
Journal of Computer-Aided Materials Design, 6: 323–335, 1999.
KLUWER/ESCOM
© 1999Kluwer Academic Publishers. Printed in the Netherlands.

Modeling laser-induced deformation patterns: Nonlinear effects
and numerical analysis

D. WALGRAEFa,∗ and N.M. GHONIEMb

aCenter of Nonlinear Phenomena and Complex Systems, Free University of Brussels, CP 231, Boulevard du
Triomphe, B-1050 Brussels, Belgium
bMechanical and Aerospace Engineering Department, The University of California at Los Angeles, Los Angeles,
CA 90024, U.S.A.

Received 20 July 1999; Accepted 1 October 1999

Abstract. The formation of laser-induced deformation patterns on thin films and surfaces may be described by a
dynamical model for the coupled evolution of defect densities and deformation fields of the material. Increasing
laser intensity induces deformational instability, which may be characterized in the framework of linear stability
analysis of undeformed states. However, the selection and stability of deformation patterns are determined by
nonlinear effects, and require full nonlinear analysis in the post-bifurcation regime. Analytical and numerical
results are presented for uniform laser irradiation of pure metallic thin films, and the conditions for pattern selection
are discussed.
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1. Introduction

Laser-induced instabilities are becoming particularly important in several aspects of surface
modification technologies. On the one hand, laser–surface interaction may control the struc-
ture and properties of thin films, coatings, semi-conductor surfaces. On the other hand, strong
laser radiation induces structural and morphological changes in matter which are responsible
for the degradation of light emitting devices, cumulative laser damage of optical compo-
nents, non-uniform melting of semiconductor surfaces, to cite only a few of these aspects
[1–4]. Furthermore, laser annealing and fast recrystallization may lead to special types of
structures including molten and crystalline phases, and laser-assisted thin film deposition
processes should also be in the mainstream of this activity [5]. Many of these phenomena
proceed through the formation of regular structures on the surface of the material, and laser–
surface interaction is evidently a field where patterning phenomena are overwhelming. Such
deformation patterns are obviously the result of dynamical instabilities, and the methods of
non-linear dynamics should thus allow us to describe and understand the mechanisms of
pattern formation, selection and stability in films and coatings under laser irradiation.

The main instability mechanism in laser-irradiated materials is due to the coupling be-
tween defect dynamics and surface deformation [6]. The interaction of electromagnetic laser
radiation with thin films leads to very strong absorption of photon energy in a shallow layer
that is a few wavelengths deep from the surface. As a result, substantial non-equilibrium
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Figure 1. Geometrical set-up of a thin film under laser irradiation.

concentration of lattice defects is generated. The type of lattice defects depends on photon
energy, wavelength of laser radiation and materials parameters. Examples of such defects are:
electron-hole pairs in strongly absorbing semi-conductors, interstitials and vacancies in thin
films, and voids and dislocation loops in prolonged irradiation. It is the coupling between
defect generation, diffusion and the deformation field which leads to pattern-forming insta-
bilities. As a result, the dynamical description of such phenomena should be based on the
dynamics of the defect fieldNd in the thin film and the elastic continuum of the host mate-
rial described by the displacement vectorU(r , t) = (Ux,Uy,Uz) with appropriate boundary
conditions, both dynamics being coupled through the defect-strain interaction. Various types
of defect structures may be induced by such dynamical systems. For example, in the case of
thin films under laser irradiation, regular deformation patterns may appear on the film surface
when the laser intensity exceeds some threshold. In spatially extended irradiation zones, one-
and two-dimensional gratings have been widely observed [7,8]. In particular, when irradia-
tion proceeds with focused beams, such as in laser-induced film deposition [6] or in etching
experiments [9], rose-like deformation patterns are observed, where a finite number of petals
develops around a central uniform spot. One striking experimental observation is that the
number of petals increases with the intensity of the laser beam.

The system to be considered in this case is a thin film on a substrate, which is modeled by
a thin horizontal crystalline layer submitted to a transverse laser beam. The geometry of the
corresponding set-up is represented in Fig. 1.

Due to thermal heating induced by laser irradiation, an increased vacancy density is created
in the subsurface layer. The corresponding transverse vacancy density profile results in a force
on the film which may induce bending deformation. Even under uniform irradiation, this
system may become unstable versus non-uniform deformations or vacancy density variations.
Physically, a local increase in the vacancy density generates a lattice contraction in the film.
This contraction has two effects: it locally reduces the defect formation energy, and, further-
more, induces a converging defect flux. As a result, both film contraction and local defect
density will increase. On the other hand, a deformation bump in the film locally decreases the
defect density. It furthermore increases the defect formation energy and induces an outgoing
defect flux. In this case, a deformation bump will increase while the defect density will de-
crease. There is thus a feedback loop between local deformation and defect density variations,
which provides a destabilizing mechanism for uniform deformations. However, vacancy dif-
fusion tends to wash out non-uniformities in the system and provides a stabilizing mechanism
for uniform defect densities. Instability occurs when the feedback loop effects dominate over
diffusion, and this instability is of the Generation–Diffusion–Deformation–Instability type [6].
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Two non-linear mechanisms saturate the growth of this instability. The first one comes
from finite deformation elasticity, which limits the growth of the deformation. The second
one results from vacancy dynamics, where the extra defect flux induced by surface defor-
mation is proportional to the vacancy density. Consequently, defect fluxes from regions of
decreasing defect density decrease accordingly in a feedback process which thus limits defect
localization.

Hence, the dynamical model which can describe the evolution of such a system should
be based on (i) a non-uniform transverse temperature field across the film, induced by laser
irradiation; (ii) the evolution of vacancy density in strained crystals, including generation and
transport; and (iii) the deformation of a thin film in the presence of a non-uniform vacancy
density.

These three aspects have been analyzed elsewhere, and assembled in a full dynamical
model, able to describe the main aspects of deformation patterning under laser irradiation
[17,18]. Although pattern formation under extended and focused irradiation have already been
described elsewhere, in the framework of this model [17–19], we will describe here, in more
detail, how nonlinear effects determine stable patterns and their geometry. In particular, we
will show that the geometry of selected patterns changes if the dominant nonlinear effects
come from defect or elasticity fields. Furthermore, we will show that numerical analysis of the
full dynamical model validates analytical results of the weakly nonlinear analysis, performed
close to instability. The dynamical model and instability conditions for undeformed states are
briefly recalled in Sections 2 and 3. Pattern selection is discussed in Section 4, where the role
of nonlinear couplings between unstable modes is emphasized. Numerical confirmations of
results obtained in Section 4 are presented in Section 5. Finally, conclusions are drawn in
Section 5.1.

2. The dynamical model

The film is assumed to have a thicknessh, and its dimensions in thex andy directions are
assumed to be much larger thanh. Its dynamics is supposed to be governed by the following
coupled evolution of vacancy density,C, and transverse mid-plane film displacement,ξ [6,17]:

∂tC = D⊥∂2
zzC +D‖4C −

C

τ
+ E∇ θvD‖C

kT
E∇( E∇.U)

+ ∇z θvD⊥C
kT

∇z( E∇.U)+ g exp[−Ef
kT
](1+ θv E∇.U) , (1)

where the first term on the right is the transverse vacancy diffusion rate, the second is the
in-plane diffusion rate, the third is the rate of vacancy absorption on microstructural sinks, the
fourth is the in-plane drift rate of vacancy transport due to displacement gradients in the film,
the fifth is the transverse component of vacancy transport in the presence of the elastic field,
and the sixth term is the vacancy generation rate in the presence of displacement gradients.
Under usual experimental conditions,D‖τ ' 10−5 cm2 and|θv| ' 10−10 erg.

E∇.U = −zm4ξ , (2)

∂2
t ξ +

c2h2

12
42ξ − c

2

2
σij∂

2
ij ξ +

θv

ρh
(C+ − C−) = 0 , (3)
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whereC± = C(Er,±h/2, t) and

σxx ' ((∂xξ)
2+ ν(∂yξ)2) (4)

σyy ' ((∂yξ)
2+ ν(∂xξ)2) (5)

σxy ' −2(1− ν)(∂xξ)(∂yξ) (6)

All kinetic coefficients and parameters are defined in Reference 17.

3. Instability of undeformed states

Let us consider the ideal situation of horizontally uniform irradiation of the film surface, which
may adequately represent the case of thin films irradiated over large area bycw or pulsed
lasers. We will furthermore assume that the temperature profile has reached its equilibrium
value, or that its evolution is sufficiently slow, versus vacancy generation, to consider it as
quasi-stationary. In the absence of deformation, the equilibrium vacancy density profileC0(z)

is then the solution of the steady state equation

∂tC
0 = D⊥∂2

z C
0− 1

τ
C0+ g exp[− Ef

kT (z)
] , (7)

with the boundary conditions:

∂zC
0|z=h/2 = ∂zC0|z=−h/2 = 0 . (8)

Hence, the transverse variation of the defect density follows the temperature variation across
the film. This profile is linear in the limit of a strong absorbing layer, and we may write:

T = T+ + T+ − T−
h

(z− h
2
) (9)

whereT+ andT− are the temperatures of upper and lower surfaces, respectively, andC0(z)

behaves as:

C0(z) ' C0
+ expγ (z− h

2
), (10)

whereC0+ = gτ exp[− Ef

kT+ ], whenγ
√
D⊥τ � 1, with γ = Ef1T/kT 2

S h. This gives

C0(h/2) = C0
+, C0(−h/2) = C0

+e
−γ h = C0

− . (11)

The stability of the undeformed reference state versus spatial perturbations in the hori-
zontal plane may be performed on studying the linear evolution of small perturbations of the
undeformed state. Such perturbations are defined asn(Er, z, t) = C(Er, z, t) − C0(z), or, in
particular,n+(Er, t) = C+ − C0+ andn−(Er, t) = C− − C0+ exp−γ h.
On performing the following scalings:

∂T = τ∂t , 4̄ = τD‖4 , µ = 6mθ2
vD‖τ

ρc2h2k
, β = ch√

12D‖
, ζ = − hθv

2kD‖τ
ξ

N = µ(n+ + n−), n = µ(n+ − n−)
ε = µ(

C+
T+
+ C−
T−
), η = µ(C+

T+
− C−
T−
) (12)
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the dynamical model becomes:

∂TN = 4N − N − η4(4+ 1)ζ − E∇(χn+ δN) E∇4ζ (13)

∂T n = 4n− n− ε4(4+ 1)ζ − E∇(χN + δn) E∇4ζ (14)

1

β2
∂2
T ζ = −42ζ − n+ uσij (ζ )∂2

ij ζ , (15)

whereu = 6(2kTD‖τ/|θv|h2ν)2, χ = T+ + T−/2T+T− andδ = T+ − T−/2T+T−.
The linear evolution matrix of the coupled deformation-defect system is then, in Fourier

transform: 1
β2ω

2+ q̄4 1 0

εq̄2(q̄2 − 1) ω + 1+ q̄2 0
δq̄2(q̄2 − 1) 0 ω+ 1+ q̄2

 , (16)

whereq̄ is the dimensionless wave vector and the corresponding characteristic equation writes:

(ω+ 1+ q̄2)[( 1

β2
ω2+ q̄4)(ω+ 1+ q̄2)− εq̄2(q̄2 − 1] = 0 . (17)

Since in realistic experimental conditions,c ' 105 cm.s−1, h ' 10−2 cm, andD‖ '
10−5 cm2.s−1), one hasβ � 1, and the relevant root for instability is:

ω1 = ε(1− 1

q̄2
)− (1+ q̄2) . (18)

Hence,ε plays the role of a bifurcation parameter, and the instability threshold is given by the
minimum of the marginal stability curve

ε = q̄2(q̄2+ 1)

q̄2− 1
. (19)

or

εc = (1+
√

2)2 ' 5.8, q4
c = εc (20)

whereq is the scaled wavenumber.
Above the instability threshold, there is a band of unstable wave vectors, going fromqm to

qM , where

q2
M(m) =

1

2
[ε − 1±

√
(B − 1)2− 4ε] (21)

The modes with maximum growth rate correspond to dimensionless wavenumberq0 =
ε1/4, or to unscaled wavelength

λ0 = 2π
√
τD‖ε−1/4 = 2πlε−1/4 (22)

Hence, it may be expected that spatial modulations of wavenumber q equal to or close to
q0 will grow first, leading to the formation of a deformation pattern with a wavelength which
is typically of the order of 10µm [17]. It is interesting to note that Equation 22 provides a
simple physical interpretation of the selected pattern wavelength. The main dependence is on
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the vacancy mean-free path, with weak contributions from the critical bifurcation parameter.
Thus, the wavelengthλ0 is of the order of 10 times the vacancy mean-free path in most sys-
tems. In a well-annealed thin film,λ0 ' 10µm, with l ' 1µm, consistent with experimental
observations [7,8]. However, if other experimental conditions correspond to a thin film that
contains a high density of initial defects, the vacancy mean-free path would be short, and
the corresponding pattern wavelength small. This finding can be readily tested in appropriate
experimental settings.

In isotropic systems, there is an orientational degeneracy in the problem, since the insta-
bility threshold and the linear growth rate of the unstable modes only depend onq2. Under
these conditions, not only all the modes of the unstable band may grow, but also unstable
modes with any orientation may equally grow. The survivors, and of course the final selected
patterns are determined by their nonlinear interactions. Thus, nonlinear saturation terms of
the dynamics will determine which structure should be selected and what its stability domain
should be. This study evidently requires a nonlinear analysis beyond instability, which will be
discussed now.

4. Weakly nonlinear analysis and pattern selection

In the weakly non-linear regime beyond a pattern-forming instability, the dynamics may be
reduced to the evolution of an order parameter-like variable which corresponds to the unstable
modes [13]. In the present case, this reduction may be performed in the framework of the adia-
batic elimination of the stable modes [12]. In the case of uniform (or extended) irradiation, one
is the total mean defect density, N, which is the eigenmode corresponding to the eigenvalue
ω(4) = −(1+ q2) of the linear evolution matrix. The second one is the transverse displace-
ment of the mid-plane,ζ , that may also be adiabatically eliminated since the characteristic
time scale of its evolution,β, is negligibly small. These two variables may thus be expressed,
in Fourier transform, as a series expansion in powers of n. This expansion, deduced from the
dynamical system (Equations 13–15), gives, up to the first relevant contributions [17]:

τ0∂T nEq = [ε̄ −3(q2 − q2
c )

2]nEq + v
∫
c

dEk(E1q.E1k)nEq−EknEk

−
∫
c

dEk
∫
c

dEk′g({E1q})nEq−Ek−Ek′nEkn Ek′ + . . . (23)

whereτ0 = 2+√2, ε̄ = (ε− εc)/εc andq2− q2
0/q

2
0,3 = τ0/q

2
0, v = τ0(δ+χη/εc) andg =

(u/q8
0)6i,jEij ({E1q})+τ0χ(χ+δη/εc).(E1q.E1k)((E1q−E1k).E1k′)(1/1+2q2

0(1−(E1q .E1k))). nEq is the
order parameter-like variable, and, in the weakly non-linear regime around the instability, the
expansion may be limited to cubic nonlinearities, which are the first relevant contributions for
the saturation of the instability. One may now discuss pattern selection and stability through
the analysis of the corresponding amplitude equations, which may be easily obtained from
Equation 23.

The simplest pattern one may think of corresponds to stripes, which are defined, in real
space, byn = Aeiq0x + Āe−iq0x (the choice of the wave-vector orientation is arbitrary, as
a result of the isotropy of the model, and the following results do not depend on it). The
asymptotic evolution of their amplitudes is then given, at the lower order inε̄, by [12]:

τ0∂T A = ε̄A+ ζ 2
0 ∂

2
xA− gA|A|2 (24)
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whereζ 2
0 = 4q2

c3, andg = uεc/q8
0 + 2/(1+ 4q2

0).
This equation admits the following family of steady-state solutions:

A0 =
√
ε̄ − ζ 2

0k
2ei(kx+8), (25)

8 being an arbitrary phase variable. These solutions are stable versus long wavelength pertur-

bations in the range 0≤ k ≤
√
ε̄/3ζ 2

0 (zig-zag and Eckhaus stability limits [14]). Furthermore,
the stripes with maximum growth rate are the critical ones(k = 0).

Due to the structure of the evolution Equation 23, one has to test the stability of the critical
stripe solutions Equation 25 versus modulations with wave vectors making an arbitrary angle
φ with its own wave-vector direction (say e.g. x), and of amplitudeAφ. Forφ 6= 2π/3, there
is no contribution in their dynamics that comes from the quadratic term of Equation 23, and
their linear growth rate, in the presence of the stripes Equation 25, is then:

τ0∂T Aφ = ε̄(1− γ (φ))Aφ + ζ 2
0 (
E1φ. E∇)2Aφ (26)

where

γ (φ) =
4 cos2(φ)

(1+2q2
0)

2−4q4
0 cos2(φ)

+ uεc

q8
0
[2ν + 2(1− ν)] cos2(φ)]

2
1+4q2

0
+ uεc

q8
0

(27)

The first part of this term dominates when the non-linearities arising from the bending
equation are negligible versus the non-linearities of the defect dynamics (this corresponds to
u � 1 or film thicknessh ≥ 5 µm typical experimental conditions), while the second part,
which is of the Proctor–Sivashinsky type of coupling [15,16], dominates when non-linearities
of the defect dynamics become negligible, which is the case for thinner films, such thatu� 1
(or h ≤ 5 µm for typical experimental conditions). The maximum growth rate for these
modulations corresponds to the minimum ofγ (φ), and, for Poisson ratios in the physically
acceptable range (0≤ ν ≤ 1/2), γ (φ) is minimum forφ = π/2, where it is always less than
one. The result of this analysis is that stripes are always unstable, in isotropic systems, versus
rectangular bimodal patterns.

The amplitude equations of such patterns, defined asn = Aexpiq0x + B expiq0y + c.c.
are:

τ0∂T A = ε̄A+ ζ 2
0 ∂

2
xA− gA(|A|2+ γ (

π

2
)|B|2)

τ0∂T B = ε̄B + ζ 2
0∂

2
xB − gB(|B|2+ γ (

π

2
)|A|2) (28)

and the uniform steady-state solution corresponds to:

|A|2 = |B|2 = ε̄

g

2q8
0 + εcu(1+ 4q2

0)

2q8
0 + εcu(1+ 2ν)(1+ 4q2

0)
(29)

When quadratic terms are irrelevant (v ' 0), which is the case when temperature and defect
densities are nearly uniform across the film thickness, square planforms are stable when elas-
tic nonlinearities dominate, i.e. when the film is sufficiently thin to behave as a membrane.
However, when the film is thicker, and behaves as a plate, defect nonlinearities dominate, and
γ (φ) ' 2 cos2φ/(1+ a sin2φ), with a = 4q4

0/(1+ 4q2
0) (a ' 2.3 atε = εc).
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In this case, it is easy to show that square planforms are unstable versus modulations with
an angle in the range defined by cos2φ = (1+ a)/(2+ a). As a result, square planforms
are most unstable versus modulations withφ = π

4 , leading to multimodal patterns formed
by four pairs of wave vectors separated by angles ofπ/4, π/2 and 3π/4. The growth rate of
π/4 modulations( a

1+a ) is, however, smaller than the growth rate of supercritical hexagonal
modulations from stripes1+3a

2+3a . Under these conditions, supercritical hexagonal patterns are
expected to be dynamically selected (see Fig. 3). Note that supercritical hexagons may easily
be recognized from subcritical ones. For subcritical hexagons, the sum of the phases of the
underlying triplet of unstable modes is fixed, which is not the case for supercritical ones. As
a result, in the first case, the maxima of the order parameter-like variable remain strictly on a
hexagonal (or triangular) lattice throughout the system [12], while in the latter case, domains
may develop, with different positions of the maxima on the lattice (cf. Fig. 3).

For increasinḡε, a increases, and the range of unstable angles becomes wider. Supercritical
hexagonal planforms may, in turn, become unstable versus patterns built onn > 3 pairs of
modes, and that are of the quasi-crystalline type (see Fig. 4). Note that these quasiperiodic
patterns appear here as a natural consequence of the form of the non-linear couplings as
suggested in Reference 20, and do not require particular combinations of external forcing
as in other systems [21,22].

When quadratic nonlinearities are relevant, i.e. whenv 6= 0, subcritical patterns may also
develop in the system. They correspond to hexagonal planforms built on modulations with
wave vectors making 2π/3 angles between them. In this case the order parameter-like variable
writes as:

n = A1e
iEq1Er +A2e

iEq2Er +A3e
iEq3Er + c.c. (30)

with Eq1+ Eq2+ Eq3 = 0, |Eqi | = q0, and the corresponding amplitude equations are [14]:

τ0∂T A1 = [ε̄ + ζ 2
0

4q2
0

(Eq1 E∇)2]A1 − v
2
Ā2Ā3− gA1(|A1|2+ γ (2π

3
)(|A2|2+ |A3|2))

τ0∂T A2 = [ε̄ + ζ 2
0

4q2
0

(Eq2 E∇)2]A2 − v
2
Ā1Ā3− gA2(|A2|2+ γ (2π

3
)(|A1|2+ |A3|2))

τ0∂T A3 = [ε̄ + ζ 2
0

4q2
0

(Eq3 E∇)2]A3 − v
2
Ā1Ā2− gA3(|A3|2+ γ (2π

3
)(|A1|2+ |A2|2)) (31)

Uniform solutions of amplitude

|A1| = |A2| = |A3| = 1

4g(1+ 2γ (2π
3 ))
[v +

√
v2+ 16gε̄(1+ 2γ (

2π

3
))] (32)

exist for these equations and are stable for [14]:

− v2

16g(1+ 2γ (2π
3 ))
≤ ε̄ ≤ 3v2

16g(1− γ (2π
3 ))

2
(33)

if γ (2π/3) > 1. If γ (2π/3) ≤ 1, which is the case here, they are stable in all the range
−(v2/16g(1+ 2γ (2π

3 ))) ≤ ε̄.
Furthermore, linear stability analysis shows that squares are unstable versus hexagons for

0≤ ε̄ ≤ v2

2g(γ (2π
3 )+ γ (π6 ))

= εh (34)
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On the other hand, families of hexagons with|Eqi | = q0 + k 6= q0 may also be steady-state
solutions of Equation 31. Their amplitude varies as Equation 32, withε̄ = ε̄ − ζ 2

0 k
2. Their

phase stability may be studied along the usual procedure [12]. Sinceγ (2π
3 ) ≤ 1, one then

finds that such hexagons exist in the rangeε̄ > −((v2)/(16g(1+ 2γ (2π
3 ))))+ ζ 2

0 k
2, and are

phase stable in the rangeε̄ > −(v2)/(64g(1+ 2γ (2π
3 )))+ 8ζ 2

0 k
2+O(k3).

In the case of membrane behavior of thin films, squares and hexagons may thus be simul-
taneously stable for̄ε > εh. Hence, since squares are unstable at instability (for 0≤ ε̄ ≤ εh),
hexagonal deformation patterns should always be observed for steady increase of laser inten-
sity. For ‘quench’ experiments, i.e. when laser irradiation is initiated suddenly in the range
ε̄ > εh, either squares or hexagons could be observed, as the result of their bistability.

5. Numerical analysis

From the point of view of pattern formation phenomena, the formation of supercritical quasi-
periodic patterns, due to the particular form of the cubic nonlinearities of the order parameter-
like equation (Equation 23) is original. To check the predictions of the weakly nonlinear
analysis, the model (Equations 13–15) has been studied numerically, whenη = δ = 0,
which rules out subcritical bifurcations, and thus mimics the behavior of uniform systems
with negligible transverse temperature gradients. The method used is an explicit Euler method
in Fourier space, with an iterative resolution of the nonlinear deformation equation for the
bending coordinate. The system corresponds to 128× 128 or 256× 256 grids with periodic
boundary conditions. The initial values of the variables were fixed atN = n = ζ = 0
with 1% noise on then-variable. In the thin (‘membrane’) film regime (u � 1), square
patterns are obtained, in confirmation of the analytical results (see Fig. 2). In the ‘thick’ or
‘plate’ regime (u � 1), supercritical hexagonal (see Fig. 3) and quasi-periodic patterns are
obtained. By increasing the bifurcation parameter, it may effectively be shown that stable
patterns withn = 3,4,5,6 and 8 pairs of wave vectors are successively produced. There
is thus a basic agreement between the results of the amplitude equation description and the
numerical analysis of the complete dynamical system, although quasi-periodic patterns were
obtained for relatively high values of the bifurcation parameter. An example of such a pattern
is presented in Fig. 4. In this figure, the upper left figure represents the spatial pattern in
real space, while the upper right figure corresponds to the same pattern in Fourier space. The
lower figure shows the intensity of the Fourier spectrum of the pattern versus wave vector. The
Fourier spectrum is computed from the numerical solutions of the dynamical model. Besides
the good definition of the pattern symmetry, one should note the sharp wavenumber selection.

5.1. CONCLUSIONS

A dynamical model describing the coupled evolution of defect and elasticity fields in thin
films under intense laser irradiation has been shown to be able to predict the formation of
deformation patterns on the film surface. Previous analysis has shown that the threshold for
mechanical instability of laser-irradiated thin films is controlled by a bifurcation parameterε,
which can be written as

ε = ε1.ε2.ε3 (35)
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Figure 2. Square-like patterns obtained in the numerical analysis of the dynamical model for thin film behavior
of the irradiated layer (u→∞, ε = 6.5 or ε̄ ' 0.1).

Figure 3. Supercritical hexagonal pattern, and its Fourier transform, obtained in the numerical analysis of the
dynamical model for plate behavior of the irradiated layer (u→ 0, ε = 6 or ε̄ ' 0.03).

where

ε1 = C̄θv

ρc2
(36)

andC̄ is a suitable mean vacancy concentration,

ε2 = θv

kT̄
(37)
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Figure 4. Patterns with fivefold symmetry obtained in the numerical analysis of the dynamical model for plate
behavior of the irradiated layer (u � 1, ε = 34 or ε̄ ' 4.7) (upper left: pattern, upper right: Fourier transform,
down: spectrum versus wavenumber).

andT̄ is a suitable mean temperature,

ε3 = D‖τ
h2
= ( l

h
)2 (38)

wherel is the mean-free path of a vacancy in the thin film.
The physical meaning of the components of the bifurcation parameter is as follows.ε1 is

a measure of the ratio of the energy stored in lattice defects to the kinetic energy associated
with sound propagation in the film. The parameterε2 is a measure of the energy decrease of
an atom near a vacancy to its thermal energy, andε3 is a measure of the ratio of the vacancy
mean-free path to the film thickness.
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The linear stability analysis derived from the present model is only adequate for studies
related to the onset of thin film instability. However, for obvious practical purposes, it is
essential to determine and predict the nature of selected patterns and their dependence on
material and irradiation conditions. This can only be done by considering the influence of
non-linear effects in the model.

Effectively, horizontally uniform vacancy distributions and film deformations are easily
shown to become unstable above a threshold value of the bifurcation parameter, but the linear
analysis only determines a preferred wavelength for the deformation patterns that are expected
to form beyond the instability. However, pattern symmetry, selection and stability properties
strongly depend on non-linear dynamical effects. For example, when the film is sufficiently
thin, and behaves as a membrane, elastic nonlinearities dominate over defect nonlinearities,
and selected patterns may correspond to square or hexagonal planforms. On the other hand,
in thicker films, with small transverse temperature gradients, defect nonlinearities dominate
over elastic ones, and quasi-periodic patterns should be observed in this regime.

In closing, we may thus list here the following significant conclusions from the above
nonlinear analysis.
(1) One-dimensional gratings are unstable in an isotropic system. Consistency with experi-

mental observations may thus require anisotropies in the diffusion and elastic fields. In
systems where the interaction between the laser field and the film surface depends on
crystal symmetries, such gratings could appear, triggered by anisotropic couplings.

(2) On increasing the bifurcation parameter in very thin films, square patterns and hexagonal
ones become simultaneously stable.

(3) Stable quasi-periodic patterns should be observed to occur in thin plates, with small
transverse temperature gradients.

(4) It is somewhat surprising to note that linear aspects of the instability (e.g. threshold and
critical wavelength) do not depend on the exact shape of vacancy or temperature profiles
across the film. Weakly adherent thin films appear to be unstable for any heating mech-
anism which generates sufficient concentration of vacancies. However, the geometry of
the selected patterns is very sensitive to such profiles, through their influence on nonlinear
dynamical effects.
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