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Theory and numerical simulations of defect ordering in irradiated materials
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A general theory for the spatial ordering of immobile clustered defects in irradiated materials is presented
here. A vectorial form for the Fourier transforms of perturbations in the concentration of point and clustered
defects is derived. Linear stability analysis indicates that, under conditions appropriate for void ¢riglhth
temperaturg instabilities leading to spatially ordered microstructure are driven by vacancy cluster density
fluctuations, which extends the range of validity of previous conclusions for microstructure with no void
presenie.g., low temperatuye The crucial importance of collision-cascade-induced vacancy cluster formation
is clearly shown. Amplitude equations of the Ginzburg-Landau type are derived and used to discuss the
qualitative features of microstructure pattern formation in the post-bifurcation regime. This is accompanied by
numerical analysis of the space-time rate equations to test the validity of the weakly nonlinear analysis.
Evolution of one- and two-dimensional patterns of the microstructure is illustrated by examples of typical
reactor and accelerator irradiation conditions. The quasistatic approximation used in the weakly nonlinear
analysis is shown to be adequate only for short irradiation doses. At larger times, higher mode generation leads
to a wavelength selection that is somewhat insensitive to the dose, as observed experimentally. The role of
interstitial diffusion anisotropy is shown to be significant in the alignment of microstructural patterns in
parallel orientation to the directions of high interstitial mobility, in agreement with experimed@d.63-
182996)03722-9

I. INTRODUCTION thickness of less than half the periodicity length, and defect-
free zones are observed in between the walls. One of the
Numerous experimental observations on irradiated matesignificant observations is that the spatial wavelength is
rials have shown systematically the existence of fully or par+ather insensitive to temperature, dose, and displacement
tially ordered defect populations in materials under irradia-damage rate.
tion. The phenomenon appears to be generic, where various Based on the experimental findings, the following condi-
types of microstructurese.g., voids, precipitates, vacancy tions appear to be necessary for the formation of ordered
clusters, stacking faults tetrahedra, gas bubbles, and interstiefect microstructures.
tial atoms clustepsare spatially arranged in patterns of typi- (1) Collision-cascade-induced clustering of vacancies
cal dimensions 2-3 orders of magnitude greater than thianto dislocation loops, perhaps directly during the collisional
atomic spacing. Striking observations have shown completphase of cascade cooling.
spatial isomorphism between the periodic structure of defect (2) A bias for dislocations toward preferential obsorption
distributions and that of the fundamental atomic lattice.of interstitials over vacancies.
These experimental observations are particularly true for the (3) Some degree of anisotropy during the evolution of
spatial ordering of bubbl¢ and void defect structurés®  clustered defects. This could either be triggered by diffu-
Recently, detailed and systematic observations of defect osional anisotropies of point defects, or by anisotropic elastic
dering under ion-irradiated nickel and copper have showrnteraction between defect clusters during the latter stages of
the development of periodic defect wall§ormation of the their evolution. Although these effects do not necessarily af-
walls of defect clusters in polycrystalline and single- fect the shape of the clusters, they determine the symmetries
crystalline Cu and Ni were observed at medium temperaturesf the cluster distributions and thus of the microstructure
and high irradiation doses. The experimental observations dfself.
Jaeger and co-workers have clearly demonstrated strong an- We have published a number of articles providing a co-
isotropic arrangements of stacking fault tetrahedra andherent understanding of the phenomenon of irradiation-
vacancy-type clusters in walls along tf00 planes of the induced self-organization in metdst®In these articles, we
fcc crystal lattice. Because of the equivalency betwd®} addressed the various conditions for evolution of microstruc-
planes, labyrinth structures were obserVéthese arrange- tural patterns under irradiation. In Ref. 8, a simplified model
ments show a periodicity of 60 nm, with the walls having aof the necessary ingredients for pattern formation is pre-

0163-1829/96/5@2)/1478213)/$10.00 53 14 782 © 1996 The American Physical Society



53 THEORY AND NUMERICAL SIMULATIONS OF DEFEQ ... 14783

sented, where only vacancy clustdimops are considered in  crease of the wavelength of the wall patterns, and in a sharp-
addition to two mobile point defect speciégcancies and ening of the walls. Another important result of this analysis
interstitial9. It is shown that the onset of spatial instability is is the major role played by diffusional anisotropy in the ori-
controlled by a critical bifurcation parameter related to theentation of the walls.

ratio of the evolving vacancy loop density, ) and the static In Sec. Il, we present an expanded form of our rate
network dislocation densitypy), modified by a function of theory model to include the void microstructure. This is fol-
the bias B) and the fraction of point defects produced in lowed by an analysis of dislocation and void dynamics in
vacancy clusters within the cascafiee. cascade collapse Sec. Ill. Conditions for the onset of microstructural instabili-
efficiencye). The instability threshold condition is expressedties are derived in Sec. IV. A weakly nonlinear analysis is
as presented in Sec. V leading to a discussion of amplitude
equations for the growth, saturation, and selection of spa-

PN tially organized microstructures. Numerical analysis of the

PL>m- @ dynamical model is presented in Sec. VI, leading to a dis-

cussion of pattern selection in one and two dimensions, in

In subsequent publications, more complex models forSecs. VII and VIII, respectively. Finally, conclusions are

irradiation-induced patterning have been worked out. The ef‘—jr"’“"’n in Sec. IX.

fects of simultaneous clustering of interstitial loops, as well

as point-defect diffusional anisotropies, were addressed in

Ref. 9. Furthermore, our work in Ref. 10 focused on the Il RATE THEORY MODEL OF MICROSTRUCTURE
influence of microstructure evolution on changes to the ini- EVOLUTION

tial periodicity and selected patterns. Additionally, our pre-
vious work'® incorporated the direct production of interstitial
clusters in evolution equations. The work has so far bee

In order to account explicitly for the effect of direct inter-
stitial loop production on the evolution of defect populations,
. : . = I:hcluding voids, we propose a rate theory dynamical model.
analyucall,. leading to a concrete yet quallfcanve description o adiation-produced defects are represented by two equations
the conditions needed for pattern formation. for point defects, which are considered as mobile species and

These earlier works are based on the dynamic eVOIUI'O'& set of equations describing the evolution of loops which are

of point and line defe(_:ts only. Furth(_armore, the analy_ticalc nsidered as immobile species. Since point defects are the
results have been obtained by assuming that the evolution %nly mobile components of the microstructure, their rate

the microstructure is sufficiently slow to justity a quaS'Stat'.Cequations would include spatial operators. Immobile micro-

; . . . "Gructures are represented by loops and voids as shown be-
of microstructure formation and evolution, one requires

study of the effect of the presence of volume defects such as
voids or stacking fault tetrahedra in the dynamics, and a 9,¢i=K(1— ) — acic,+D;VZ2c,— D;ci(Zinpn+ Z

thorough analysis of the dynamics in the absence of any PV

guasistatic approximation. It is the aim of the present work to +Zypi+Zicpe),
address these questions, and is based on the following ele- L
ments: dc,=K(1—¢,)—acic,+D,V?c,— D, [Z,n(C,— Con) PN
(1) It presents a further extension of our previous analysis — —
in three important regards: +Z,v(C,—Cypy) pytZy (€, —Cyi) py
(a) Kinetic equations for the immobile microstructures +Z,c(c,—Cyo)pel,

are expanded further to include an additional equation for

the growth of voids. Thus all relevant elements of clus- 27N o
tered and immobile defect populations are treaiesl, va- atp,z(—)[eiK+DiZi,ci—DUZU,(cv—cU|)],
cancy dislocation loops, interstitial dislocation loops, and bl
voids).

(b) The dynamical equations for perturbations in defect 1 -

. . ) ; ; pv=1710 1€, K—pv[DiZivCi—D,Z,v(Cc,—C,v) 1},
populations are cast in a generalized vectorial form, which "V [p[r§ {eK=puDiZive v vl

can encompass additional immobile elements of the micro-

structure. (47N,)? _
(c) Destabilization of the void density population is ana- atpC:T [D,Z,c(C,—Cye) =DiZiccil,  (2)
lyzed.

(2) Since it is found that microstructure formation is gov- where ¢, corresponds to the concentration of vacancies
erned by the instability of vacancy loop distribution, it re- andc; to interstitials.py is the network dislocation density,
mains to test the quasistatic approximation used up to nowpy, the vacancy loop densityy the interstitial loop density,
This is done through the numerical analysis of the reduce@nd p: the void sink densitfpc=4m7N.R., with N, being
version of the model, which is based on point and line defecthe void number density and, the mean void radiysK,
evolution only. The main result of this analysis is that, al-is the displacement damage ratgK is the interstitial
though it may only be really justified for cold worked mate- loops production rateg, is the cascade collapse efficiency,
rials, the first part of the evolution is generally in agreement is the recombination coefficient, is the Burgers vector,
with the quasistatic approximation. Deviations occur at later J is the mean vacancy loop radius, afd. are the bias
stages, but are only quantitative and result in a slight defactors which will be approximated &\ =2;, =Z;,,=1+B
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and Z,=Z,n=Z,v=Z,c=Zic=1. B is the excess wherex? x° pJ, p?, andp? are the uniform defect densi-
network bias.c,y, C,y, C, , andc,c are the concentra- ties. On introducing these variables in systéh) point de-
tions of thermally emitted vacancies from network dis-fect perturbations may easily be expressed as an expansion in
locations, vacancy and interstitial loops, and voids, respegpowers of the loop density perturbations, which may be writ-
tively. ten, in vectorial form, ascf. the Appendix

We shall now use the following scaling relations:

B 8Xq=Sn=1 dk---fdkn_l
N,=D,Z,npn, D.=D.IN,, al\,=y, P=vyKI\,,

X(=1)"DY) y Tedpg-k-dp,, ()
Pv, _— = = = —
p’\;,I:_' Xio=YCiv, XpyN<Xuv =X, =Xy =XyL
PN 3 [ll. DISLOCATION AND VOID DYNAMICS
3
D; The main result of Sec. Il is that, due to the huge time-
r=p TENL scale difference between the evolution of point and line

v

defects, the point defect densities may be expressed as
bapy ap?, functions of the line defect densities which govern the
=5 -ND.’ rvzbrSpNy, C=ANI2D. evolution of the whole system. This adiabatic elimination of
TN (47N)"D, point defect densities thus leads to the reduction of the
Equations(2) can now be written in dimensionless form: ~ dynamics to the dynamics of dislocation loops and void
densities only. On defining=e¢,—¢;, we obtain the fol-
L lowing reduced kinetic equations for the uniform defect
3.x=P(1—¢)—xiX,+uD, V3 densities:

—uxi[(1+B)(1+p; +pf)+pt 1,
P(1-¢€) P(l—¢,)—A
Bo A

&TXU=P(1—ev)—x_v,_—xixv+D_UV2xU T.c?Tp,O: P+

—(Xy =X, ) (L4 p¥ +pi +pE),
Vis TP be P(1-¢) P(1-—¢,)—A

Bo Ao

TPy EUP—[ V)

TIanl*:eiP+M(1+B)Xi_(Xu_X_UL)! (4)

TVarpt/:Evp_pt/[:u“(l_kB)Xi_(xv_X_vL)]r 0 1

P(1—¢) P(l—¢,)—A
Tcafpc:_g

(1+B)B, A,

1
76dpe=—5 [(Xp,—XpL) — Xi ]
corPe pe LO6 =) = i) On the other hand, the evolution of nonuniform densities

is given by the following equation, in Fourier space:
Since point defect densities evolve much more rapidly

than that of loops, they may, as usual, be adiabatically elimi- €,P
nated from the dynamics and their evolution related to that of ~ 7vd,0pyvq=— —5 Spvq—[#(1+B)Xiq— SXyq]
loop densities. In the case of uniform defect densities, and Pv
ignoring recombination, we obtain
_f dk Spyq— k[ m(1+B)Xj— Xy,
o — . P(l-¢)—-A
(XU - XuL) - A—O'

5p| 1
5 719,0p1q= ~ (&P+T) —g" +[u(1+B)8Xiq— gl 5,
0 P(l—ei) Py Py

RRTEETE ©

where A=X, —X,n=X,1, Ao=1+pJ+pP+p2, and 5pch(2 Spcq )_(,uéxiq—&(vq)

d.0pcg= - ,
Bo=1+py+pi+(pe)/(1+B). TeeroPca pgz 1+ dpcq pocz(l-l-ﬁpcq)

In order to study the evolution of nonuniform defect dis-
tributions and the eventual occurrence of microstructure foryith
mation, we also need to derive the evolution equations for
inhomogeneous defect densities. We follow the same method P(l—¢) P(l—¢,)—A
as in Ref. 10, and define the nonuniform densities as I'= B, Ay )

X=X =X, 8%, =%, — (X0~ X,1),
Py =Py Pt —pi pE—Pe (1+B)Bo 0
sov=Cgl g = spe=E e
Pv P Pc and
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B i P(l-¢) 1

R Ll K e L AL
P(l1-e€,)—A s s 10
Ao Aq"'Akn,l -k " Skn_q | (10
Sig— Myq=Sneg(—1 “J dk Jdk P-e) L 5 g
M OXjq vq nzl( ) n—-1 (1+ B)BO Bq'”Bkn71 q—k Kn—1

P(1—e¢,)—A < s 11
Ao Ag- A q-k Knp—1 /" (1D

Hence the loop dynamics may be cast in the vectorial

form
79,.6pq=L Opg+ M X+ f dk 6pq—kKNSXy
+ f dk 5qukP5quk+ e, (12)
where
0 O
~=| 0 7 0], (13
0 O TC
€,P 0 0
PV
(GiP+F)
L= 0 —-——=%— 0 |, (14)
P
2 __
0 0 2 r
Pc
—u(1+B) 1
u(1+B) 1
— 0 0
M= P Pr, (15
Mm 1
-T2 2
p2 ol
—u(1+B) 1
0 0
N= u 1| (16)
= _
o i
and
0 0
0 0
P= rl (17
0 0 - 2
Pc

and supplemented with E7).

IV. ONSET OF SPATIAL INSTABILITY
OF THE MICROSTRUCTURE

The evolution of the uniform line and volume defect den-
sities may be studied with Eq§7) and (12). The addition
element here, with respect to Ref. 10, is the presence of voids
in the dynamics. Let us then first consider the growth rate of
the void density. It is easy to see, when

P(1-¢)

(1+B) >[P(1_€v)_A]1 (18)

or when the net contribution of interstitials to the void
growth rate exceeds the net contribution of vacancies to the
void growth rate, that the void density continuously de-
creases. Although it may strongly depend on its initial con-
dition, it will not affect the long-time behavior of the system.
In this case, we are led back to the microstructure evolution
problem studied in Ref. 10 with dislocation loops only. Of
course, due to the weak coupling between the densities of
loops and voids, any spatial instability in loop densities will
eventually induce transient structures in the void density.
This condition is consistent with the experimental condition
of irradiation at low temperaturéess than one-third of the
melting poin}.

On the other hand, under conditions conducive to void
growth (temperatures above one-third of the melting point
we have

P(l—ei)

(1+B) <[P(1_Ev)_A] (19)

In this case, the situation is quite different. Dimensional
analysis of the evolution Eq8) shows that both loop and
void densities increase with time or irradiation dose.

The stability of these uniform dislocation densities may
now be analyzed through the linear part of the evolution
equation for their inhomogeneous perturbations. This evolu-
tion is obtained by combining Egq$7) and (12), and its
linear part reads

79,0pg=[ L —MD 4T 4p%] 5py= Q,3p,, (20

where
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va —
-~ 0 +AqP8/ qulo qulo
Pv
0 0
pv (P+1I) —Pc
Q= ~Aa7p —— A —Aqs 21
N B A T 2
0 0
— Pv — P 2— =1
Aq 2 Aq? ?F'}_Aq_o
Pc Pc Pc pc
where ! o o — _
2 (1+p;+py)(B—€)—pc(2B+e)
2= — (26)
A Pl-e) Pl-e)-A 22 Dyl B+et — PC
q BoB, AdA, J 1+B Ay
o P(1-e) _ P(1-€)—A 23) We immediately see that we recover the previous reults
9 (1+B)BgB, AcAq ’ for p2=0, and that the instability threshold is lowered by the
presence of the void density. However, the instability occurs
5 P(1-e) P(1-€,)—A y at finite g, when the following condition is satisfied:
97 (1+B)?ByBy AAg 24
| | jon matri B (27
Since the elements of the corresponding evolution matrix 1+p0+p0 2B+ e’

are time dependent, this situation prevents us from perform-
ing the usual stability analysis. Nevertheless, some insight

into the behavior of the system may be obtained within theyhich implies that microstructure formation occurs when, on
quasistatic approximation, as was done in our earlier WArk. one side, the bias exceeds the difference between the cascade
In this description, the timéor dose appears just as a pa- collapse efficiency of vacancies and interstitials, and, on the
rameter, and one may obtain an instantaneous instability crpther side, the uniform void density does not exceed a well-
terion. Effectively, when at least one eigenvalue of the evogefined fraction of the total line defect density. Furthermore,
lution matrix acquires a positive real part, the correspondingyith all material parameters fixed, one sees that an increase
eigenmode starts growing. Of course this approximationyf jine defect densities tends to decrease the wavelength of

does not describe correctly the time evolution of the perturthe critical microstructure, while an increase of the void den-
bations, but in similar problems it seems to predict the instasity tends to increase it.

bility threshold quite accurately.

When the condition P(1—¢)]/[(1+B)]I<[P(1-¢€,)
—A]<P(1-¢) is satisfied A is limited by B/(1+ B)p?;;
and P(1—€,)—Al/AgAoBo; and [P(1—€))/
[(1+B)By)/ —[P(1—¢,)—A]/A, by B/(1+B)p2[P(1—
€,) —A]l/AgBy, while for [P(1—¢)]/[(1+B)]<P(1- Close to the instability threshold of the steady uniform
€)<(P(1—€)—A), [P(1—€)l/[(1L+B)Bg]—[P(1—¢,) reference state of a nonlinear dynamical system, space-time
—A]/Aq and A are always negative. Hence the only insta-separation occurs between stable and unstable modes, the
bility possibility arises, once again, in the vacancy loop evo-characteristic scales of the latter being by far the largest. The
lution. stable modes may thus be eliminated adiabatically, and the

Taking into account the fact thaty/p 2% andp /p22 de-  dynamics reduced to the weakly nonlinear unstable mode
crease with time, and that> 7, the computation of the dynamics, which governs the long-time evolution of the sys-
instability threshold is very similar to the computation madetem and captures the asymptotic properties of the complete
in Ref. 10, and we find that nonuniform defect densities starkinetic model in the vicinity of its bifurcation point. When
growing when the fraction of line defects corresponding tothis adiabatic elimination is performed, one usually obtains
vacancy loops exceeds an instability threshold given, at thamplitude equations for the bifurcating solutions which have

V. MICROSTRUCTURE STABILITY
IN THE WEAKLY NONLINEAR REGIME

lowest order ine, , €, B, andA, by the structure of Landau or Landau-Ginzburg equations, and
which have been discussed and analyzed at length in the
Pe/ pg ‘ 2\/60—8 literature in relation to th_e d'evelopment of spatiotemporal
= ——o>be= o = T patterns and self-organization phenomena in numerous
1+pi+py L+pi+py, B4 B pc physicochemical systems out of thermal equilibrium.
1+B Aq In the present case, our uniform reference state is time

(25 evolving, and we cannot perform this type of analysis. How-
ever, for weak nonlinearities, the void and loop dynamics
wheree= €, — €;+ (A/P). This instability occurs for a criti- can still be expressed as an expansion in the defect densities.
cal wave number given by Using Eqgs.(7) and(12), one obtains.
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T(?T(Spq: Qqﬁpcﬁ‘ f dk Wﬁ,kaquképk

+J dkf dk17q k k,0Pq -k SPk—k, OPx,»
(28)
where
7 ak=MD T 4(p°)?—NDGT p°+P (29)
and

gk, =~ MDg?leTq( P2 +NDRT(p)% (30

14787

this leads to the following relations which express how they
are linked to the vacancy loop density:

GU
5P|qc— " e 5quc, (37

5 B+e Py
PCo. " B(1+B) 1+p%+pY *PVar-

(38)

It is interesting to recall here that) increases with dose
while p%/(1+p%+pY) tends to a constant. As a result, the
amplitudes of the inhomogeneities in the interstitial loop dis-
tribution decrease with dose, contrary to the amplitude of the
inhomogeneities in the void density which are proportional

Except in the_qugsistatic approximatior_l, the us_ual ProcCe¢g the amplitude of the vacancy loop microstructures.
dure of diagonalization of the linear evolution matrix and the T analysis performed here does not take into account
adiabatic elimination of the stable modes may not be perghe anisotropy of interstitial atom diffusion, which is related
formed on this dynamical system, due to the time depeng, the crystaliine structure of the material. Effectively, it has

dence of the coefficients. However, sinegg> 7> 7, and
since the elements of the matrichs and N are such that

been shown by us in Ref. 8 that the dislocation structures
should be oriented parallel to the directions of high intersti-

their lower components decrease with time or dose, it is easyy, mobility. Hence, at low irradiation dose, the loop and
to see from dimensional analysis that the dynamics is driveqiq structures should be in parallel orientations with the

by the vacancy loops. For weak deviations from the uniform,nqeriying crystal lattice with the same symmetry, while at

density, and at the leading order k= (b—b.)/b., and

high irradiation dose(when v?/u<1), the loop and void

(a—9c)/qc, the vacancy loop density perturbation in Fourier g crures should consist of planar arrays. These arrays

space can be expressed as
TO(?T&qu: wqﬁpvq-l- j dk Uqcapvq_képvk

+f dkf dkluqcapvqfképkaklgpvkl (31)

where
b—be ofd’—d;|°
U)q— bc _52( qg ’ (32)
[ ZTV (33)
TNV Be,(B+e)
€, PT_+O( 1) 34
Vg = |,
% py A
B P(l—e,)—A P(1—¢) 0u— ~[ 1
“qc_( AL BoBZ. (PO &
ePbr (1
= +0[—|, 35
~ (Ao) 9
V1+B(B—¢)?
fng- (36)

should nevertheless have their planes parallel to the crystal-
line axis. Up to now, most of the experimentally observed
void lattices have been isomorphic with their host lattices.

VI. NUMERICAL SIMULATIONS

The weakly nonlinear analysis performed in preceding
sections is valid in the quasistatic approximation close to
threshold. Hence this analysis could become irrelevant for
long irradiation times or high irradiation doses, when these
approximations are supposed to break down. In such condi-
tions, the numerical analysis of the dynamical mo@lre-
mains the only way to test the validity of the weakly nonlin-
ear analysis and to follow the microstructure evolution. Since
it has been shown in the preceding sections that the presence
of voids does not modify the character of the instability, we
solved numerically the reduced version of this model where
voids are absent.

Let us first describe the temporal evolution of the real part
of the functionQ), (q), which corresponds to the largest real
part of the eigenvalues of the instantaneous linear evolution
matrix. Recall that the modes for which this function is posi-
tive are unstable, and trigger the formation of defect micro-
structures. The evolution of Re (q) is presented in Figs.
1(a) and Xb) for annealedpy=10" m~?) and cold worked
(pn=10" m~?) nickel in acceleratofK =102 dpa s'}), and
in Fig. 1(c) for annealed nickel in reactdk =10° dpa s %)
conditions. At short times, or small irradiation doses, all
modes are stable and 8¢(q) is negative. Beyond a critical

Hence, aw?/u decreases with irradiation dose, we may dose, a set of modes of wave numbers centered argypd
expect the same sequence of selected patterns as the omkich corresponds to the maximum of 8¢(q), become
discussed in Ref. 9: bcc lattices at low irradiation doses andnstable. Then Re, (ga) @nd qmay grow, as predicted by

planar arrays at high irradiation doses.

our previous analysis. However a time is finally reached

Furthermore, the interstitial loop and void densities maywhere Ré€)(q,,,) Stops growing and starts to decrease; the
be expressed as linear combinations of the eigenmodes of tlispersion relation tends to flatten on the zero axis. The same

linear evolution matrix. In this approximatiorr{> 7> 7)),

behavior is also qualitatively observed for cold-worked and
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elimination of the stable modes is no longer appropriate. Fur-
thermore, strong mode couplings and harmonic generation
should be expected, leading to the breakdown of the weakly
nonlinear analysis, except for cold-worked nickel, where the
evolution of the linear growth rate curve 8e¢(q) is suffi-
ciently slow to guarantee time-scale separation between
stable and unstable modes up to at least 10 dpa in accelerator
conditions. Hence, for annealed nickel, the way to obtain
accurate results from the kinetic mod@) consists of inte-
grating it numerically.

The numerical integration of the evolution equations of
defect densities has been performed in one and two spatial
dimensions using an implicit Euler method. The four vari-
able fields(point defects and loop densitjeare initialized on
the uniform state described in Ref. 9. Then an initial 1%
noise is added to point defect densities, the initial time being
chosen as the time where the linear stability analysis exhibits
unstable modes. Since point defect densities evolve much
more rapidly(by several orders of magnitude, as discussed in
Ref. 8 than the loop densities, their evolution equations are
solved implicitly, while the loop evolution equations are
solved explicitly.

VIl. WAVELENGTH SELECTION IN ONE DIMENSION

In one spatial dimension, a numerical system consisting
of 512 cells is considered, and the spatial grid size is chosen
in such a way that one wavelength corresponds roughly to 25
cells, and the boundary conditions are no flux. The integra-
tion is performed for several typical irradiation and materials
conditions with respect to the temperatilev temperature
T=500° or high temperatur€=700°, the irradiation inten-
sity (accelerator condition& =102 dpa $* or reactor con-
ditionsK =10"° dpa s'%) and the network dislocation density
of the irradiated materialcold-worked nickelpy=10" m™2
or annealed nickghy=10" m~?). Under all conditions, our
numerical simulations confirm the results of the linear stabil-
ity analysis. In Table | we give the parameters used for the
numerical analysis, while in Table Il we present a summary
of principal results: stability, critical dose, and critical wave-
length.

Let us now qualitatively describe the process of micro-
structure formation and evolution as a result of the numerical
analysis. Characteristic evolutions of the vacancy loop con-
centration are represented in Fig. 2, for annealed nickel un-
der typical accelerator conditions and low temperature, and

FIG. 1. Evolution of R€.,(q) (in the absence of voillss dose  in Fig. 3 for cold-worked nickel under typical accelerator
for annealed nickel under typical accelerator conditions and lowconditions and low temperature as a function of space and at
temperaturegpy=10m~% K=10"*dpas®, andT=773 K). (b) different irradiation doses. Since the evolution of other vari-
Evolution of Ré).(q) (in the absence of voidws dose for cold-  gples is very similar, we do not represent them here. During
worked nickel under typical accelerator conditions and low teM-garly times, or low dose, unstable modes grow, giving rise to
peratures(py=10"" m™%, K=10"° dpas*, and T=773 K. (© 4 more or less periodic structure. A wavelength adjustment
Evolution of Ré.(q) (in the absence of voids/s dose for an-  oeours in intermediate periods. Finally, during late periods,
nealed nglck(_elzunder t)_/glcal re_altctor conditions and low temperatureg, higher dose, the vacancy loop concentration increases
(py=10"m"? K=10"° dpas™, andT=773 K). strongly in very localized regions of the material, while it

goes down almost everywhere else; the wavelength of the
annealed nickel, in accelerattf=773 K,K=103dpa s?) structure remains almost unchanged. The microstructure evo-
or reactor condition§T=773 K,K=10"°®dpa s?), although  lution is qualitatively similar in other irradiation conditions,
the evolution is much slower for cold-worked nickel. although the time scale of the evolution may be different.

For high irradiation doses, both stable and unstable modeBhis evolution is, for example, much slower in reactor con-
acquire comparable evolution time scales, and the adiabatititions, where the irradiation is much less interie=10"°
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TABLE |. Material parameters for nickel.
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Parameter Symbol Value Units
Vacancy diffusion D, 6x10 % 13 eVkeT m?s !
Intersticial diffusion D; 107 7@ 03 eVkeT m?s !
Equilibrium vacancy concentration ct g~ 16 eVkgT

Stacking fault energy Yot 9.4x10' eV m 2
Shear modulus w(1—v) 8x 101 Pam?2
Burgers vector b 2.5x1071° m
Atomic volume Q 1.206x10°%° m?
Network bias excess B 0.1

Loop/network bias excess AB 0.005

Initial vacancy loop radius ro 1.5x107° m
Network dislocation density Pn 100-10% m~2
Displacement damage rate K 1076-10°3 dpas?
Cascade collapse efficiency € 0.01-0.1

Intersticial loop density N 107°-1072 m—3
Temperature T 773-973 K

dpa s'%), while the instability threshold is not very different tions. The evolution presents the same characteristics as for

(cf. Table II).

better, let us now describe the spectrum evolutsee Figs.

one-dimensional systems, as far as the wavelength and the

To characterize the wavelength selection phenomenonoarsening of the loop distributions are concerned. With re-
spect to the symmetry of the structures, the weakly nonlinear

4 and 5. After a short irradiation time, the stable modes analysis predicts a final wall three-dimension&@D) or
generated by the initial noise decrease, and a peak centersttiped (2D) structure. On the other hand, and in other ex-
on theq,,,x Wave vector is formed. This peak then continuestended pattern forming systems, striped structures usually

to grow and is shifted toward slightly higher values apf

present a lack of orientational order, due to the presence of

During the remaining time, another kind of evolution occurs;topological defects. It is only in anisotropic systems that
the main peak does no longer evolves, but its harmonics anegular parallel rolls or stripes may be observéd.
successively generated. Hence the wavelength of the pattern This behavior is also observed here, as illustrated in Fig.
no longer evolves, in agreement with Jaeger's observationsg. Effectively, for isotropic point defect diffusion, the struc-
ture evolves toward mosaiclike patterns, with no well-

while its profile strongly sharpens.

We can thus summarize the microstructure evolution indefined orientation for the high loop concentration bands.
one-dimensional systems as follows. During early irradiatioriThe final structure resembles more regularly spaced defect
times, linear terms are responsible for wavelength selectiortlusters. However, in the case of anisotropic interstitial dif-
Selected modes rapidly grow. As time proceeds, the eigerfusion, well-defined bands are obtained, in parallel orienta-
values associated with the stable modes go to zero. Thison with the high interstitial mobility, in agreement with our
effect, combined with the presence of nonlinear terms, trigprevious analysi&.Thus we have confirmation here that the
gers the generation of harmonics of the initial unstableanisotropies triggered by the crystalline structure of the ma-
modes. These harmonics are responsible for sharpening tdrial are essential in determination of the orientation of the
the loop density profile, or, in other words, of the accumula-microstructures, as observed in experimérits.
tion of defects in very localized, although regularly spaced, From this observation, and our previous analysis showing
regions. that the most unstable wave vectors are perpendicular to the
high-mobility directions of the interstitials, we may thus in-
fer the following scenarios for three-dimensional self-
organization of loops. If the interstitial mobility is maximum
for one set of planes, the defect microstructure should evolve

The study of two-dimensional patterns has been pertoward regularly spaced walls parallel to these planes. If the
formed on a(128%x128) grid with periodic boundary condi- interstitial mobility is maximum for two sets of planes, the

VIIl. PATTERN SELECTION AND ANISOTROPY
EFFECTS IN TWO DIMENSIONS

TABLE Il. Numerical results for one-dimensional systems.

PN K Critical dose dc Oselected
(m™? (dpas? Instability (dpa (m™Y (m™Y
103 1073 yes 0.025 1.310 3.65x10’
103 10°® yes 0.03 1.410° 3.9x10
10'° 1073 yes =0 dpa 5.410 6.2x10

10t° 1076 no
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FIG. 2. Snapshots of the one-dimensional evolution of the amplitude of the vacancy loops microstt@sfuia space at different
irradiation doses for annealed nickel under typical accelerator conditions and low tempejajere8'®* m~2, K=10"%dpa !, andT=773
K).
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FIG. 3. Snapshots of the one-dimensional evolution of the amplitude of the vacancy loop microsttdejire space at different
irradiation doses for cold-worked nickel under typical accelerator conditions and low tempefiyred'® m™2, K=10"° dpa s*, and
T=773 K).
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FIG. 4. Snapshots of the evolution of the spectriifaurier transformof the amplitude of the vacancy loop microstructure presented in
Fig. 2.
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FIG. 5. Snapshots of the evolution of the spectriifaurier transformof the amplitude of the vacancy loop microstructure presented in
Fig. 3.
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are consistent with experimental observations, for the accu-
racy of the spatially organized microstructure.

The kinetic model described here is based upon the well-
established rate theory of microstructure evolution. The
model contains space-time rate equations for mobile point
defects(vacancies and self-interstitiaJsvith anisotropic dif-
fusion for only the interstitial population. It also contains
coupled space-independent rate equations for the densities of
dislocation loops(represented by vacancy and interstitial
loops, as well as voids. A compact vestorial form is derived
for the Fourier components of perturbations in the densities
of point defects, as well as clustered defects. The onset of
spatial instabilities is analyzed through the linear part of the
derived evolution equations. It is shown that, even when
voids are present at high temperature, the spatial instabilities
are driven by perturbations in the vacancy clugkeop) den-
sity. Cascade-induced vacancy cluster densities must reach a
critical value to induce the instability. This critical concen-
tration is determined by the initial microstructufiee., an-
nealed versus cold workgdhe dislocation bias, and the cas-
cade collapse efficiency. Numerical simulation verify the
analytical conclusions, and show that a spatially organized
defect microstructure is difficult to obtain for an initially
cold-worked material.

Stability analysis in the weakly nonlinear regime is
based on a derivation of density perturbations for the
Fourier components of immobile defects, by invoking a qua-
sistatic approximation. With this approximation, a
Ginzburg-Landau-type amplitude equation is recovered, with

FIG. 6. Snapshots of the two-dimensional evolution of the am-time- (dosej dependent coefficients that are slowly
plitude of the vacancy loop microstructufép,) in space at differ- varying. Qualitative conclusions of pattern selection in the
ent irradiation doses for annealed nickel under typical acceleratgpost bifurcation regime are made, to show phase transitions
conditions and low temperaturésy=10"m™2 K=10"°dpas?,  leading to the eventual formation of wall defect structures,
and T=773 K) in the case of isotropic point defect diffusi¢left ~ with a wavelength that is decreasing with the irradiation
column (the dose increases from 1 dpa in the upper graph to 20 dpgose.
in the lower graph and with a 1% anisotropy in the interstitials  Djrect numerical simulations of the underlying kinetic
gliffusion coefficient(right colurm (the dose increases from 1 dpa model have largely confirmed the qualitative conclusions
in the upper graph to 20 dpa in the lower graph drawn on the basis of the weakly nonlinear analysis in the

quasistatic approximation. However, the wavelength of the
defect microstructure should evolve toward a labyrinthicemerging patterns is shown to be somewhat insensitive to the
structure formed of domains of walls parallel to one or thejrradiation dose, in agreement with experimental observa-
other set of high mobility planegellular or bimodal struc- tions, because of higher-order harmonic generation at larger
tures are effectively ruled out by scalar nonlinearitiesif  jrradiation times. Numerical simulations have been per-
the interstitial mobility is maximum in one direction, say  formed for both cold-worked and annealed nickel under typi-
the most unstable wave vectors will be isotropically distrib-cal accelerator(K=10"2 dpas?) and reactor(K=10°
uted in the plane perpendicular to the easy axis, sayxXhg ( dpa s*) conditions. It is shown that during early irradiation
plane. Hence the resulting loop distribution should not vartimes, linear terms controlled by the the critical vacancy
in thez direction, but will in the &,y) planes where it should cluster density, the cascade collapse efficiency, and the dis-
present the same microstructure as the ones obtained in twiycation bias are responsible for wavelength selection. As
dimensional isotropic systems and presented in Fig. 6. time proceeds, eigenmodes associated with stable compo-
nents decay, while nonlinear terms trigger a higher harmonic
generation of unstable modes. The final effect is a rapid
sharpening of the concentration of immobile defects into
walls, with very few left in between.

A comprehensive theoretical framework for the analysis Our weakly nonlinear analysis predicts a final wéh
of spatial instabilities in the microstructure of irradiated ma-3D) or striped(in 2D) defect structures. Numerical simula-
terials is presented in this paper. The work is based on thtons verify these conclusions in two-dimensional systems,
well-established rate theory of microstructure evolution un-where striped defect wall arrangements, with no preferred
der irradiation, and is pursued both qualitatively and numeridirection, are obtained when interstitial diffusion is assumed
cally to ascertain the main processes leading to pattern seleisotropic. On the other hand, only 1% anisotropy in the dif-
tion. Throughout this work, we emphasize conditions whichfusion coefficient of self-interstitials along a preferred direc-

IX. SUMMARY AND CONCLUSIONS
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tion [i.e.,(100] is shown to result in significant alignment of P(l—¢) o o p2
clustered defects alon@.00 directions, in agreement with  9X; = — ,u(lT)Bqu PvOPyqt P 0PIt 118 dpcq

Jaeger’s experimental observations. It is therefore concluded
that a small degree of interstitial atom diffusional anisotropy
is needed to result in significant alignment of clustered de- f dk
fects along(100 directions.

In summary, the necessary ingredients for the kinetic rate
theory model to be consistent with experimental observations 4= pe Sp k)
are three. These ard) an excess bias of dislocations to- 1+B rCaTk)
wards interstitial atom absorptiof2) a fraction of vacancies
to be produced directly in clusters, as a result of collision P(l-e)—A 0 0
cascades; an¢B) a small degree of interstitial diffusional Xq= " paa (PVOPvatPIOPIgt PCOPCy)
anisotropy. 0"

OX; ,k( PUOPVg—kT P OPig—k

1
0 0
_f dk = 8%, k(PvIpvg-kt PIPIg-K
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APPENDIX
In this appendix, we give more details on the adiabatic _ P-¢)-A v _f dk 1 xS

elimination of the point defect densities. On introducing the v.a AcAq q vk=a-k:
perturbations to the uniform defect densities defined by the (A2)
relations(6) in the dynamical systertd), and neglecting the
time derivatives of the point defect densitiesince Since the coefficients of the linear terms are small, these
7> 7> 7> 1), one obtains, in Fourier space, equations may be solved by an iteration procedure, which

leads to the following series expansionliy and>,,:

P(l_fi) ,
&i’q:_mT)Bqu Hq+Jdk q ka fdkf dk q ka—k’Hk’+
_Pdze)7a s +fdk Ly fdkf K S S S A3
0.9~ AoAq a P AA, Ik (A9
|
Nonuniform point defect densities may thus be expressewhere
in terms of linear and nonlinear combinations of line and
volume defect densities. The introduction of these expres- Sy OXi q AS
sions, limited to the first significant nonlinear contributions, Xq= %y g/’ (AS)
in the kinetic equations for line and volume defects, will thus
provide a first reduction of the dynamidcd). In order to P(1-¢)
simplify the manipulations, EA3) may be cast in the vec- TR
torial form T.o| M1TBIB (AB)
a P(l-e,)—A |’
Ao
6Xq:[_Dq5pq+f dk Dquﬁpq—kﬁpk 1
— 0
Bq
_J ko dk’DquDk’5pq,k6pk,k75pk/+"‘ Tq, Dq= ’ (A7)

1
(A4) Aq



14 794 D. WALGRAEF, J. LAUZERAL, AND N. M. GHONIEM 53

and Since the matrixD, is diagonal, Eq(7) may finally be
rewritten as
I, 0
=S | ke [y
or
—1)(MWpm
5pq=p°5pq, (A9) X(=1)'""Dq" k4 TadPq—k """ 6Pk, _, (A12)
with where
0
o o Pc 1
Pv P P EEr-a— 0
0= 1+B (A10) o Bq.-By .
pv Pl pe D, kpa ™ 1 - (A1)
and 0 Ag-- A,
Pvq This expression also allows an easy computation of the
8pq=| %iq | . (A11)  expressionsu(1+B)dxq— 8X,q and woXiq— 6X,q, which
dpcq enter into the loop and void dynamics.
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