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A general theory for the spatial ordering of immobile clustered defects in irradiated materials is presented
here. A vectorial form for the Fourier transforms of perturbations in the concentration of point and clustered
defects is derived. Linear stability analysis indicates that, under conditions appropriate for void growth~high
temperature!, instabilities leading to spatially ordered microstructure are driven by vacancy cluster density
fluctuations, which extends the range of validity of previous conclusions for microstructure with no void
present~e.g., low temperature!. The crucial importance of collision-cascade-induced vacancy cluster formation
is clearly shown. Amplitude equations of the Ginzburg-Landau type are derived and used to discuss the
qualitative features of microstructure pattern formation in the post-bifurcation regime. This is accompanied by
numerical analysis of the space-time rate equations to test the validity of the weakly nonlinear analysis.
Evolution of one- and two-dimensional patterns of the microstructure is illustrated by examples of typical
reactor and accelerator irradiation conditions. The quasistatic approximation used in the weakly nonlinear
analysis is shown to be adequate only for short irradiation doses. At larger times, higher mode generation leads
to a wavelength selection that is somewhat insensitive to the dose, as observed experimentally. The role of
interstitial diffusion anisotropy is shown to be significant in the alignment of microstructural patterns in
parallel orientation to the directions of high interstitial mobility, in agreement with experiments.@S0163-
1829~96!03722-8#

I. INTRODUCTION

Numerous experimental observations on irradiated mate-
rials have shown systematically the existence of fully or par-
tially ordered defect populations in materials under irradia-
tion. The phenomenon appears to be generic, where various
types of microstructures~e.g., voids, precipitates, vacancy
clusters, stacking faults tetrahedra, gas bubbles, and intersti-
tial atoms clusters! are spatially arranged in patterns of typi-
cal dimensions 2–3 orders of magnitude greater than the
atomic spacing. Striking observations have shown complete
spatial isomorphism between the periodic structure of defect
distributions and that of the fundamental atomic lattice.
These experimental observations are particularly true for the
spatial ordering of bubble1,2 and void defect structures.3–5

Recently, detailed and systematic observations of defect or-
dering under ion-irradiated nickel and copper have shown
the development of periodic defect walls.6 Formation of the
walls of defect clusters in polycrystalline and single-
crystalline Cu and Ni were observed at medium temperatures
and high irradiation doses. The experimental observations of
Jaeger and co-workers have clearly demonstrated strong an-
isotropic arrangements of stacking fault tetrahedra and
vacancy-type clusters in walls along the$100% planes of the
fcc crystal lattice. Because of the equivalency between$100%
planes, labyrinth structures were observed.7 These arrange-
ments show a periodicity of 60 nm, with the walls having a

thickness of less than half the periodicity length, and defect-
free zones are observed in between the walls. One of the
significant observations is that the spatial wavelength is
rather insensitive to temperature, dose, and displacement
damage rate.

Based on the experimental findings, the following condi-
tions appear to be necessary for the formation of ordered
defect microstructures.

~1! Collision-cascade-induced clustering of vacancies
into dislocation loops, perhaps directly during the collisional
phase of cascade cooling.

~2! A bias for dislocations toward preferential obsorption
of interstitials over vacancies.

~3! Some degree of anisotropy during the evolution of
clustered defects. This could either be triggered by diffu-
sional anisotropies of point defects, or by anisotropic elastic
interaction between defect clusters during the latter stages of
their evolution. Although these effects do not necessarily af-
fect the shape of the clusters, they determine the symmetries
of the cluster distributions and thus of the microstructure
itself.

We have published a number of articles providing a co-
herent understanding of the phenomenon of irradiation-
induced self-organization in metals.8–10 In these articles, we
addressed the various conditions for evolution of microstruc-
tural patterns under irradiation. In Ref. 8, a simplified model
of the necessary ingredients for pattern formation is pre-
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sented, where only vacancy clusters~loops! are considered in
addition to two mobile point defect species~vacancies and
interstitials!. It is shown that the onset of spatial instability is
controlled by a critical bifurcation parameter related to the
ratio of the evolving vacancy loop density~rL! and the static
network dislocation density~rN!, modified by a function of
the bias (B) and the fraction of point defects produced in
vacancy clusters within the cascade~i.e. cascade collapse
efficiencye!. The instability threshold condition is expressed
as

rL.
rN

~AB/e21!2
. ~1!

In subsequent publications, more complex models for
irradiation-induced patterning have been worked out. The ef-
fects of simultaneous clustering of interstitial loops, as well
as point-defect diffusional anisotropies, were addressed in
Ref. 9. Furthermore, our work in Ref. 10 focused on the
influence of microstructure evolution on changes to the ini-
tial periodicity and selected patterns. Additionally, our pre-
vious work10 incorporated the direct production of interstitial
clusters in evolution equations. The work has so far been
analytical, leading to a concrete yet qualitative description of
the conditions needed for pattern formation.

These earlier works are based on the dynamic evolution
of point and line defects only. Furthermore, the analytical
results have been obtained by assuming that the evolution of
the microstructure is sufficiently slow to justify a quasistatic
approximation. Hence, to achieve a complete understanding
of microstructure formation and evolution, one requires a
study of the effect of the presence of volume defects such as
voids or stacking fault tetrahedra in the dynamics, and a
thorough analysis of the dynamics in the absence of any
quasistatic approximation. It is the aim of the present work to
address these questions, and is based on the following ele-
ments:

~1! It presents a further extension of our previous analysis
in three important regards:

~a! Kinetic equations for the immobile microstructures
are expanded further to include an additional equation for
the growth of voids. Thus all relevant elements of clus-
tered and immobile defect populations are treated~i.e., va-
cancy dislocation loops, interstitial dislocation loops, and
voids!.

~b! The dynamical equations for perturbations in defect
populations are cast in a generalized vectorial form, which
can encompass additional immobile elements of the micro-
structure.

~c! Destabilization of the void density population is ana-
lyzed.

~2! Since it is found that microstructure formation is gov-
erned by the instability of vacancy loop distribution, it re-
mains to test the quasistatic approximation used up to now.
This is done through the numerical analysis of the reduced
version of the model, which is based on point and line defect
evolution only. The main result of this analysis is that, al-
though it may only be really justified for cold worked mate-
rials, the first part of the evolution is generally in agreement
with the quasistatic approximation. Deviations occur at later
stages, but are only quantitative and result in a slight de-

crease of the wavelength of the wall patterns, and in a sharp-
ening of the walls. Another important result of this analysis
is the major role played by diffusional anisotropy in the ori-
entation of the walls.

In Sec. II, we present an expanded form of our rate
theory model to include the void microstructure. This is fol-
lowed by an analysis of dislocation and void dynamics in
Sec. III. Conditions for the onset of microstructural instabili-
ties are derived in Sec. IV. A weakly nonlinear analysis is
presented in Sec. V leading to a discussion of amplitude
equations for the growth, saturation, and selection of spa-
tially organized microstructures. Numerical analysis of the
dynamical model is presented in Sec. VI, leading to a dis-
cussion of pattern selection in one and two dimensions, in
Secs. VII and VIII, respectively. Finally, conclusions are
drawn in Sec. IX.

II. RATE THEORY MODEL OF MICROSTRUCTURE
EVOLUTION

In order to account explicitly for the effect of direct inter-
stitial loop production on the evolution of defect populations,
including voids, we propose a rate theory dynamical model.
Radiation-produced defects are represented by two equations
for point defects, which are considered as mobile species and
a set of equations describing the evolution of loops which are
considered as immobile species. Since point defects are the
only mobile components of the microstructure, their rate
equations would include spatial operators. Immobile micro-
structures are represented by loops and voids as shown be-
low:

] tci5K~12e i !2acicv1Di“
2ci2Dici~ZiNrN1ZiVrV

1ZiIr I1ZiCrC!,

] tcv5K~12ev!2acicv1Dv“
2cv2Dv@ZvN~cv2 c̄vN!rN

1ZvV~cv2 c̄vV!rV1ZvI~cv2 c̄vI !r I

1ZvC~cv2 c̄vC!rC#,

] tr I5S 2pN

ubu D @e iK1DiZiI ci2DvZvI~cv2 c̄vI !#,

] trV5
1

ubur V
0 $evK2rV@DiZiVci2DvZvV~cv2 c̄vV!#%,

] trC5
~4pNc!

2

rC
@DvZvC~cv2 c̄vC!2DiZiCci #, ~2!

where cv corresponds to the concentration of vacancies
andci to interstitials.rN is the network dislocation density,
rV the vacancy loop density,rI the interstitial loop density,
andrC the void sink density~rC54pNcRc , with Nc being
the void number density andRc the mean void radius!. K,
is the displacement damage rate,e iK is the interstitial
loops production rate,ev is the cascade collapse efficiency,
a is the recombination coefficient,b is the Burgers vector,
r V
0 is the mean vacancy loop radius, andZ... are the bias

factors which will be approximated byZiN5ZiI5ZiV511B
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and ZvI5ZvN5ZvV5ZvC5ZiC51. B is the excess
network bias.c̄vN , c̄vV , c̄vI , and c̄vC are the concentra-
tions of thermally emitted vacancies from network dis-
locations, vacancy and interstitial loops, and voids, respec-
tively.

We shall now use the following scaling relations:

lv5DvZvNrN , D̄
•

5D
•

/lv , a/lv5g, P5gK/lv ,

rV,I* 5
rV,I
rN

, xi ,v5gci ,v , x̄vN! x̄vV. x̄vI. x̄vC5 x̄vL ,

~3!

m5
Di

Dv
, t5lvt,

t I5
barN
2pNDv

, tV5brv
0rNg, tC5

arN
2

~4pNc!
2Dv

.

Equations~2! can now be written in dimensionless form:

]txi5P~12e i !2xixv1mD̄v“
2xi

2mxi@~11B!~11rv*1r I* !1rc* #,

]txv5P~12ev!2 x̄vL2xixv1D̄v“
2xv

2~xv2 x̄vL!~11rv*1r I*1rC* !,

t I]tr I*5e iP1m~11B!xi2~xv2 x̄vL!, ~4!

tV]trV*5evP2rV* @m~11B!xi2~xv2 x̄vL!#,

tC]trc5
1

rC*
@~xv2 x̄vL!2mxi #.

Since point defect densities evolve much more rapidly
than that of loops, they may, as usual, be adiabatically elimi-
nated from the dynamics and their evolution related to that of
loop densities. In the case of uniform defect densities, and
ignoring recombination, we obtain

~xv
02 x̄vL!5

P~12ev!2D

A0
,

~5!

xi
05

P~12e i !

m~11B!B0
,

where D5 x̄vL2 x̄vN. x̄vL , A0511r V
01r I

01r C
0 , and

B0511r V
01r I

01(r C
0 )/(11B).

In order to study the evolution of nonuniform defect dis-
tributions and the eventual occurrence of microstructure for-
mation, we also need to derive the evolution equations for
inhomogeneous defect densities. We follow the same method
as in Ref. 10, and define the nonuniform densities as

dxi5xi2xi
0, dxv5xv2~xv

02 x̄vL!,
~6!

drV5
rV*2rV

0

rV
0 , dr I5

r I*2r I
0

r I
0 , drC5

rC*2rC
0

rC
0 ,

wherexi
0, xv

0, rV
0, r I

0, andrC
0 are the uniform defect densi-

ties. On introducing these variables in system~4!, point de-
fect perturbations may easily be expressed as an expansion in
powers of the loop density perturbations, which may be writ-
ten, in vectorial form, as~cf. the Appendix!

dxq5Sn>1E dk•••E dkn21

3~21!~n!Dq,...,kn21

~n! Tqdrq2k •••drkn21
. ~7!

III. DISLOCATION AND VOID DYNAMICS

The main result of Sec. II is that, due to the huge time-
scale difference between the evolution of point and line
defects, the point defect densities may be expressed as
functions of the line defect densities which govern the
evolution of the whole system. This adiabatic elimination of
point defect densities thus leads to the reduction of the
dynamics to the dynamics of dislocation loops and void
densities only. On definingē5ev2e i , we obtain the fol-
lowing reduced kinetic equations for the uniform defect
densities:

t I]tr I
05e iP1

P~12e i !

B0
2
P~12ev!2D

A0
,

tV]trV
05evP2FP~12e i !

B0
2
P~12ev!2D

A0
GrV0, ~8!

tC]trC
052

1

rC
0 F P~12e i !

~11B!B0
2
P~12ev!2D

A0
G .

On the other hand, the evolution of nonuniform densities
is given by the following equation, in Fourier space:

tV]tdrVq52
evP

rV
0 drVq2@m~11B!dxiq2dxVq#

2E dk drVq2k@m~11B!dxik2dxvk#,

t I]tdr Iq52~e iP1G!
dr Iq
r I
0 1@m~11B!dxiq2dxvq#

1

r I
0 ,

~9!

tC]tdrCq5
drCq

rC
02

ḠS 22
drCq

11drCq
D2

~mdxiq2dxvq!

rC
02~11drCq!

,

with

G5
P~12e i !

B0
2
P~12ev!2D

A0
,

Ḡ5
P~12e i !

~11B!B0
2
P~12ev!2D

A0
,

and
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m~11B!dxiq2dxvq5Sn>1~21!nE dk•••E dkn21S P~12e i !

B0

1

Bq •••Bkn21

Pq2k •••Pkn21

2
P~12ev!2D

A0

1

Aq •••Akn21

Sq2k •••Skn21D , ~10!

mdxiq2dxvq5Sn>1~21!nE dk•••E dkn21S P~12e i !

~11B!B0

1

Bq •••Bkn21

Pq2k •••Pkn21

2
P~12ev!2D

A0

1

Aq •••Akn21

Sq2k •••Skn21D . ~11!

Hence the loop dynamics may be cast in the vectorial
form

t]tdrq5Ldrq1Mdxq1E dk drq2kNdxk

1E dk drq2kPdrq2k1••• , ~12!

where

t5S tv
0
0

0
t l
0

0
0
tC
D , ~13!

L5S 2
evP

rV
0 0 0

0 2
~e iP1G!

r I
0 0

0 0
2

rC
02

Ḡ

D , ~14!

M5S 2m~11B!

m~11B!

r I
0

2
m

rC
02

1

2
1

r I
0

1

rC
02

D , ~15!

N5S 2m~11B!

0
m

rC
02

1
0

2
1

rC
02
D , ~16!

and

P5S 0 0 0

0 0 0

0 0 2
Ḡ

rC
02
D , ~17!

and supplemented with Eq.~7!.

IV. ONSET OF SPATIAL INSTABILITY
OF THE MICROSTRUCTURE

The evolution of the uniform line and volume defect den-
sities may be studied with Eqs.~7! and ~12!. The addition
element here, with respect to Ref. 10, is the presence of voids
in the dynamics. Let us then first consider the growth rate of
the void density. It is easy to see, when

P~12e i !

~11B!
.@P~12ev!2D#, ~18!

or when the net contribution of interstitials to the void
growth rate exceeds the net contribution of vacancies to the
void growth rate, that the void density continuously de-
creases. Although it may strongly depend on its initial con-
dition, it will not affect the long-time behavior of the system.
In this case, we are led back to the microstructure evolution
problem studied in Ref. 10 with dislocation loops only. Of
course, due to the weak coupling between the densities of
loops and voids, any spatial instability in loop densities will
eventually induce transient structures in the void density.
This condition is consistent with the experimental condition
of irradiation at low temperature~less than one-third of the
melting point!.

On the other hand, under conditions conducive to void
growth ~temperatures above one-third of the melting point!,
we have

P~12e i !

~11B!
,@P~12ev!2D#. ~19!

In this case, the situation is quite different. Dimensional
analysis of the evolution Eq.~8! shows that both loop and
void densities increase with time or irradiation dose.

The stability of these uniform dislocation densities may
now be analyzed through the linear part of the evolution
equation for their inhomogeneous perturbations. This evolu-
tion is obtained by combining Eqs.~7! and ~12!, and its
linear part reads

t]tdrq5@L2MDqTqr
0#drq5Vqdrq, ~20!

where
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Vq5S 2
eVP

rV
0 1LqrV

0 Lqr I
0 L̄qr I

0

2Lq

rV
0

r I
0

~e iP1G!

r I
0 2Lq 2L̄q

rC
0

r l
0

L̄q

rV
0

rC
02

L̄q

r I
0

rC
02

2

rC
02

Ḡ1L% q

1

rC
0

D , ~21!

where

Lq5
P~12e i !

B0Bq
2
P~12ev!2D

A0Aq
, ~22!

L̄q5
P~12e i !

~11B!B0Bq
2
P~12ev!2D

A0Aq
, ~23!

L% q5
P~12e i !

~11B!2B0Bq
2
P~12ev!2D

A0Aq
. ~24!

Since the elements of the corresponding evolution matrix
are time dependent, this situation prevents us from perform-
ing the usual stability analysis. Nevertheless, some insight
into the behavior of the system may be obtained within the
quasistatic approximation, as was done in our earlier work.10

In this description, the time~or dose! appears just as a pa-
rameter, and one may obtain an instantaneous instability cri-
terion. Effectively, when at least one eigenvalue of the evo-
lution matrix acquires a positive real part, the corresponding
eigenmode starts growing. Of course this approximation
does not describe correctly the time evolution of the pertur-
bations, but in similar problems it seems to predict the insta-
bility threshold quite accurately.

When the condition [P(12e i)]/[(11B)],[P(12ev)
2D],P(12e i) is satisfied,L% q is limited byB/(11B)r C

0 ;
and [P(12ev)2D]/AqA0B0 ; and [P(12e i)]/
[(11B)B0]/2[P(12ev)2D]/A0 by B/(11B)r C

0 [P(12
ev)2D]/A0B0 , while for [P(12e i)]/[(11B)],P(12
e i),(P(12ev)2D), [P(12e i)]/[(11B)B0]2[P(12ev)
2D]/A0 andL% q are always negative. Hence the only insta-
bility possibility arises, once again, in the vacancy loop evo-
lution.

Taking into account the fact thatr V
0/r C

02 andr I
0/r C

02 de-
crease with time, and thatt I@tV , the computation of the
instability threshold is very similar to the computation made
in Ref. 10, and we find that nonuniform defect densities start
growing when the fraction of line defects corresponding to
vacancy loops exceeds an instability threshold given, at the
lowest order inev , ei , B, andD, by

b5
rV
0

11r I
01rV

0.bc5
rV
0

11r I
01rV

0U
c

5
2AevB

B1 ē1
B

11B

rC
0

A0

,

~25!

whereē5ev2e i1(D/P). This instability occurs for a criti-
cal wave number given by

qc
25

~11r I
01rV

0 !~B2 ē !2rC
0 ~2B1 ē !

D̄VS B1 ē1
B

11B

rC
0

A0
D . ~26!

We immediately see that we recover the previous results10

for rC
050, and that the instability threshold is lowered by the

presence of the void density. However, the instability occurs
at finiteqc , when the following condition is satisfied:

rC
0

11r I
01rV

0,
B2 ē

2B1 ē
, ~27!

which implies that microstructure formation occurs when, on
one side, the bias exceeds the difference between the cascade
collapse efficiency of vacancies and interstitials, and, on the
other side, the uniform void density does not exceed a well-
defined fraction of the total line defect density. Furthermore,
with all material parameters fixed, one sees that an increase
of line defect densities tends to decrease the wavelength of
the critical microstructure, while an increase of the void den-
sity tends to increase it.

V. MICROSTRUCTURE STABILITY
IN THE WEAKLY NONLINEAR REGIME

Close to the instability threshold of the steady uniform
reference state of a nonlinear dynamical system, space-time
separation occurs between stable and unstable modes, the
characteristic scales of the latter being by far the largest. The
stable modes may thus be eliminated adiabatically, and the
dynamics reduced to the weakly nonlinear unstable mode
dynamics, which governs the long-time evolution of the sys-
tem and captures the asymptotic properties of the complete
kinetic model in the vicinity of its bifurcation point. When
this adiabatic elimination is performed, one usually obtains
amplitude equations for the bifurcating solutions which have
the structure of Landau or Landau-Ginzburg equations, and
which have been discussed and analyzed at length in the
literature in relation to the development of spatiotemporal
patterns and self-organization phenomena in numerous
physicochemical systems out of thermal equilibrium.

In the present case, our uniform reference state is time
evolving, and we cannot perform this type of analysis. How-
ever, for weak nonlinearities, the void and loop dynamics
can still be expressed as an expansion in the defect densities.
Using Eqs.~7! and ~12!, one obtains.
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t]tdrq5Vqdrq1E dk V q,kdrq2kdrk

1E dkE dk1Uq,k,k1
drq2kdrk2k1

drk1,

~28!

where

V q,k5MDq,k
~2!Tq~r0!22NDqTqr

01P ~29!

and

Uq,k,k1
52MDq,k,k1

~3! Tq~r0!31NDq,k
~2!Tq~r0!2. ~30!

Except in the quasistatic approximation, the usual proce-
dure of diagonalization of the linear evolution matrix and the
adiabatic elimination of the stable modes may not be per-
formed on this dynamical system, due to the time depen-
dence of the coefficients. However, sincetC@t I@tV , and
since the elements of the matricesM andN are such that
their lower components decrease with time or dose, it is easy
to see from dimensional analysis that the dynamics is driven
by the vacancy loops. For weak deviations from the uniform
density, and at the leading order ine5(b2bc)/bc , and
(q2qc)/qc , the vacancy loop density perturbation in Fourier
space can be expressed as

t0]tdrVq5vqdrVq1E dk vqcdrVq2k
drVk

1E dkE dk1uqcdrVq2k
drVk2k1

drVk1
~31!

where

vq5
b2bc
bc

2j2
0S q22qc

2

qc
2 D 2, ~32!

t05tVt̄5
2tV

ABev~B1 ē !
, ~33!

vqc5
evPt̄

rV
0 1OS 1A0

2D , ~34!

uqc5S P~12ev!2D

A0Aqc
2 2

P~12e i !

B0Bqc
2 D ~rV

0 !2t̄1OS 1A0D
.

evPbct̄

rV
0 1OS 1A02D, ~35!

j0
25

A11B~B2 ē !2

8B3 . ~36!

Hence, asv2/u decreases with irradiation dose, we may
expect the same sequence of selected patterns as the one
discussed in Ref. 9: bcc lattices at low irradiation doses and
planar arrays at high irradiation doses.

Furthermore, the interstitial loop and void densities may
be expressed as linear combinations of the eigenmodes of the
linear evolution matrix. In this approximation (tC@t I@tV),

this leads to the following relations which express how they
are linked to the vacancy loop density:

dr I qc
.2

ev
rV
0e i

drVqc
, ~37!

drCqc
.

~B1 ē !

B~11B!

rV
0

11r I
01rV

0 drVqc
. ~38!

It is interesting to recall here thatrV
0 increases with dose

while r V
0/(11r I

01r V
0) tends to a constant. As a result, the

amplitudes of the inhomogeneities in the interstitial loop dis-
tribution decrease with dose, contrary to the amplitude of the
inhomogeneities in the void density which are proportional
to the amplitude of the vacancy loop microstructures.

The analysis performed here does not take into account
the anisotropy of interstitial atom diffusion, which is related
to the crystalline structure of the material. Effectively, it has
been shown by us in Ref. 8 that the dislocation structures
should be oriented parallel to the directions of high intersti-
tial mobility. Hence, at low irradiation dose, the loop and
void structures should be in parallel orientations with the
underlying crystal lattice with the same symmetry, while at
high irradiation dose~when v2/u!1!, the loop and void
structures should consist of planar arrays. These arrays
should nevertheless have their planes parallel to the crystal-
line axis. Up to now, most of the experimentally observed
void lattices have been isomorphic with their host lattices.

VI. NUMERICAL SIMULATIONS

The weakly nonlinear analysis performed in preceding
sections is valid in the quasistatic approximation close to
threshold. Hence this analysis could become irrelevant for
long irradiation times or high irradiation doses, when these
approximations are supposed to break down. In such condi-
tions, the numerical analysis of the dynamical model~2! re-
mains the only way to test the validity of the weakly nonlin-
ear analysis and to follow the microstructure evolution. Since
it has been shown in the preceding sections that the presence
of voids does not modify the character of the instability, we
solved numerically the reduced version of this model where
voids are absent.

Let us first describe the temporal evolution of the real part
of the functionV1(q), which corresponds to the largest real
part of the eigenvalues of the instantaneous linear evolution
matrix. Recall that the modes for which this function is posi-
tive are unstable, and trigger the formation of defect micro-
structures. The evolution of ReV1(q) is presented in Figs.
1~a! and 1~b! for annealed~rN.1013 m22! and cold worked
~rN.1015 m22! nickel in accelerator~K51023 dpa s21!, and
in Fig. 1~c! for annealed nickel in reactor~K51026 dpa s21!
conditions. At short times, or small irradiation doses, all
modes are stable and ReV1(q) is negative. Beyond a critical
dose, a set of modes of wave numbers centered aroundqmax,
which corresponds to the maximum of ReV1(q), become
unstable. Then ReV1~qmax! andqmax grow, as predicted by
our previous analysis. However a time is finally reached
where ReV~qmax! stops growing and starts to decrease; the
dispersion relation tends to flatten on the zero axis. The same
behavior is also qualitatively observed for cold-worked and
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annealed nickel, in accelerator~T5773 K,K51023 dpa s21!
or reactor conditions~T5773 K,K51026 dpa s21!, although
the evolution is much slower for cold-worked nickel.

For high irradiation doses, both stable and unstable modes
acquire comparable evolution time scales, and the adiabatic

elimination of the stable modes is no longer appropriate. Fur-
thermore, strong mode couplings and harmonic generation
should be expected, leading to the breakdown of the weakly
nonlinear analysis, except for cold-worked nickel, where the
evolution of the linear growth rate curve ReV1(q) is suffi-
ciently slow to guarantee time-scale separation between
stable and unstable modes up to at least 10 dpa in accelerator
conditions. Hence, for annealed nickel, the way to obtain
accurate results from the kinetic model~2! consists of inte-
grating it numerically.

The numerical integration of the evolution equations of
defect densities has been performed in one and two spatial
dimensions using an implicit Euler method. The four vari-
able fields~point defects and loop densities! are initialized on
the uniform state described in Ref. 9. Then an initial 1%
noise is added to point defect densities, the initial time being
chosen as the time where the linear stability analysis exhibits
unstable modes. Since point defect densities evolve much
more rapidly~by several orders of magnitude, as discussed in
Ref. 8! than the loop densities, their evolution equations are
solved implicitly, while the loop evolution equations are
solved explicitly.

VII. WAVELENGTH SELECTION IN ONE DIMENSION

In one spatial dimension, a numerical system consisting
of 512 cells is considered, and the spatial grid size is chosen
in such a way that one wavelength corresponds roughly to 25
cells, and the boundary conditions are no flux. The integra-
tion is performed for several typical irradiation and materials
conditions with respect to the temperature~low temperature
T5500° or high temperatureT5700°!, the irradiation inten-
sity ~accelerator conditionsK51023 dpa s21 or reactor con-
ditionsK51026 dpa s21! and the network dislocation density
of the irradiated material~cold-worked nickelrN51015 m22

or annealed nickelrN51013 m22!. Under all conditions, our
numerical simulations confirm the results of the linear stabil-
ity analysis. In Table I we give the parameters used for the
numerical analysis, while in Table II we present a summary
of principal results: stability, critical dose, and critical wave-
length.

Let us now qualitatively describe the process of micro-
structure formation and evolution as a result of the numerical
analysis. Characteristic evolutions of the vacancy loop con-
centration are represented in Fig. 2, for annealed nickel un-
der typical accelerator conditions and low temperature, and
in Fig. 3 for cold-worked nickel under typical accelerator
conditions and low temperature as a function of space and at
different irradiation doses. Since the evolution of other vari-
ables is very similar, we do not represent them here. During
early times, or low dose, unstable modes grow, giving rise to
a more or less periodic structure. A wavelength adjustment
occurs in intermediate periods. Finally, during late periods,
or higher dose, the vacancy loop concentration increases
strongly in very localized regions of the material, while it
goes down almost everywhere else; the wavelength of the
structure remains almost unchanged. The microstructure evo-
lution is qualitatively similar in other irradiation conditions,
although the time scale of the evolution may be different.
This evolution is, for example, much slower in reactor con-
ditions, where the irradiation is much less intense~K51026

FIG. 1. Evolution of ReV1(q) ~in the absence of voids! vs dose
for annealed nickel under typical accelerator conditions and low
temperatures~rN51013 m22, K51023 dpa s21, andT5773 K!. ~b!
Evolution of ReV1(q) ~in the absence of voids! vs dose for cold-
worked nickel under typical accelerator conditions and low tem-
peratures~rN51015 m22, K51023 dpa s21, and T5773 K!. ~c!
Evolution of ReV1(q) ~in the absence of voids! vs dose for an-
nealed nickel under typical reactor conditions and low temperatures
~rN51013 m22, K51026 dpa s21, andT5773 K!.
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dpa s21!, while the instability threshold is not very different
~cf. Table II!.

To characterize the wavelength selection phenomenon
better, let us now describe the spectrum evolution~see Figs.
4 and 5!. After a short irradiation time, the stable modes
generated by the initial noise decrease, and a peak centered
on theqmax wave vector is formed. This peak then continues
to grow and is shifted toward slightly higher values ofq.
During the remaining time, another kind of evolution occurs;
the main peak does no longer evolves, but its harmonics are
successively generated. Hence the wavelength of the pattern
no longer evolves, in agreement with Jaeger’s observations,6

while its profile strongly sharpens.
We can thus summarize the microstructure evolution in

one-dimensional systems as follows. During early irradiation
times, linear terms are responsible for wavelength selection.
Selected modes rapidly grow. As time proceeds, the eigen-
values associated with the stable modes go to zero. This
effect, combined with the presence of nonlinear terms, trig-
gers the generation of harmonics of the initial unstable
modes. These harmonics are responsible for sharpening of
the loop density profile, or, in other words, of the accumula-
tion of defects in very localized, although regularly spaced,
regions.

VIII. PATTERN SELECTION AND ANISOTROPY
EFFECTS IN TWO DIMENSIONS

The study of two-dimensional patterns has been per-
formed on a~1283128! grid with periodic boundary condi-

tions. The evolution presents the same characteristics as for
one-dimensional systems, as far as the wavelength and the
coarsening of the loop distributions are concerned. With re-
spect to the symmetry of the structures, the weakly nonlinear
analysis predicts a final wall three-dimensional~3D! or
striped ~2D! structure. On the other hand, and in other ex-
tended pattern forming systems, striped structures usually
present a lack of orientational order, due to the presence of
topological defects. It is only in anisotropic systems that
regular parallel rolls or stripes may be observed.11

This behavior is also observed here, as illustrated in Fig.
6. Effectively, for isotropic point defect diffusion, the struc-
ture evolves toward mosaiclike patterns, with no well-
defined orientation for the high loop concentration bands.
The final structure resembles more regularly spaced defect
clusters. However, in the case of anisotropic interstitial dif-
fusion, well-defined bands are obtained, in parallel orienta-
tion with the high interstitial mobility, in agreement with our
previous analysis.8 Thus we have confirmation here that the
anisotropies triggered by the crystalline structure of the ma-
terial are essential in determination of the orientation of the
microstructures, as observed in experiments.6,7

From this observation, and our previous analysis showing
that the most unstable wave vectors are perpendicular to the
high-mobility directions of the interstitials, we may thus in-
fer the following scenarios for three-dimensional self-
organization of loops. If the interstitial mobility is maximum
for one set of planes, the defect microstructure should evolve
toward regularly spaced walls parallel to these planes. If the
interstitial mobility is maximum for two sets of planes, the

TABLE I. Material parameters for nickel.

Parameter Symbol Value Units

Vacancy diffusion Dv 631025e21.3 eV/kBT m2 s21

Intersticial diffusion Di 1027e20.3 eV/kBT m2 s21

Equilibrium vacancy concentration c v
e e21.6 eV/kBT

Stacking fault energy gs f 9.431016 eV m22

Shear modulus m/~12n! 831010 Pa m22

Burgers vector b 2.5310210 m
Atomic volume V 1.206310229 m3

Network bias excess B 0.1
Loop/network bias excess DB 0.005
Initial vacancy loop radius r v

0 1.531029 m
Network dislocation density rn 1013–1015 m22

Displacement damage rate K 1026–1023 dpa s21

Cascade collapse efficiency e 0.01–0.1
Intersticial loop density N 1020–1022 m23

Temperature T 773–973 K

TABLE II. Numerical results for one-dimensional systems.

rN
~m22!

K
~dpa s21! Instability

Critical dose
~dpa!

qc
~m21!

qselected
~m21!

1013 1023 yes 0.025 1.33107 3.653107

1013 1026 yes 0.03 1.43107 3.93107

1015 1023 yes >0 dpa 5.43107 6.23107

1015 1026 no
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FIG. 3. Snapshots of the one-dimensional evolution of the amplitude of the vacancy loop microstructure~drV! in space at different
irradiation doses for cold-worked nickel under typical accelerator conditions and low temperatures~rN51015 m22, K51023 dpa s21, and
T5773 K!.

FIG. 2. Snapshots of the one-dimensional evolution of the amplitude of the vacancy loops microstructure~drV! in space at different
irradiation doses for annealed nickel under typical accelerator conditions and low temperatures~rN51013m22, K51026 dpa s21, andT5773
K!.
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FIG. 4. Snapshots of the evolution of the spectrum~Fourier transform! of the amplitude of the vacancy loop microstructure presented in
Fig. 2.

FIG. 5. Snapshots of the evolution of the spectrum~Fourier transform! of the amplitude of the vacancy loop microstructure presented in
Fig. 3.
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defect microstructure should evolve toward a labyrinthic
structure formed of domains of walls parallel to one or the
other set of high mobility planes~cellular or bimodal struc-
tures are effectively ruled out by scalar nonlinearities11!. If
the interstitial mobility is maximum in one direction, sayz,
the most unstable wave vectors will be isotropically distrib-
uted in the plane perpendicular to the easy axis, say the (x,y)
plane. Hence the resulting loop distribution should not vary
in thez direction, but will in the (x,y) planes where it should
present the same microstructure as the ones obtained in two-
dimensional isotropic systems and presented in Fig. 6.

IX. SUMMARY AND CONCLUSIONS

A comprehensive theoretical framework for the analysis
of spatial instabilities in the microstructure of irradiated ma-
terials is presented in this paper. The work is based on the
well-established rate theory of microstructure evolution un-
der irradiation, and is pursued both qualitatively and numeri-
cally to ascertain the main processes leading to pattern selec-
tion. Throughout this work, we emphasize conditions which

are consistent with experimental observations, for the accu-
racy of the spatially organized microstructure.

The kinetic model described here is based upon the well-
established rate theory of microstructure evolution. The
model contains space-time rate equations for mobile point
defects~vacancies and self-interstitials!, with anisotropic dif-
fusion for only the interstitial population. It also contains
coupled space-independent rate equations for the densities of
dislocation loops~represented by vacancy and interstitial
loops!, as well as voids. A compact vestorial form is derived
for the Fourier components of perturbations in the densities
of point defects, as well as clustered defects. The onset of
spatial instabilities is analyzed through the linear part of the
derived evolution equations. It is shown that, even when
voids are present at high temperature, the spatial instabilities
are driven by perturbations in the vacancy cluster~loop! den-
sity. Cascade-induced vacancy cluster densities must reach a
critical value to induce the instability. This critical concen-
tration is determined by the initial microstructure~i.e., an-
nealed versus cold worked!, the dislocation bias, and the cas-
cade collapse efficiency. Numerical simulation verify the
analytical conclusions, and show that a spatially organized
defect microstructure is difficult to obtain for an initially
cold-worked material.

Stability analysis in the weakly nonlinear regime is
based on a derivation of density perturbations for the
Fourier components of immobile defects, by invoking a qua-
sistatic approximation. With this approximation, a
Ginzburg-Landau-type amplitude equation is recovered, with
time- ~dose-! dependent coefficients that are slowly
varying. Qualitative conclusions of pattern selection in the
post bifurcation regime are made, to show phase transitions
leading to the eventual formation of wall defect structures,
with a wavelength that is decreasing with the irradiation
dose.

Direct numerical simulations of the underlying kinetic
model have largely confirmed the qualitative conclusions
drawn on the basis of the weakly nonlinear analysis in the
quasistatic approximation. However, the wavelength of the
emerging patterns is shown to be somewhat insensitive to the
irradiation dose, in agreement with experimental observa-
tions, because of higher-order harmonic generation at larger
irradiation times. Numerical simulations have been per-
formed for both cold-worked and annealed nickel under typi-
cal accelerator~K51023 dpa s21! and reactor~K51026

dpa s21! conditions. It is shown that during early irradiation
times, linear terms controlled by the the critical vacancy
cluster density, the cascade collapse efficiency, and the dis-
location bias are responsible for wavelength selection. As
time proceeds, eigenmodes associated with stable compo-
nents decay, while nonlinear terms trigger a higher harmonic
generation of unstable modes. The final effect is a rapid
sharpening of the concentration of immobile defects into
walls, with very few left in between.

Our weakly nonlinear analysis predicts a final wall~in
3D! or striped~in 2D! defect structures. Numerical simula-
tions verify these conclusions in two-dimensional systems,
where striped defect wall arrangements, with no preferred
direction, are obtained when interstitial diffusion is assumed
isotropic. On the other hand, only 1% anisotropy in the dif-
fusion coefficient of self-interstitials along a preferred direc-

FIG. 6. Snapshots of the two-dimensional evolution of the am-
plitude of the vacancy loop microstructure~drV! in space at differ-
ent irradiation doses for annealed nickel under typical accelerator
conditions and low temperatures~rN51013 m22, K51026 dpa s21,
andT5773 K! in the case of isotropic point defect diffusion~left
column! ~the dose increases from 1 dpa in the upper graph to 20 dpa
in the lower graph!, and with a 1% anisotropy in the interstitials
diffusion coefficient~right column! ~the dose increases from 1 dpa
in the upper graph to 20 dpa in the lower graph!.
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tion @i.e., ~100!# is shown to result in significant alignment of
clustered defects along~100! directions, in agreement with
Jaeger’s experimental observations. It is therefore concluded
that a small degree of interstitial atom diffusional anisotropy
is needed to result in significant alignment of clustered de-
fects along~100! directions.

In summary, the necessary ingredients for the kinetic rate
theory model to be consistent with experimental observations
are three. These are~1! an excess bias of dislocations to-
wards interstitial atom absorption;~2! a fraction of vacancies
to be produced directly in clusters, as a result of collision
cascades; and~3! a small degree of interstitial diffusional
anisotropy.
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APPENDIX

In this appendix, we give more details on the adiabatic
elimination of the point defect densities. On introducing the
perturbations to the uniform defect densities defined by the
relations~6! in the dynamical system~4!, and neglecting the
time derivatives of the point defect densities~since
tC@t I@tV@1!, one obtains, in Fourier space,

dxi ,q52
P~12e i !

m~11B!B0Bq
S rV

0drvq1r I
0dr Iq1

rC
0

11B
drCqD

2E dk
1

Bq
dxi ,kS rV

0drVq2k1r I
0dr Iq2k

1
rC
0

11B
drCq2kD ,

dxv,q52
P~12ev!2D

A0Aq
~rV

0drVq1r I
0dr Iq1rC

0drCq!

2E dk
1

Aq
dxv,k~rV

0drVq2k1r I
0dr Iq2k

1rC
0drCq2k!, ~A1!

whereBq5B01q2D̄v/(11B) andAq5A01q2D̄v . On de-
fining Pq asrV

0drVq1r I
0dr Iq1rC

0 /(11B)drCq , andSq as
rV
0drVq1r I

0dr Iq1rC
0drCq , these equations may be simpli-

fied as

dxi ,q52
P~12e i !

m~11B!B0Bq
Pq2E dk

1

Bq
dxi ,kPq2k

dxv,q52
P~12ev!2D

A0Aq
Sq2E dk

1

Aq
dxv,kSq2k.

~A2!

Since the coefficients of the linear terms are small, these
equations may be solved by an iteration procedure, which
leads to the following series expansion inPq andSq :

dxi ,q52
P~12e i !

m~11B!B0Bq
FPq1E dk

1

Bk
Pq2kPk2E dkE dk8

1

BkBk8
Pq2kPk2k8Pk81••• G

dxv,q5
P~12ev!2D

A0Aq
FSq1E dk

1

Ak
Sq2kSk2E dkE dk8

1

AkAk8
Sq2kSk2k8Sk81••• G . ~A3!

Nonuniform point defect densities may thus be expressed
in terms of linear and nonlinear combinations of line and
volume defect densities. The introduction of these expres-
sions, limited to the first significant nonlinear contributions,
in the kinetic equations for line and volume defects, will thus
provide a first reduction of the dynamics~4!. In order to
simplify the manipulations, Eq.~A3! may be cast in the vec-
torial form

dxq5F2Dqdrq1E dk DqDkdrq2kdrk

2E dkE dk8DqDkDk8drq2kdrk2k8drk81••• GTq,

~A4!

where

dxq5S dxi ,q
dxv,q

D , ~A5!

Tq5S P~12e i !

m~11B!B0

P~12ev!2D

A0

D , ~A6!

Dq5S 1

Bq
0

0
1

Aq

D , ~A7!
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and

drq5S Pq

0
0
Sq

D , ~A8!

or

drq5r0drq, ~A9!

with

r05S rV
0 r I

0 rC
0

11B

rV
0 r I

0 rC
0
D ~A10!

and

drq5S drVq
dr Iq
drCq

D . ~A11!

Since the matrixDq is diagonal, Eq.~7! may finally be
rewritten as

dxq5Sn>1E dk•••E dkn21

3~21!~n!Dq,...,kn21

~n! Tqdrq2k •••drkn21
, ~A12!

where

Dq,...,kn21

~n! 5S 1

Bq ...Bkn21

0

0
1

Aq ...Akn21

D . ~A13!

This expression also allows an easy computation of the
expressionsm(11B)dxiq2dxvq and mdxiq2dxvq , which
enter into the loop and void dynamics.
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