
the stress field changes from positive to negative as we cross 
the dislocation core, and is finite at the center of the loop (see 
table (1) for exact numerical values showing the asymmetry). 
Obviously, since the field decays to zero at infinity, the field 
asymmetry is thus dependent on the loop radius (or curvature). 
This observation may seem to be a subtle point, but it will be 
shown to be quite important to the accurate determination of 
the self-force on curved loop segments. 

It is clear that as the number of discrete linear segments is 
increased, the accuracy of the stress field in close proximity of 
the loop edge is improved. It is noted that field accuracy is 
determined not only by the total number of linear segments, 
but also by the order of the numerical quadrature employed. 
The closest points to the loop edge are 1.5 b away. 

Figure 6 summarizes the dependence of the shear stress error 
on the number of linear segments at distances of 2 b and 10 b 
from the dislocation core. The stress field value converges for 
all n., a 200, to within six significant digits. This converged 
value is used as a reference for these calculations. Moreover, 
additional computations have also been performed using analyt­
ical forms for straight linear segments given by Hirth and Lothe 
(1982). Remarkable agreement with numerical quadrature inte­
gration is obtained. Nevertheless, required stress transforma­
tions from the local segment coordinates to the global coordi­
nates renders the analytical expressions less efficient as the 
number of segments is increased. When equivalent analytical 
solutions for the stress field of straight segments in the global 
coordinate system are used (see DeVincre and Condat, 1992 
and Schwarz, 1997), this problem is alleviated. 

Geometric representation of complex shape dislocation loops 
via spline segments is inherently accurate, because curved 
splines can be adjusted to approximate the dislocation line to 
any desired accuracy. Since all elastic field quantities are just 
functions of the radius vector and its higher order derivatives, 
field errors are expected to be proportional to the ratio of spline 
deviation from the actual geometry to the magnitude of the 
radius vector. Partial cancellation of these errors may also be 
achieved as a result of the summation nature of line integrals. 
On an intuitive basis, one expects that good field accuracy is 
achievable with a relatively small number of spline segments. 
To illustrate this point further, we show in Fig. 7 the influence 
of increasing the number of spline segments on the accuracy 

of the shear stress for the same slip loop. In these calculations, 
we fix the order of numerical quadrature to 16. It is obvious 
that very small improvements at distances of \.5 b or less from 
the loop edge are obtained when the circle is represented by 
more than three to four spline segments. The effect of the order 
of numerical quadrature is made clear in Fig. 8, where the 
number of curved spline segments is fixed to only three. At 
close distances from the dislocation core, a low order quadrature 
integration scheme tends to "smear out" the asymptotic singu­
lar nature of the field. Therefore, very good accuracy in field 
and force calculations can be obtained with 3-4 spline segments 
combined with a numerical quadrature order of 16. 

It may be desirable to represent a complex shape planar dislo­
cation loop by a perfect circle, and obtain the elastic field quanti­
ties using numerical integration. In such a case, very rapid 
calculations can be performed, if the entire loop is represented 
by just one parametric equation of a full circle (e.g., Eq. (3) , 
with a = b = radius, and c = 0). This situation is envisioned 
for calculations of the P-K force resulting from small irregular 
planar loops at distances from their center larger than the loop 
diameter. No segmentation would be required in this case. Fig­
ure 9 shows the distribution of the stress field around our exam­
ple slip loop, utilizing various quadrature orders with a single 
parametric equation. Spline field distribution is compared to 

• ns = 4, q=16 
ns = 8, q=16 
ns = 20, q=16 

200 400 
Radiai Distance (b) 

Fig. 7 Effects of number of curved spline segments on the accuracy of 
the shear stress around a (110)-[111] slip loop 
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Fig. 8 Effects of Gaussian quadrature order on field accuracy for (110) -
[111] slip loop 

calculations with 2000 linear segments. It is shown that while 
the accuracy of field (hence force) calculations is poor within 
distances less than 10 b from the dislocation core, the results 
are quite good for all space, excluding these short distances. 
Thus, such approximation can be effectively used for far field 
calculations (say at distances greater than jo of the loop radius 
from the loop edge). If shape deviations from the circle are 
quite small, then such an approximation can be powerful for 
far-field calculations of small, nearly circular loops. Similar 
arguments can be made for helical loops, which result from 
vacancy supersaturation in quenched or irradiated materials. 

To appreciate the absolute accuracy of the various numerical 
integration and analytic solution methods utilized in the present 
work, numerical values of the normalized shear stress distribu­
tions are shown in Table 1 below. The results at close distances 
(1.5 b and 13.5 b) are especially highlighted. 

5 Discussion and Conclusions 
Although the elements of dislocation theory have been almost 

completely developed over the past several decades, the lack of 
efficient computational methods for the interaction and motion of 
dislocation ensembles has just been recentiy advanced. However, 
significant difficulties are now encountered in the simulation of 3-
D Dislocation Dynamics because of complex topological configu­
rations on the one hand, and the long-range internal force field on 
the other. The present method is aimed at tiie development of an 
efficient computational scheme for evaluation of internal Peach-
Koehler forces and interaction energies amongst complex disloca­
tion configurations. This is achieved by dividing dislocation loops 
into a small number of curved segments, which if appropriately 
chosen, can represent the dislocation core to great accuracy. Study­
ing a particular example of a typical slip loop in BCC crystals has 
shown the usefulness of the present method, but the procedure is 
rather general. 

Representation of dislocation loops by parametric equations, 
coupled with a fast integration technique for field variables as 
line integrals, appear to have a number of potential advantages. 
These are summarized as: 

(1) A complex dislocation loop (e.g., during the operation of 
a Frank-Read source, or during the process of cross-slip 
for nonplanar loops) can be represented by a relatively 
few number of curved segments. The Peach-Koehler force 
resulting from the interaction of one loop with another 
can thus be numerically computed as a fast summation 
over those few curved segments. This can be quite advan­
tageous in 3-D Dislocation Dynamics, because the force 

computation is proportional to the square of tiie number 
of segments. Thus a reduction of two orders of magnitude 
in the number of segments will result in four order of 
magnitude reduction in force calculations. 

(2) Because of the high accuracy of curvature representa­
tion in the present method, the computation of self-
forces and self-energies of individual segments within 
one loop is inherently accurate. 

(3) When the P-K force and other elastic field quantities 
are required at distances greater than approximately 20 
—j^ of a loop diameter from its core, very useful approx­
imations of the loop can be advantageously used within 
the current line integral context. Thus, planar circles 
can readily approximate the core of small irregular 
loops, while dipolar loops can be treated as elongated 
ellipse, etc. 

(4) Although two nodes bound each segment, the disloca­
tion core is described by a continuous curve in-between. 
Thus, the segment has an infinite number of degrees of 
freedom. This particular aspect can be quite significant 
in a variational development of the equations of motion 
(see Ghoniem, 1999). Other formulations of the equa­
tions of motion of straight segments use an averaging 
scheme for force variations on the segment. Thus, when 
the segment is long, averaging of the P-K force at a 
central nodal position becomes less accurate. 

(5) Since the dislocation loop is continuously described by 
a set of curves, updating the loop shape in dislocation 
Dynamics can utilize the existence of such "shape 
functions." The need to artificially impose connectivity 
conditions where the straight pieces do not fit with one 
another upon updating the positions of their central 
nodes is thus alleviated. 

The in-plane self-force at a point on the a planar loop has 
been shown by Gavazza and Barnett (1976) to be given by: 

f.m = - K £ ( T ) + ^ binj{ay(P + em) + ayiP - em)} (23) 

where the local unit tangent, principal normal and curvature are 
t, m, and K, respectively. £ ( t ) is a prelogarithmic energy factor 
for an infinitely long dislocation line. The distance e represents 
a position very close to the core (e.g., 1.5 ^ in Table 1). Barnett 
(1980) generalized Eq. (23) to noncircular loops, and showed 
that in the limit, the force averaging given by the last two terms 
can be computed in terms of the loop curvature at the point P. 
Thus, the asymptotic form of the local self-force is given by: 

0 200 400 

Distance from Loop Center (b) 

Fig. 9 Influence of numerical quadrature integration order on stress 
field accuracy for a slip loop represented by a single circular parametric 
equation 
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Table 1 Normalized shear stress distribution calculated with different parametric and analytic forms 

Position 
(b) 

0.0000 
40.0000 
73.3000 
101.9000 
126.9000 
149.1000 
169 1000 
187.3001) 
198.5001$ 

201;5000 
ii3.im' 
240.5000 
288.5000 
363.5000 
471.5000 
618.5000 
810.5000 

Single 
Loop 

Na=1 
3.0357e-3 
3.1388e-3 
3.4185e-3 
3.8951e-3 
4.6757e-3 
6.0544e-3 
8.9764e-3 

omn ' ' 
0.020«> 

.«J1«7 

.0.0163 -
-4.1846e-3 
-1.4573C-3 
-5.4672e-4 
-2.14216-4 
-8.7221e-5 
-3.7034e-5 

Cubic Spline 

Ns=3 
3.26S4e.3 
3.3620S-3 
3.6591e-3 
4.1676B-3 
4.99346-3 
6.4347e-3 
9.4873e-3 
p,ojo4:;;.;i 
o.urt . 

Ns=10 
3.0364e-3 
3.1396e-3 
3.4196e-3 
3.8966C-3 
4.6778e-3 
6.0574e-3 
9 01705-3 

6.0|9T:'-.-
n.uiP'-

-b,lJ09 .• 
-0.0145-,-. 
-3.8641e-3 
-1.2947e-3 
-4.7702e-4 
-l.8559e-4 
-7,5457e-5 
-3.2053e-5 

•0.1S82. .-
•'ttOisiii-
-4.2006e-3 
-1.4557e-3 
-5.4637e-4 
-2.1409C-4 
-8.7175e-5 
-3.7016e-5 

Analytic 

Na 
3.8652e-3 
4.0433e-3 
4,5371e-3 
5.3831e-3 
6,7836e-3 
9.2869e-3 
0.0147 

.fl.6347-; f 
-oassd'-. 

••0;07!S . -
"-7;8487e-3 
-2.2677e-3 
-8.2006e-4 
-3.2030O-4 
-1.2944e-4 
-5.3808e-5 
-2.3140e-5 

Numerical 
q=3 

=4 
3.9299e-3 
4,0800e-3 
4,3257e-3 
4.7645e-3 
6.5662e-3 
0.0127 
0.0226 

'5.4045C-3 • 
;i.994iS(!.3' 

Analytic 

Ns 
3.1397e-3 
3.2541e-3 
3.5679e-3 
4.1116e-3 
5.0193e-3 
6.65160-3 
0.0102 
0.0233 • • 
(1.1902 

.-3.66S5t!.3t 
••.3.1S38e-3 
-l,9071e-3 
-8,0531e-4 
-3,2019e-4 
-l.2947e-4 
-5.3813e-5 
-2.3140e-5 

•0.1194 
.-0.0125 
-3.60916-3 
-1.2972e-3 
-4.98496-4 
-1.97756^ 
-8.10196-5 
-3.45096-5 

Straight Segments 
Numerical 

q=3 
=10 

3.13996-3 
3.25436-3 
3.5680e-3 
4.10886-3 
4.99346-3 
6.3981e-3 
0.0110 
0.02.13 
t.l$02e-3 

Analytic Numerical 
a=3 

Ns=100 
3.03676-3 
3.13996-3 
3.41996-3 
3.89726-3 
4.6789e-3 
6.06026-3 
9.02766-3 
0.0198 
0.15(14 

3.03676-3 
3,13996-3 
3.41996-3 
3.89726-3 
4,6789e-3 
6,0602e-3 
9 02766-3 
0.01^8 
D.lSlO 

•(i.5012e-3 
•0,0102 
-3.66796-3 
-1.29846-3 
-4.98486-4 
-1.97756-4 
-8.1019e-5 
-3.4509e-5 

•0.1468 
•0.01S0 
-4.19566-3 
-1.4551e-3 
-5.46226-4 
-2.14046-4 
-87157e-5 
-3.70086-5 

•0.1384 
•0.0150 
-4,19566-3 
-1,45516-3 
-5,46226-4 
-2.14046-4 
-8.71576-5 
-3,70086-5 

Analytic 

N5= 

3,03576-3 
3,13886-3 
3,41856-3 
3.89526-3 
4.67576-3 
6,0539e-3 
9 01126-3 
0.0197 
0.1539 

•0.1492 
•0.0151 
-4,20446-3 
-1,45696-3 
-5,46730-4 
-2,14210-4 
-872216-5 
-370340-5 

Numerical 
q=3 

1000 
3.03576-3 
3.1388e-3 
3.4185e-3 
3.8932e-3 
4.67576-3 
6,05396-3 
9,0112c-3 
0.0197 
0.1539 

-0,1492 
-O.OMl 
-4.20446-3 
-1.45696-3 
-5.46736-4 
-2.14210-4 
-8.72216-5 
-3.7034O-5 

f.m = -KE(t) + K{£(t) + £"( t ) l In — 
KC 

(24) 

where E" is the second derivative of the prelogarithmic term. 
It is interesting to note that once the local curvature, K, and the 
core size, e, are both given, the self-force is accurately deter­
mined at any point on the loop. The total Peach-Koehler force 
at a point is composed of the self-force given by Eq. (24) and 
contributions from other segments on the loop. Schwarz (1998 
I & II) evaluated contributions of various terms to the P-K force 
given by Eq. (24). He showed that the contributions from the 
last two terms are completely dominant, especially for loops 
with K < O.I nm"'. Nonlocal contributions to the force have 
also been shown to be small. The segment size (i.e., the change 
from local to nonlocal force contributions) is only significant 
when substantial variations in the dislocation curvature along 
this particular segment are encountered. Thus, when one uses 
a straight dislocation segment, its size must be very small so 
as to enhance the non-local contributions (i.e., from neighboring 
segments). This is again difficult because the force distribution 
along one segment diverges as the segment gets smaller because 
of singularities at the sharp corners of a straight segment. 

Since the current procedure is purely numerical, an interesting 
question poses itself. With the potential advantages of the pres­
ent method, does it suffer from being computationally slow 
compared to implementation of analytical solutions for short 
straight segments? To answer this question, a number of compu­
tational speed tests have been performed on a DeC-alpha work­
station (433 MHz). The results are given in Table 2. While 
numerical calculations with a fourth order quadrature are 
slightly slower than corresponding analytical solutions, they are 
indeed faster for a second order quadrature integration scheme. 

Table 2 Comparison of the computational speed for stress field calcula­
tions for parametric and analytic forms 

1000 Linear Segments 

Analytic Numerical, q = 2 Numerical, q = 4 

360 347 515 

Analytic Analytic 

Same Accuracy Test 
Numerical 

100 1000 
Segments Segments 

88 360 

Cubic Spline, 3 Segments, q=16 

66 

milliseconds on DeC Alpha 433 MHz 

These comparisons are given for a loop divided into straight 
linear segments. What is also remarkable is the fact that numeri­
cal integration with only three cubic spline segments are much 
faster than corresponding analytical solutions using 100 (or 
1000) straight segments to achieve the same numerical accu­
racy. The main reasons for these results are: 

(1) The numerical calculations are nothing more than fast 
summations performed over terms containing various 
combinations of the components of the vector distance 
between the point and the loop line vector. 

(2) The analytical expressions are obtained in the frame 
of reference of a straight segment. Thus, coordinate 
transformations to a global sy,stem result in additional 
computational overhead, which increases with the num­
ber of segments. As mentioned before, the form utilized 
by DeVincre and Condat (1992) in the global system 
alleviates this problem. 
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