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As a result of surging interest in finding fundamental descriptions for the strength
and failure properties of materials, and the exciting prospects of designing mate-
rials from their atomic level, an international symposium on Multiscale Modeling
was convened in Los Angeles during August 23 - 25, 2000. In this symposium, 23
speakers with research interests spanning fields as diverse as traditional mechanics,
physics, chemistry and materials science have given talks at this symposium. The
topics of discussion were focused on sub-continuum modeling of the mechanics of
materials, taking into account the atomic structure of solid materials. The main
motivation of the symposium was the realization of the limitations of current con-
tinuum mechanics modeling approaches (e.g. the finite element method (FEM))
to describe the behavior of materials at scales smaller than tens of microns. The
speakers represented the international scientific community in different countries,
and utilized diverse simulation and modeling tools for sub-continuum systems. The
discussions covered Ab Initio quantum simulations (e.g., density functional theory
and tight-binding methods), atomistic simulations using empirical many-body in-
teratomic potentials, Monte Carlo methods, mesoscopic statistical and dislocation
dynamics, and advanced continuum field equation approaches. In this article, we
provide a perspective on the variety of methods presented at the symposium, and
a vision for future developments in multiscale simulations for nano- and micro-
mechanics of materials.
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I. INTRODUCTION.

Continuum methods of modeling the behavior of materials have dominated the research scene for
over a century. Successful engineering designs have been based on continuum conservation equa-
tions, supplemented by a set of phenomenological relationships (or constitutive equations, CEs’)
between cause and effect (e.g. force and motion, or stress and strain, etc.) Because conservatism
is embodied in most engineering designs, such an approach has been successful in designing large-
scale structures and components, where the exact knowledge of materials response is not essential.
The underlying physical principles behind CEs’ are grounded in the statistical mechanics of atomic
scale processes. These are captured in the CEs’ as macroscopic thermodynamic averages. Within
this approach, all atomic scale dynamics and defect evolutions are implicitly averaged over time
and space so that the CEs’ represent the mechanical behavior of materials over long time and
large length scales. Here, the time and length scales are those of typical defects, which determine
the mechanical properties: point defects, dislocations, interfaces and grain boundaries. There-
fore, continuum ana lyses would be valid only for large enough systems that include a substantial
number of defects. Continuum approaches begin to fail as the system size approaches the average
separation distance in between defects. At small length scales representative of nano- and micro-
engineered material systems, continuum models are not flexible enough to accommodate individual
atomic scale processes. While the nano-scale is the length scale of individual atoms and defects
(i.e. 1 − 10 nm), and the micro-scale represents the length-scale of typical microstructure (i.e.
0.1− 1 µm), the meso-scale is a typical length scale in which the defect-interface interaction and
individual defect dynamics become significant (i.e. 1− 100 µm).

Recently, the confluence of a number of factors has begun to upset the continuum paradigm of
engineering design and analysis. First and foremost are the myriad of experimental observations
on the mechanical behavior of materials that cannot be readily explained within the continuum
mechanics framework: dislocation patterns in fatigue and creep, surface roughening and crack
nucleation in fatigue, the inherent inhomogeneity of plastic deformation, the statistical nature of
brittle failure, plastic flow localization in shear bands, and the effects of size, geometry and stress
state on the yield properties. Second, while CEs’ represent experimental data in some space de-
fined by temperature, stress state, strain rate and material conditions, scientists and engineers
have never been comfortable in extending the range of experimentally-derived CEs’ without ex-
cessive conservatism. If there is no physical understanding, one can simply never be sure about
the behavior of materials under unanticipated conditions outside the measured range. Third, the
engineering world has shrunk down to small length scales! It is challenging to design engineering
systems in the range of nanometers that are anticipated in new generations of computers, elec-
tronics, photonics and drug delivery systems. Urgent problems in computer technology depend
on understanding failure mechanisms of nano-wires connecting chips in the sub-micron length
scale. At the same time, the technology of Micro-Electro-Mechanical Systems (MEMS) has begun
to reach the stage where physical understanding of the mechanical behavior will determine the
reliability of developed products. There is considerable effort to design ultra-strong and ultra-
ductile materials by utilizing the mechanical properties of nano-layers. In high-payoff, high-risk
technologies (e.g. nuclear and aerospace), the effects of aging and severe environments on fail-
ure mechanisms cannot be left to conservative factor-of-safety approaches to design, but require
thorough mechanistic analysis of materials degradation in anticipated environments. All these
examples point to the need for a physically-based approach to performance analysis of such small
engineering structures. The challenge is great, because neither statistical nor continuum mechanics
are reliable in every case. For example, one single nano-void can cause failure of an interconnect
on an IC board. Statistical mechanics cannot adequately address this situation, because the law
of large numbers is not obeyed. Fourth, the sophistication of computer hardware and software is
increasing at an astonishing speed, and large-scale computing is becoming far more accessible than
just a few years ago. Today, a cluster of dozens of PCs, linked by network hardware, can cost as
little as $30,000 and out-perform supercomputers that used to cost in the millions. Such accessi-
bility is encouraging scientists and engineers to develop efficient numerical methods for modeling
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complex physical phenomena in materials, without much need for simplified analytical solutions
of excessively unrealistic material representations. Computational modeling of materials behavior
has begun to complement the traditional theory and experimental approaches of research. Finally
and interestingly, the channels of communications between engineers and scientists of uncommon
backgrounds are becoming ever more common! In recent technical meetings and conferences one
finds mechanical engineers and continuum mechanicians discussing the same issue with materials
scientists, physicists and chemists. This barrierless attitude is promoting a sense of creativity and
unprecedented fundamental focus in the mechanics of materials field.

An alternative to continuum analysis is atomistic modeling and simulation, in which individual
atoms are explicitly followed during their dynamic evolution. Even though this explicit modeling
of atomic structures can trace all details of atomic-scale processes, it has its own set of limitations.
These are time and length scale limitations from both small and large directions. Since atomistic
modeling methods describe atoms explicitly, time scales are on the order of 10−15 second (or 1
fsec) and length scales on the order fo 10−10 m (or 1 Å). As a result of these very small time
and length scales, typical atomistic simulations are limited to very small systems over very short
times. Even though computing power has been rapidly increasing, brute force simulations using
atomistic modeling methods cannot describe systems much larger than 1 µm (billions of atoms)
or longer than 1 msec (billions of fsec time steps).

The multiscale modeling (MMM) paradigm is based on the realization that continuum and atom-
istic analysis methods are complementary. At meso-scales (i.e. those in between continuum and
atomistic), continuum analyses start to break down, and atomistic methods begin to reach their
inherent time and length-scale limitations. Mesoscopic simulation methods are being currently de-
veloped to bridge this critical gap in between the extremes of length scales. At the bottom end of
the length scales within atomistic simulation methods lies quantum mechanics. Here, components
of atoms (e.g. electrons and nucleons) can be explicitly described, albeit with various degrees of
approximations. However, quantum simulation methods require 105 − 106 times more comput-
ing resources than classical atomistic simulations. Thus, and so far, such methods are limited to
atomic systems of a few hundred atoms. It is important to point out that at nano-scales, materials
properties are closely coupled so that electronic and chemical properties are strong functions of
mechanical deformations. This is evident in the coupling between the band gap and bending strain
of SiC nano-tubes, for example [1]. Such realization may be opening the door for many and novel
nano device applications, where chemo-mechanics and physico-mechanics must be integrated from
the start.

The traditional gap between atomistic simulation methods and continuum mechanics has pre-
sented significant challenges to the scientific community. When the length-scale cannot be accessed
by either continuum methods because it is too small for averaging, or the atomistic methods be-
cause it is too large for simulations on present day computers, these two approaches become
inadequate. Two possible solutions have emerged so far to this challenge. Instead of simulating
the dynamics of atomic systems, one can just study the dynamics of defect ensembles in the ma-
terial. In this innovative strategy, the problem becomes computationally tractable without loss
of rigor. Examples of this approach are the dynamical simulations of interacting cracks in brittle
materials, or dislocations in crystalline materials. It is noted that the development of dislocation
(or defect) dynamics follows from the continuum theory of elasticity, with additional limitations
at atomic length scales. Recently, a surge in interest towards understanding the physical nature
of plastic deformation has developed. This interest is motivated by the extensive experimental
evidence which shows that the distribution of plastic strain in materials is fundamentally heteroge-
neous ( [2]- [4]). Because of the complexity of dislocation arrangements in materials during plastic
deformation, an approach, which is based on direct numerical simulations for the motion and in-
teractions between dislocations is now being vigorously pursued. The idea of computer simulation
for the interaction between dislocation ensembles is a recent one. During the past decade, the ap-
proach of cellular automata was first proposed by Lepinoux and Kubin [5], and that of Dislocation
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Dynamics by Ghoniem and Amodeo [6]- [12]. These early efforts were concerned with simplifying
the problem by considering only ensembles of infinitely long, straight dislocations. The method
was further expanded by a number of researchers( [13]- [17]), showing the possibility of simulating
reasonable, albeit simplified dislocation microstructure. To understand more realistic features of
the microstructure in crystalline solids, Kubin, Canova, DeVincre and coworkers ( [18]- [25]) have
pioneered the development of 3-D lattice dislocation dynamics. More recent advances in this area
have contributed to its rapid development (e.g. [26]- [28], and [29]- [31]).

The second solution to themesoscale problem has been based on statistical mechanics approaches
[32]- [38]. In these developments, evolution equations for statistical averages (and possibly for
higher moments) are to be solved for a complete description of the deformation problem. The
main challenge in this regard is that, unlike the situation encountered in the development of the
kinetic theory of gases and its subsequent extensions to neutrons, plasmas, photons, etc., the ge-
ometry of interacting entities within the system matters. It is not conceivable to pursue such an
approach without due consideration to the geometry of dislocations and cracks, and to the con-
finement of their motion on specific slip systems, or along specific directions [37].

In this overview article, we briefly outline the status of research in each component that make up
the MMM paradigm for modeling nano- and micro-systems: Quantum Mechanics (QM), Molec-
ular Dynamics (MD), Monte Carlo (MC), Dislocation Dynamics (DD) and Statistical Mechanics
(SM). Time and length scale hierarchies, along with a brief classification of computational methods
for nano- and micro-systems, are shown in FIG. (1). The current overview is not intended to be
exhaustive, but is designed to give the reader an informed level of understanding of the various
components of research in MMM, with selected examples to illustrate what is being studied now.
Since several of these topics have been addressed within the symposium, we build on the structure
of this emerging field, and introduce the papers contained in this special issue. We will finally
attempt to project a possible vision for future developments in this emerging field.

FIG. 1. Schematic illustration of the Multi-scale Materials Modeling (MMM) Hierarchy
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II. AN OVERVIEW OF COMPUTATIONAL NANO- & MICRO-MECHANICS

A. Quantum Mechanics - QM

In recent years, several accurate quantum molecular dynamics schemes have emerged. In
these methods, forces between atoms are explicitly computed at each time step within the Born-
Oppenheimer approximation [39]. The dynamic motion for ionic positions are still governed by
Newtonian or Hamiltonian mechanics, and described by molecular dynamics. The most widely
known and accurate scheme is the Car-Parrinello (CP) molecular dynamics method [40], where
the electronic states and atomic forces are described using the ab-initio density functional method
(usually within the local density approximation (LDA)). While such ab-initio MD simulations can
now be performed for systems consisting of a few hundred atoms, there is still a vast range of
system sizes for which such calculations start to stretch the limits of present day computational
resources and become intractable. In the intermediate regimes, between large scale classical MD
and quantum (CP) dynamics methods, semi-empirical quantum simulation approaches cover an
important system size range where classical potentials are not accurate enough and ab-initio com-
putations are not feasible. The tight-binding molecular dynamics (TBMD) [41] approach thus
provides an important bridge between accurate ab-initio quantum MD and classical MD methods.
In the most general approach of full quantum mechanical descriptions of materials, atoms are

represented as a collection of quantum mechanical particles, nuclei and electrons, governed by the
Schrödinger equation:

HΦ{RI , ri} = EtotΦ{RI , ri} (1)

With the full quantum many-body Hamiltonian operator:

H =
3 P 2I

2MI
+
3 ZIZJe

2

RIJ
+
3 p2i

2me
+
3 e2

rij
−
3 ZIe

2

|RI − ri| (2)

Where RI and ri are nuclei and electron coordinates, respectively. Using the Born-Oppenheimer
approximation, the electronic degrees of freedom are assumed to follow adiabatically the cor-
responding nuclear positions, and the nuclei coordinates become classical variables. With this
approximation, the full quantum many-body problem is reduced to a quantum many-electron
problem:

H(RI)Ψ(ri) = EelΨ(ri) (3)

where,

H =
3 P 2I

2MI
+H(RI) (4)

Ab initio (or first principles) methods have been developed to solve complex quantum many-body
Schrödinger equations using numerical algorithms [43,44]. Current ab initio simulation methods
are based on the rigorous mathematical foundations provided by two important works of Hohenberg
and Kohn (1963) [43], and Kohn and Sham (1964) [44]. Hohenberg and Kohn have developed a
theorem stating that the ground state energy (Eel) of a many-electron system is a functional of the
total electron density, ρ(r), rather than the full electron wave function, Ψ(ri), thus: Eel : (Ψ(ri)) ≡
Eel(ρ(r)). The Hamiltonian operator H and Schroedinger equation are given by:3

p2i /2me+
3

e2/rij −
3

ZIe
2/|RI − ri|+

3
ZIZJe

2/RIJ = H(RI) (5)

H(RI)Ψ(ri) = EelΨ(ri) (6)

where RI and ri are atomic positions and electronic coordinates, respectively. The density
functional theory (DFT) is derived from the fact that the ground state total electronic energy is
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a functional of the total electron density r(ρ). Subsequently, Kohn and Sham have shown that
the DFT can be reformulated as a single electron problem with self-consistent effective potential
including all the exchange-correlation quantum effects of electronic interactions:

H1 =
p2

2me
+ VH(r) + VXC [r(ρ)] + Vion−el(r), (7)

r(ρ) =
3

|Ψi(r)|2, (8)

H1Ψi(r) = εiΨi(r), i = 1, , Ntot. (9)

This single electron Schrödinger equation is known as Kohn-Sham equation, and the local den-
sity approximation (LDA) has been introduced to approximate the unknown effective exchange-
correlation potential VXC [r(ρ)]. This DFT-LDA method has been very successful in predicting
the properties of materials without using any experimental inputs other than the identity (i.e.,
atomic numbers) of constituent atoms [40,42]. For practical applications, however, the DFT-LDA
method has been implemented with a pseudopotential approximation and a plane wave (PW)
basis expansion of single electron wave functions. These systematic approximations reduce the
electronic structure problem as a self-consistent matrix diagonalization problem. Over the last
three decades, the simulation method has been rapidly improved from iterative diagonalization
(ID), to Car-Parrinello molecular dynamics (CPMD) [40], to conjugate gradient (CG) minimiza-
tion methods. CPMD has significantly improved the computational efficiency by reducing the
N3-scaling of ID method down to N2-scaling. The CG method has further improved the efficiency
by an additional factor of 2-3. One of the popular DFT simulation programs is the Vienna Ab ini-
tio Simulation Package (VASP), which is available through a license agreement [45]. For response
function analysis (e.g., dielectric tensor, phonon spectrum, stress/strain tensors), the ABINIT code
is a well-developed DFT code [46]. Another useful DFT simulation program has been developed in
C++ language [47]. In addition to these simulation programs, there is also a commercial package
from Molecular Simulation Inc. [48]. With these and other widely used DFT simulation packages,
the ab initio simulation method has been established as a major computational materials research
tool [49].

FIG. 2. Left: Total valence electron charge density plot. The value of charge contour is 0.0015 (eV/Å)
showing the binding charge between the SWNT (10,0) and the NO2 molecule. Three units are shown in
this figure. Right: Binding energy curve for NO2 interacting with (10,0) SWNT as a function of distance
from NO2 to the nanotube. The solid line curve is a fitting with universal binding curve.

Since the DFT simulation enables us to model a few hundred atoms without any experimental
inputs, it provides a powerful tool to investigate nanomaterials with predictive power. Nanomate-
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rials are building blocks of nanotechnology, and it is essential to develop detailed understanding of
their diverse material properties. However, experimental characterization is very challenging due
to extremely small size of nanostructures. Quantum simulations provide a natural solution to this
problem complementing the experimental nanomateirals research. Here we illustrate the use of ab
initio simulations to the study of carbon nanotube gas sensor applications. Recent experiments
have shown that carbon nanotubes can change their electronic properties due to the presence of
very small amount of gas molecules (e.g., NO2, NH3, or O2). The underlying mechanism of the gas
molecule detection was proposed to be the adsorption of the molecules on the nanotube surface
and accompanying charge transfer between the molecules and nanotube.
To test this assumption, Peng and Cho have performed DFT simulations of gas molecule - carbon

nanotube systems. FIG. (2) shows the results of DFT simulatiosn for NO2-(10,0) nanotube system.
Three NO2 molecules are shown at the lower right corner of the left panel, and the molecule-
nanotube binding energy curve is shown in the right panel. The energy curve shows that there is
an attractive interaction between NO2 molecule and the nanotube with 0.34 eV binding energy.
The analysis of electronic structure change shows that there is a net electron transfer (about 0.1 eV)
from nanotube to NO2 molecule leading to p-type doping in the semiconducting (10,0) nanotube.
This example illustrates that quantum simulations can model detailed electronic structures, binding
configurations, and energetics of nanoscale materials leading to detailed mechanistic understanding
of their properties.

B. Classical Molecular Dynamics - MD

Classical molecular dynamics (MD) simulations describe the atomic scale dynamics of a system,
where atoms and molecules move while simultaneously interacting with many other atoms and
molecules in their vicinity. The dynamic evolution of the system is governed by Newton’s equations
of motion:

d2RI
dt2

= FI = − dV
dRI

, (10)

which is derived from the classical Hamiltonian of the system:

H =
3 P 2I

2MI
+ V (RI) (11)

Each atom moves and acts simply as a rigid particle that is moving in the many-body potential of
other similar particles, V (RI), which can also be obtained frommore accurate quantum simulations.
The atomic and molecular interactions describing the system dynamics are given by classical many-
body force field functions. The atomic interaction energy function V (RI) can be written in terms of
pair and many-body interactions, depending on the relative distances among different atoms [50,51].
Atomic forces are derived as analytic derivatives of the interaction energy functions, FI(RI) =
−dV/dRI , and are used to construct Hamilton’s equations of motion, which are 2nd order, ordinary
differential equations. These equations are approximated as finite difference equations, with a
discrete time step δt, and are solved by standard time integration algorithms, The simulations can
be performed under a variety of physical conditions through discrete time evolution, starting from
specified initial condition.
Until the early 1970’s, MD simulations utilized simple interatomic potentials, such as the

Lennard-Jones potential, to qualitatively model diverse properties of material systems. To model
more realistic materials, such as metals and semiconductors with complex many-body interactions,
three approaches have emerged: (1) potentials developed on following the Born-Openheimer expan-
sion (e.g. the Pearson [52] and Stillinger-Weber (SW) [53] potentials); (2) potentials that attempt
to model the local environment using electron density distributions (e.g. the Embedded Atom
Method (EAM) [50,51]); (3) potentials that introduce the local electronic environment directly
into pair potentials (e.g. the Tersoff potential [54]).
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The Born-Openheimer expansion expresses the interatomic potential as an infinite sum over
pair, triplet, etc. interactions between atoms in the solid, as:

Φt(r1, r2, r3, · · ·) = 1

2!

3
j W=l
V (2)(rij) +

1

3!

3
k W=

3
j W=i

V (3)(rij , rjk, rki) (12)

+ · · · 1
n!

3
q W=
· ·
3
mW=

· ·
3
j W=l

V (n)(rij, ··, riq, ··, rmq, ··)

For covalently-bonded materials, Pearson takes the two-body component to be the Lennard-Jones
potential, while triplet interactions are represented by an Axilrod-Teller-type three-body potential
[52]. The SW potential is another example of the type of potential that is used to effectively deal
with the directional nature of bonding in covalent materials. The EAM potential was originally
developed for metals by Daw and Baskes [50]. In this approach, the energy of an atom in the crystal
is divided into two parts: (1) a two-body core-core interaction energy Φij(rij); (3) an additional
energy needed to embed the atom into the electron system in the lattice Fi(ρ̄i), where ρ̄i is the
average local electron density. The total configurational energy fo the crystal is written as a sum
of these two types of contributions:

E =
3
i

Fi(ρ̄i) +3
j W=i

1

2
Φij(rij)

 (13)

The embedding energy is usually fit to the form:

Fi = AiE
0
i ρ̄i ln ρ̄i (14)

Where Ai is a constant for atom type i, E0i is its sublimation energy, and ρ̄i is obtained by
functional fits to the electronic configuration surrounding atom i. Based on variations of these
EAM and SW potentials, a wide variety of many-body potentials have been proposed and used
in classical molecular dynamics simulations. These potentials are expected to work well within
the range of physical parameters in which they were constructed. Numerical integration of the
equations of motion is performed either by explicit or implicit methods. The simple Euler scheme
is not appropriate for MD simulations because of it lacks numerical stability. In the explicit Verlet’s
leap-frog method, the equation of particle motion is split into two first-order equations:

dx

dt
= v,

dv

dt
= f(x, t) (15)

When these equations are discretized and re-combined, one gets for the particle position after a
small time increment ∆t:

xn+1 = xn−1 + 2∆t(vn−2 + 2∆tfn−1) (16)

The Verlet algorithm is very popular in MD simulations because it is stable, memory-efficient,
and allows a reasonably large time-step. Another popular implicit integration method for MD
simulations is the predictor-corrector scheme, and in particular, the Gear algorithm [55]. These
techniques are formulated either as multivalue, where higher-order spatial derivatives are carried
out, or multi-step, where positions and velocities from several previous time steps are used for
prediction.
In standard MD simulations, the number of atoms, simulation volume and total energy are

constant, thus time averages are measured in the microcanonical (NVE) ensemble. This is not
necessarily desirable, and more often, either an isothermal (NVT) or an isobaric (NVT) micro-
canonical ensembles are more preferable. Depending on the problem being simulated, algorithms
are developed to maintain either constant temperature or constant pressure. In the case of con-
stant temperature simulations, a thermostat is used. The crudest thermostat is the Berendsen
algorithm, in which the velocities are simply re-scaled as: vn+1 = ηṽn+1, where:
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η =

5
1 +

∆t

τ
(
T ∗

T
− 1) (17)

and T∗ is the isothermal target temperature, ṽ is the computed velocity, v the re-normalized
velocity and τ & η are parameters. A number of more sophisticated thermostats have also been
developed, such as the Anderson thermostat where thermalization is established by random colli-
sions with a bath, the iso-kinetic thermostat where the equations of motion are modified to establish
constant average kinetic energy, and its variant: the Nosè-Hoover thermostat that uses the time
average of the kinetic energy, rather than its instantaneous value to establish iso-kinetic conditions
[56]- [58]. In some specialized MD simulations, additional force fields of a long-range nature may
be present, such as the situation in studies of ionic crystals, piesoelectric or magnetostrictive ma-
terials. Extensions of the simulation methods of plasma have been attempted, in which particle
MD simulations are embedded into field solvers on a spatial mesh. Such algorithms are sometimes
called the Particle-Particle-Particle-Mesh, or (PPPM) algorithms. These algorthims are based on
decomposing the problem into two parts. First, the short range forces are computed using particles,
then, long range forces are computed using discretized continuum equations, where the particles
are smeared out over a specified spatial domain.

FIG. 3. Snapshots of a portion of the (011) cross-section with the relative angle being (a) 45◦, and (b)
135◦, when the relative velocity is 0.93Ct at 45◦. The dislocation positions are indicated by the locations
of the lighter atoms, and dislocation on the top is positive while the one at the bottom is negative (coutesy
of H. Huang)

To illustrate results o MD simulations, we will discuss here the problem of dislocation dipole
stability during the dynamic interactions of two dislocations of opposite sign [59]., dislocations
are generated by adding two extra (211) planes along the [111] direction to the lower half of the
simulation cell for the negative dislocation in the dipole. The positive dislocation is created by
pushing a piston at the speed of 75 m/s. The glide planes of the two dislocations are separated
by 14|b|, b being the Burgers vector. During the simulations, the temperature is kept below 35
K, to eliminate the effects of thermal fluctuations. This temperature control is accomplished by
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applying a Langevin force to atoms in the dynamic region [60]. Two snapshots, corresponding to
the 45◦ configuration, at which the relative velocity is 0.93Ct, where Ct is the speed of sound,
and the final 135◦ configuration, are shown in FIGs (3-a) and (3-b), respectively. The MD studies
reported in by Wang, Huang and Woo [59] indicate that, under high speed deformation conditions,
two approaching dislocations, which would normally form a stable dipole, may become unstable as
a result of the additional kinetic energy involved during the dipole interaction. Another example
that illustrates the interaction between high-speed dislocations and voids is shown in FIG. (??). In
this work, the process of interaction between high-spped dislocations and micro-voids is simulated
with the calssical MD techique. The passage of a dislocation through a small void does not result in
dissolution of the microvoid, because of the short time scale in MD simulations. However, successive
passages of the dislocation and its cutting of microvoids eventually results in the destruction of
the microvoid.

FIG. 4. Atomic positions of a dislocation core at successive time instances, as it passes through a small
microvoid in Fe(coutesy of H. Huang)

C. Kinetic Monte Carlo - KMC

The Monte Carlo (MC) method refers to any stochastic technique, which investigates problems by
sampling from random distributions, and utilize concepts of probability theory. These techniques
are now routinely applied in almost every field, from biology to nuclear physics to social studies.
The MC method is simply a statistical method for solving deterministic or probabilistic problems.
A computer simulation represents a physics experiment carried out numerically.
The generation of random numbers uniformly distributed over the interval [∈ (0, 1)] is a funda-

mental aspect of Monte Carlo simulations. Frequently, the mid-square or the linear/multiplicative
congruential method is used in computer algorithms to generate a sequence of random numbers
[61]. MC simulations generally require random numbers generated according to specific statistical
distributions. General purpose algorithms are available for generating random numbers following
arbitrary given distribution functions. One of the methods for generation of random numbers
according to a given distribution function is the inversion method, which is only effective for rela-
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tively simple distributions. The idea is that, if the distribution function is normalized to obtain a
probability density function (PDF) p(x), we can obtain the probability that the random variable
xI is less than an arbitrary x by integrating the PDF analytically from the minimum value to x.
The integral of the (PDF) is called the cumulative distribution function (CDF) C(x). When the
CDF is equated to a uniformly distributed random number ρ, C(x) = ρ, the resulting solution for
x gives the desired distribution function, thus:

x = C−1(ρ) (18)

Since each random number ρ results in one value for x, the method is very efficient. If the PDF p(x)
cannot be easily inverted analytically, sampling can be performed by the Von Neumann rejection
technique. In this method, a trial value, xtrial is chosen randomly, and it is accepted with a
probability proportional to p(x). First, a pair of random numbers ρ1 and ρ2 are generated. A trial
value of x, is the obtained as:

xtrial = xmin + (xmax − xmin)ρ1 (19)

If f(xtrial) ≥ ρ2M , where M is the maximum value that the function can reach over the interval
[xmin, xmax], then xtrial is accepted; otherwise the procedure is repeated until a trial value is
accepted. The rejection technique is inefficient when the distribution function has one or more
large peaks. Another popular methods is known as importance sampling, and is a combination of
the previous two methods. In this technique, we replace the original distribution function, p(x),
by an approximate form, p̃(x), for which the inversion method can be applied. Then we obtain the
trial values for x with the inversion technique following pI(x), and accept the trial values with the
probability proportional to the weight w:

w =
p(x)

p̃(x)
(20)

It can be shown that the rejection technique is just a special case of the importance sampling,
where pI(x) is a constant [62].
In some applications of the MC method, the number of new configurations available to the

system at any MC step is finite and enumerable. The configuration space is discrete, rather than
continuous. In other words, at each MC step, we can determine all the phenomena and the rates at
which they occur, i.e. all the changes that the system can possibly experience. Therefore, we need
not perform a random change to the system at each MC step and then accept or reject that change
on the basis of a specified criterion. Based on the relative rates associated with each change, we
can choose and execute a single change to the system from the list of all possible changes at each
MC step. This is the general idea of the Kinetic Monte Carlo (KMC) method. KMC methods
have been employed in studies of radiation damage since the 1970s ( [63], [64], [65]). They can
take into account simultaneously many different microscopic mechanisms, covering very different
time scales that are difficult to handle with other atomistic simulation techniques.
In order to perform a KMC simulation, the first step is to tabulate the rate at which each event

or phenomenon will occur anywhere in the system, ri. The probability of choosing an event is
defined as the rate at which the event occurs relative to the sum of the rates of all possible events.
Once an event is chosen, the system is changed appropriately, and the list of events that can occur
at the next KMC step is updated. Therefore, at each KMC step, one event denoted by m is
randomly chosen from all of the M events that can possibly occur at that step, as follows:

m−13
i=0

ri/
M3
i=0

ri < ξ <
m3
i=0

ri/
M3
i=0

ri (21)

where ri is the rate at which event i occurs (r0 = 0) and ξ is a random number uniformly distributed
in the range [∈ (0, 1)]. After an event is selected and carried out, the total number of possible
events, M , and the sequence in which the events are labeled, are updated [66]. In conventional
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KMC simulations, a fixed time increment is chosen such that at most one event happens during
each time step [67]. However, this approach is inefficient since in many time steps, no events will
happen. An alternative technique, introduced by Bortz, et al. [68] ensures that one event occurs
somewhere in the system, and the time increment itself can be determined at each step. In this
approach, since one event occurs at each simulation step and different events occur at different
rates, the time increment, dt, corresponding with each step is dynamic and stochastic:

dt = − ln(η)/
M3
i=1

ri (22)

Where η is a random number evenly distributed the range [∈ (0, 1)]. This method is particularly
useful in cases where the events occur at very different time scales, and the fastest events are only
possible in certain rare situations. FIG. (5) below illustrates the final stages of columnar thin film
growth during Physical Vapor Deposition (PVD) utilizing the KMC technique [69], [70].

FIG. 5. Results of KMC simulations for thin film growth on a substrate showing columnar growth
(courtesy of H. Huang)

Another example, which illustrates the power on KMC computations in predictions of experi-
mental observations is shown in FIG. (6). In this example, the motion of Self-Interstitial Atom
(SIA) clusters is simulated in crystals containing dislocations. The internal field of dislocations
has a profound effect on the motion of such clusters. As a result of the stress field of dislocations,
these clusters execute two types of motions: (1) random along highly-packed orientations; (2) drift
motion by elastic interaction with dislocations. The elastic interaction results in cluster rotation,
leading to decoration of dislocation segments, pinning of mobile clusters and dislocation loop raft
formation. FIG. (6) shows various stages of computer simulation [71], while FIG. (7) shows TEM
experimental observations of dislocation decoration in irradiated Mo [72].
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FIG. 6. Results of KMC simulations for SIA cluster agglomeration and interaction near dislocation
segments

FIG. 7. Experimental TEM observations of SIA clusters decorating dislocations in irradiated Mo

D. Dislocation Dynamics - DD

Because the internal geometry of imperfect crystals is very complex, a physically-based descrip-
tion of plastic deformation can be very challenging. The topological complexity is manifest in
the existence of dislocation structures within otherwise perfect atomic arrangements. Dislocation
loops delineate regions where large atomic displacements are encountered. As a result, long-range
elastic fields are set up in response to such large, localized atomic displacements. As the external
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load is maintained, the material deforms plastically by generating more dislocations. Thus, macro-
scopically observed plastic deformation is a consequence of dislocation generation and motion. A
closer examination of atomic positions associated with dislocations shows that large displacements
are confined only to a small region around the dislocation line (i.e. the dislocation core). The
majority of the displacement field can be conveniently described as elastic deformation. Even
though one utilizes the concept of dislocation distributions to account for large displacements close
to dislocation lines, a physically-based plasticity theory can paradoxically be based on the theory
of elasticity! Since it was first introduced in the mid-eighties [73], [74], Dislocation Dynamics (DD)
has now become an attractive tool for investigations of both fundamental and collective processes
that constitute plastic deformation of crystalline materials. In its early versions, the collective be-
havior of dislocation ensembles was determined by direct numerical simulations of the interactions
between infinitely long, straight dislocations. The numerical accuracy and limitations of the 2-D
description of dislocation ensemble evolution has been examined in considerable detail (e.g. [75]-
[83]). Although the numerical issues of stability, accuracy, convergence and field approximations
have been largely resolved in the 2-D case, it has been realized that the fundamental physical nature
of dislocation loops, being 3-D space curves, makes progress with rigorous 2-D simulations rather
difficult without additional ad-hoc rules of close-range interactions. Such realization prompted
several research groups to consider extensions of the DD methodology to the more physical, yet
considerably more complex conditions of 3-D DD computer simulations of plastic deformation.

x1 y1

1
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eg1

tg2

bbg =3
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FIG. 8. Parametric Representation of Dislocation Segments

The starting point in DD simulations is a description of the elastic field of dislocation loops of
arbitrary shapes. The stress σ tensor of a closed dislocation loop in an isotropic crystal is given
by deWit (1960) as [84]:

σij =
µ

4π

-
C

}
1

2
R,mpp (6jmndli + 6imndlj) +

1

1− ν 6kmn (R,ijm − δijR,ppm) dlk
]

(23)

Where µ & ν are the shear modulus and Poisson’s ratio, respectively, b is Burgers vector of
Cartesian components bi. The radius vector R connects a source point on the loop to a field point,
with Cartesian components Ri, successive partial derivatives R,ijk...., and magnitude R. The line
integrals are carried along the closed contour C defining the dislocation loop, of differential arc
length dl of components dlk. The line integral is discretized, and the stress field of dislocation
ensembles is obtained by a summation process over line segments. Recently, Ghoniem, Huang and
Wang [85]- [88] have shown that if dislocation loops are discretized into curved parametric segments,
one can obtain the field by numerical integration over the scalar parameter that represents the
segment. If one of these segments is described by a parameter ω that varies, for example, from 0
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to 1 at end nodes of the segment. The segment is fully determined as an affine mapping on the
scalar interval ∈ [0, 1], if we introduce the tangent vector T, the unit tangent vector t, the unit
radius vector e, as follows: T = dl

dω , t =
T
|T| , e =

R
R . Let the Cartesian orthonormal basis set

be denoted by 1 ≡ {1x,1y,1z}, I = 1 ⊗ 1 as the second order unit tensor, and ⊗ denotes tensor
product. Now define the three vectors (g1 = e, g2 = t, g3 = b/|b|) as a covariant basis set for
the curvilinear segment, and their contravariant reciprocals as: gi · gj = δij , where δ

i
j is the mixed

Kronecker delta and V = (g1 × g2) · g3 the volume spanned by the vector basis, as shown in FIG.
8. The differential stress field is given by:

dσ

dω
=

µV |T|
4π(1− ν)R2

\D
g1 ⊗ g1 + g1 ⊗ g1

i
+ (1− ν) Dg2 ⊗ g2 + g2 ⊗ g2i− (3g1 ⊗ g1 + I)� (24)

Once the parametric curve for the dislocation segment is mapped onto the scalar interval {ω ∈
[0, 1]}, the stress field everywhere is obtained as a fast numerical quadrature sum [85]. The Peach-
Kohler force is then obtained on any other segment point as [86]:

FPK = σ · b× t (25)

The self-force is obtained from knowledge of the local curvature at the point of interest. The
variational form of the governing equation of motion of a single dislocation loop is given by [86]:8

Γ

D
F tk −BαkVα

i
δrk |ds| = 0 (26)

Here, F tk are the components of the resultant force, consisting of the Peach-Koehler force [87] FPK
( generated by the sum of the external and internal stress fields), the self-force Fs, and the Osmotic
force FO ( in case climb is also considered [86]). The resistivity matrix (inverse mobility) is Bαk,
Vα are the velocity vector components, and the line integral is carried along the arc length of the
dislocation ds. To simplify the problem, let us define the following dimensionless parameters:

r∗ =
r

a
, f∗ =

F

µa
, t∗ =

µt

B

Here, a is lattice constant, µ the shear modulus, and t is time. Hence EQN. 26 can be rewritten
in dimensionless matrix form as:8

Γ∗
δr∗d

w
f∗ − dr

∗

dt∗

W
|ds∗| = 0 (27)

Here, f∗ = [f∗1 , f∗2 , f∗3 ]d, and r∗ = [r∗1 , r∗2 , r∗3 ]d, which are all dependent on the dimensionless
time t∗. Following reference [86], a closed dislocation loop can be divided into Ns segments. In
each segment j, we can choose a set of generalized coordinates qm at the two ends, thus allowing
parameterization of the form:

r∗ = CQ (28)

Here, C = [C1(ω), C2(ω), ..., Cm(ω)], Ci(ω), (i = 1, 2, ...m) are shape functions dependent on the
parameter (0 ≤ ω ≤ 1), and Q = [q1, q2, ..., qm]

d, qi are a set of generalized coordinates. Now
substitute EQN.28 into EQN.27, we obtain:

Ns3
j=1

8
Γj

δQd
w
Cdf∗ −CdCdQ

dt∗

W
|ds| = 0 (29)

Let,

fj =

8
Γj

Cdf∗ |ds| , kj =

8
Γj

CdC |ds|
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Following a similar procedure to the FEM, we assemble the EOM for all contiguous segments in
global matrices and vectors, as:

F =

Ns3
j=1

fj , K =

Ns3
j=1

kj

then, from EQN 29 we get,

K
dQ

dt∗
= F (30)

EQN. 30 represents a set of ordinary differential equations, which describe the motion of an
ensemble of dislocation loops as an evolutionary dynamical system. Generally, two numerical time
integration methods are available for solving this set of equations: the implicit and the explicit
classes of procedures. We will later discuss the accuracy and stability issues associated with each
scheme.
It is now recognized by many that fundamental studies of plasticity requires levels of temporal

and spatial resolution concomitant with the question at hand. For instance, atomic spatial resolu-
tion and pico-second temporal resolution are both required for studies of the intrinsic properties
of single dislocations, or for single dislocation interaction with atomic size defects. However, de-
velopment of constitutive equations of polycrystalline materials does not necessarily require such
high level of resolution, mainly because statistical averaging takes care of minute details. There
is an enormous range of problems in-between, spanning deformation behavior of nano-, micro-,
and single crystal materials, all the way up to polycrystalline material deformation. A number of
numerical simulation approaches have been under development in recent years, with emphasis on
resolution of specific dislocation interaction mechanisms, or on the collective behavior of disloca-
tion ensembles. These approaches differ mainly in the representation of dislocation loop geometry,
the manner by which the elastic field and self energies are calculated, and some additional details
related to how boundary and interface conditions are handled. Nonetheless, the methods can be
differentiated, and may be categorized in one of the following:

1. The Lattice Method: [89]- [98]:

Here, straight dislocation segments (either pure screw or edge in the earliest versions , or of
a mixed character in more recent versions,) are allowed to jump on specific lattice sites and
orientations.

2. The Force Method: [99]- [100]:
Straight dislocation segments of mixed character are moved in a rigid body fashion along the
normal to their mid-points . No information of the elastic field is necessary, since explicit
equations of interaction forces, developed by Yoffe [101] are directly used.

3. The Differential Stress Method: [102] - [104]:
The stress field of a differential straight line element on the dislocation is computed and
integrated numerically to give the necessary Peach-Koehler force . The Brown procedure
[105] is then utilized to remove the singularities associated with the self force calculation.

4. The Parametric Method: [85]- [88], [107]:
Dislocation loops are divided into contiguous segments represented by parametric space
curves. The equations of motion for nodal attributes (e.g. position, tangent and normal
vectors) are derived from a variational energy principle, and once determined, the entire
dislocation loop can be geometrically represented as a continuous (to second derivative)
composite space curve. The Parametric Dislocation Dynamics (PDD) methodology is based
on two main principles that are often employed in modern numerical methods of continuum
mechanics (i.e. the Finite Element Method FEM) [86], [88]. The first is some energy-based
variational principle that would allow one to derive the equations of motion (EOM) of a
reduced set of Degrees Of Freedom (DOF) representing the system. The second principle is
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a kinematic assumption regarding how the displacement or strain field is assumed to vary in
a specified region of the continuum. To draw the analogy, a minimization of the Gibbs free
energy of a single loop upon its virtual motion in the external and internal field results in
the EOM, while assuming spline functions between some fixed nodes on the dislocation loop
corresponds to the kinematic assumption of continuum mechanics.

5. The Phase Field Microelasticity Method: [108]- [110]:

Based on Khachaturyan-Shatalov(KS) reciprocal space theory of the strain in an arbitrary
elastically homogeneous system of misfitting coherent inclusions embedded into the parent
phase, a consideration of individual segments of all dislocation lines is not required. Instead,
the temporal and spatial evolution of several density function profiles (fields) are dealt with.

The vector forms in EQN. 24 can be integrated for complex-shape loop ensembles, by application
of the fast sum method [85]. In typical DD computer simulations, the shape of loop ensembles is
evolved using equations of motion for generalized coordinates representing the position, tangent,
and normal vectors of nodes on each loop. FIG. (9) shows the results of such computations for
simulation of plastic deformation in single crystal copper under the action of a slow stress ramp.
The initial dislocation density of ρ = 2× 1013 m−2 has been divided into 68 complete loops. Each
loop contains a random number of straight glide and superjog segments. When a generated or
expanding loop intersects the simulation volume of 3 µm side length, the segments that lie out-
side the simulation boundary are periodically mapped inside the simulation volume to preserve
translational strain invariance, without loss of dislocation lines. The initially straight, segmented
dislocation microstructure evolves under an applied stress σxx =120 MPa in FIG. 9-a, and 165
MPa in FIG. 9-b [88].
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FIG. 9. Results of computer simulations for dislocation microstructure deformation under uniaxial ap-
plied stress

E. Statistical Mechanics - SM

A number of approaches for a physical description of inhomogeneous plastic deformation, and
following concepts of statistical mechanics, have emerged during the past two decades. The fun-
damental difficulty here is that dislocations, unlike particles, are linear objects of considerable
topological complexity. Hence, when concepts of statistical mechanics and the theory of rate pro-
cesses are used, some level of phenomenological description is unavoidable. We present here, as
one example, a reaction-transport approach to Persistent Slip Band (PSB) formation. In this
approach, the system is supposed to be composed of nearly immobile dislocations of the forest,
and mobile dislocations, moving on their glide planes. Coupled rate equations for corresponding
dislocation densities are derived in the spirit of the dislocation dynamical models derived for ex-
ample by Ghoniem et al. [111] for creep, or by Walgraef and Aifantis [32] and Kratochvil [112] for
dislocation microstructure formation in fatigue.
The static dislocation density, formed by the immobilized dislocations of the forest, sub-grain

walls or boundaries, is defined as ρs, and the mobile dislocation density for dislocations gliding
between obstacles is defined as ρm. For simplicity, we will consider first systems oriented for single
slip. Hence, the mobile dislocation density, ρm is divided into two sub-family densities representing
dislocations gliding in the direction of the Burgers vector (ρ+m) or in the opposite direction (ρ

−
m)

(with ρm = ρ+m + ρ−m). These dislocation densities are related to the strain rate via the Orowan
relation:

6̇ = bρmvg (31)

where b is the length of Burgers vector, ρm the total mobile dislocation density and vg the glide
velocity in the primary slip plane. Moreover, the dislocation densities are related to the internal
stress by the relation :
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σi =
µb

2πλ
+ ξµb

√
ρs (32)

with µ is the shear modulus and ξ is a constant. In the last equation the first contribution comes
from obstacles such as precipitates or pre-existing walls separated by an effective spacing λ and, the
second part is the contribution from the static dislocation population which also opposes dislocation
motion. The internal stress, σi, reduces the effective stress, σe, acting on the dislocations and where
this last is defined as:

σe = σa − σi (33)

with σa representing the applied stress. Finally, the glide velocity is related to the effective stress
via appropriate phenomenological relations expressing the fact that individual dislocation motion
is initiated when the effective stress acting on a dislocation exceeds the yield stress. This, for
example, can be written as:

vg ∝ (σe
σ0
)m (34)

or

vg = v0 exp

F
− µ

kT
(
σe
σ0
)−m
k

(35)

where σ0 is the yield stress and m > 1. The essential features of the dislocation dynamics are, on
the one side, their mobility, dominated by plastic flow, but which also includes thermal diffusion
and climb, and, on the other side, the mutual interaction processes.

The essential features of dislocation dynamics are; their mobility , dominated by plastic flow
which includes thermal diffusion and climb, and the mutual interaction processes. By taking into
account these mechanisms, the resulting dynamical system can be written as [32]:

∂tρs = −n∇Js + vgρm)√ρs − vsdρ2s
− vgδρmρs − βρs + vgG(ρs)ρm

∂tρ
+
m = −n∇ nJ+ +

β

2
ρs − vgG(ρs)ρ+m − vgδρ+m(ρs + ρ−m)

∂tρ
−
m = −n∇ nJ−

β

2
ρs − vgG(ρs)ρ−m − vgδρ−m(ρs + ρ+m) (36)

where δ is the characteristic separation length between dislocations for spontaneous annihilation
[114], d is the characteristic length of spontaneous dipole collapse, β is the frequency of dislo-
cation freeing from the forest and is proportional to vg/d̄ where d̄ is the characteristic dipole
de-stabilization length which is inversely proportional to the effective stress, and β = β0vgσe.
The different characteristic lengths introduced here, or at least their order of magnitude, may in
principle be evaluated from microscopic analysis [113,114]. Due to mutual interactions, thermal ac-

tivation and climb, forest dislocations mobility is represented by a diffusive current J = −Dsn∇ρs,
which represents the effective diffusion within the forest. The current of mobile dislocations is

taken as nJ± = ±vgρ±m and represents the flux caused by gliding dislocations, in the present case,
it is the flux caused by their edge component. Stability and numerical analyses of the previous set
of equations have provided information on the conditions for formation of PSB’s in fatigued spec-
imens. It is shown that PSB formation is triggered by the clustering of dislocations or dislocation
dipoles, which become finally immobile and arrange themselves in regularly spaced walls of high
dislocation density [32].
Another statistical dynamical description has been proposed by Kratochvil et al. for the first

stages of PSB formation. It is based on the evolution of dipolar loops, triggered by their interaction
with gliding dislocations [115—117]. The proposed statistical model is of the reaction-transport
type, and focuses on the feedback between the evolution of glide velocity and the dipole density.
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The result is the sweeping of dipole loops by screw dislocations, which initiates the formation of
dislocation walls. In this approach, dipole generation and interactions play a secondary role, and
are introduced in an ad hoc and qualitative way.
In these proceedings, Thomson et al. [38] have also presented a new model for single crystal

metal plasticity. Their proposed statistical approach rests on the fundamental observations that
deformation is characterized by partially ordered internal dislocation wall structures, discontinuous
strain bursts in time, and strain localization in a surface slip band structure. A percolation
strain model corresponding to elementary slip line burst events, with percolation parameters to
be supplied from experiments and dislocation dynamics studies of wall structures, was developed.
They proposed a model for localization of the slip lines into bands, which envisions channels for
slip formed from the dense planar walls. Their continuum model is based on two different material
properties in the slip bands, and in the matrix between the bands.

III. A BRIEF OUTLINE OF CURRENT TOPICS

In this symposium, 23 presentations were given on subjects covering the entire range of models
within the multi-scale materials modeling framework. The articles following this review paper
are representatives of state-of-the art theoretical and experimental methodologies to adress the
mechanics of materials at the nano- and micro-scale. These are classified into atomistic, mesoscopic
and continuum models. In the following, we give a brief introduction of the topics covered by these
papers.

A. Atomistic Models

Five articles are focused on atomistic modelling of defect structures in solids. Microscopic defects
play critical role in determining materials response to external stresses beyond elastic response,
and have intrinsic atomic structures. Therefore, atomistic modelling is crucial to elucidate the
detailed mechanisms operating during the materials responses.
Wei et al. [118] presented MD simulation study of carbon nanotube mechanics under uniaxial

compression, and this work illustrates the capability of atomistic simulations in nanomechanics
research. In this work, Tersoff-Brenner bond-order potential is used to accurately describe chemi-
cal bond breaking and formation processes in carbon nanotubes. The authors have focused their
simulation work on the plastic response of carbon nanotubes under large strain beyond the yield
strength. To find realistic mechanisms, temperature acceleration techniques has been used to over-
come energy barriers and to escape from local minimum energy configurations. It is shown that
at T = 0 the nanotube under 12% compressive strain does not have plastic response confirming
previous findings of other MD simulations. The authors have systematically increased the temper-
ature T = 300, 800, 1200, and 1600 K to investigate the temperature effects and found that there
are two distinct plasticity mechanisms: diamond-like tetrahedral bond formation, and dislocation
pair formation (also known as Stone-Wales defect). This work has confirmed the importance of
the time scale problem in atomistic simulations since high temperature simulation with high strain
rate would have similar effects as low temperature simulation with low strain rate.
Li and Yip [119] have reviewed the atomistic simulations to determine material strength based

on the key-note talk given by S. Yip at the Symposium. In this paper, mechanical stability criteria
of elastic materials are reviewed and applied to study SiC crystal under hydrostatic tension and Cu
thin film under indentation. For cubic SiC in 3C or β-phase, phonon dispersion curves are examined
under hydrostatic tension and pure shear to elucidate the relationship between stability criteria and
phonon softening. The authors have studied the yield strength of SiC perfect crystal, nanocrystal,
and amorphous solid and found that the nanoscale grain size and atomic scale defects determine
the ultimate tensile strenght of solids. Their findings are summarized in scaling behavior of cross
over from Hall-Petch relation at large grain sizes to nanograins down to amorphous solids. Using
hard nanoindentor on Cu(111) surface, the authors have found that the plastic response of the thin
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film proceeds through intermittent plasticity in which burst of dislocations are emitted below the
indentor. Finally, the authors have provided an outlook on the role of multiscale simulations for
materials strength.
Atomistic simulation method is applied to investigate dislocation nucleation mechanisms of W

thin film during the deposition process by Liu et al. [120]. In this owrk, the authors have used
Finnis-Sinclair form potential to W(11̄0) thin films under growth condition of adding W atoms
with 0.01 eV kinetic energy. Uniaxial tensile stress of 13 GPa is applied along [111] direction to
simulate the substrate-film mismatch effects. Detailed investigations performed with a very high
temperature (2500 K) to accelerate the kinetic processes in MD time scale. From the simulations,
it is discovered that the dislocation nucleation initiates at the surface steps and as a consequence
the sharp surface step has been removed to reduce the surface strain through dislocation motion.
Lin and Chrzan [121] have also investigated the dislocation using atomistic simulations. The au-

thors have focused the investigation on the core structure and energetics of 90◦ partial dislocation
in Si crystal. Tersoff potential is used to determine the optimized atomic configuration and energy
of the dislocation under hydrostatic stresses. A detailed analysis is performed for two different core
structure of the dislocation: single-period (SP) reconstruction and double-period (DP) reconstruc-
tion. The authors have used periodic boundary condition for an infinite array of dislocations and
the periodic interaction effects are compensated through continuum elastic analysis. The accuracy
of this analysis is tested using cylindrical boundary condition with increasing radius up to 70Åand
a good agreement was obtained confirming validity of the use of periodic boundary condition. At
zero external stress DP core reconstruction is found to be more stable by 7 meV/Å, but it is also
found that shear stress reduce the relative stability of DP compared to SP reconstructions. When
hydrostatic pressure is applied to Si crystal the energy difference is further reduced leading to a
stress induced phase transition of dislocation core structure from DP to SP reconstructions. This
core structure transition may paly an important role in dislocation kinetics.
Kuramoto et al. [122] have investigate the interactions between point defects (interstitial atoms

and vacancies) and microstructures (dislocations, interstitial clusters, and stacking fault tetrahe-
drons) using EAM-type potentials for BCC Fe and FCC Ni crystals. The authors have performed
detailed energetics study of the interactions between point defects and microstructures leading
to capture zone analysis at 500◦C. It is found that the self interstitial atoms (crowdions and
bumbbells) have large capture zone than vacancies for edge dislocation in Fe and Ni. Capture
zones of self interstitial atoms by interstitial clusters are smaller than those of edge dislocations
for Fe. The capture zones of stacking fault tetrahedrons are larger for interstials than vacancies
in Ni crystal. The overall energetics elucidates the origin of preferential removal of interstitials
during the evolution of damage structures in irradiated meterials. The microstructures capture
the interstitial defects and leave excess vacancies. These vacancies nucleate during subsequent
evolution leading to void foramtion and swelling of irradiated materials.

B. Mesoscopic Models

Three contributed articles to these proceedings have addressed aspects of mesoscopic plastic
deformation, from the theoretical [38], computational [123] and experimental [124] points of view.
Thomson et al. [38] presented a multiscale theoretical framework for metal plasticity of single crys-
tals. Their approach is based on the experimental observations that deformation is characterized
by partially ordered internal dislocation wall structures, discontinuous strain bursts in time, and
strain localization in a surface slip band structure. The main approach follows a statistical per-
colation strain model, whic corresponds to elementary slip line burst events. Phenomenological
percolation parameters in their model are to be supplied from experiments and dislocation dynam-
ics studies of wall structures. A model for localization of the slip lines into bands is proposed, which
envisions channels for slip formed from the dense planar walls. This is suplemented by a contin-
uum model that is constructed from the outputs of the percolation model. The continuum model
has two principal internal variables, and exhibits the desired hardening behavior with strain. The
continuum model is based on two different material properties in the slip bands, and in the matrix
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between the bands. Althou thier analysis does not include dislocation patterning mechanisms, it
addresses the transport of dislocations through these structures.
The work of Martinez and Ghoniem [123] focuses on the direct coupling of Dislocation Dynam-

ics (DD) with the Finite Element Method (FEM) to simulate plastic deformation of micro-scale
structures. They attempt to address the in effects of crystal surfaces on dislocation motion. Three-
dimensional DD simulations of BCC single crystals with a single shear loop in the (101)-[111] slip
system are performed to explore the relationship between loop force distributions and the proxim-
ity of the loop to the crystal boundaries. Traction boundary conditions on a single crystal model
are satisfied through the superposition of a complementary stress field computed by the FEM,
and the elastic stress field of dislocations computed by DD. The deformation and expansion of
dislocation loops is computed using a Galerkin variational energy method, and the equilibrium
geometry is determined. The deformation of a Frank-Reed (FR)source in a single crystal model
is also determined in their computer simulations. Their results indicate that crystal surface forces
play a significant role in dislocation force distributions and deformation to a depth from the sur-
face, which is proportional to the loop radius. Large out-of-plane force distributions on closed
loops on oblique slip plane/free surface orientations are shown. These forces act in such a way as
to repel loop motion from the intersection of the slip plane with the free surface, while causing
deformation through the mechanism of cross-slip. Expansion or contraction of shear loops is found
to be dependent on the critical applied stress, the radius of curvature, and the proximity and
orientation of the loop with respect to the crystal surface.
Experimental work that is directed towards verification of dislocation dynamics models has been

presented by Hsuing and Lassila [124]. In this work, the initial dislocation microstructure in as-
annealed high-purity Mo single crystals, and the deformation substructures of crystals compressed
at room temperature at different strain rates were examined. The main objective of this work is
to determine the physical mechanisms of dislocation multiplication and motion during the early
stages of plastic deformation. The initial dislocation density was measured to be in a range of
106 ∼ 107 cm−2. Numerous grown-in superjogs were observed along screw dislocation lines. After
testing in compression, dislocation density (mainly screw dislocations) increased to 107 ∼ 108 cm−2.
The formation of dislocation dipoles as a result of the nonconservative motion of jogged screw
dislocations was found to be dependent on the strain rate. At low strain rates (e.g. 6̇ ∼ 10−3 s−1)
small concentrations of dislocation dipoles were found in crystals. However, more cusps along
screw dislocation lines and numerous dislocation dipoles were observed in crystals compressed at
strain rates of 1 s−1.

C. Continuum Models

Two papers in these proceedings have been concerned with applications of continuum mechanics
to multiscale material problems, particularly to represent fracture processes [125], and surface laws
during slip [126] . The recently developed virtual-internal-bond (VIB) model has incorporated a
cohesive-type law into constitutive lequations, such that fracture and failure are embedded into
the constitutive law, and no separate failure criteria is needed. Zhang et al. developed a numerical
algorithm for the VIB model under static loadings. The model is applied to study three examples:
(1)crack nucleation and propagation from a stress concentration site; (2) kinking and subsequent
propagation of a mode II crack, and (3) buckling-driven delamination of a thin film from its
substrate. Their results have shwon that the VIB model provides an effective method for studying
crack nucleation and propagation in engineering materials.
In another paper on continuum mechanics, the embedding of micromechanical models in the

macromechanical formulation was treated by a variational multiscale method [126]. A scale sep-
aration is introduced on the displacement field into coarse and finne scale components. The fine
scale displacement is governed by the desired micromechanical model, and is eliminated by ex-
pressing it in terms of the coarse scale displacement and the remaining fields in the problem. The
resulting macromechanical formulation is posed solely in terms of the coarse scale displacements,
but is influenced by the fine scale; thereby it has a multiscale character. The procedure results
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in an embedding of the micromechanical model in the macromechanical formulation. Garikapati
applied this general approach to the special case of traction-displacement laws on internal surfaces.
Numerical examples were presented that demonstrate the method for several benchmark problems.

IV. CURRENT CHALLENGES

The field of Multiscale modeling of materials is perhaps not new or even novel! Since the
early days of modern physics, scientists have attempted to develop simple mathematical relations
that can reduce the enormous number of degrees of freedom (DOF) in a given system to its
bare minimum. In fact, this approach is quite consistent with our desire to reduce the number of
observables to what can be realistically perceived. The magic of statistical mechanics, for example,
lies in the fact that the collective behavior of atoms of infinite degrees of freedom can be described
by simple scaling laws. This trend stems from the fact that averaging works very well, when things
are away from catastrophes ! Thus, most of the relevant information in cosntitutive equations
represent some averaged behavior of many, many atoms. However, when one examines material
systems at the nano- and micro-scale, many of these concepts start to present a real challenge. As
we discussed before, the law of large numbers, which is central in statistical mechanics, does not
hold in situations where we do not have adequate sampling phase space. In the mean-time, phase
transitions, nucleation, plasticity, and fracture are all critical phenomena that represent material
catastrophes, and hence averaging techniques will not yield the correct information.
Nevertheless, the advent of large-scale computing is propelling the art and science of modeling

material phenomena into a tantalizing new direction. Instead of attempting to reduce the complex-
ity of the material system’s behavior by a process of reduction of its DOF, one is trying to represent
large numbers of DOFs, and solve for them numerically! The result is a real numerical experiment,
whose outcome is not known a priori. Whether that makes sense can only be tested by confronting
the outcomes of computer simulations with a limited range of experimental observations. Over a
decade ago, such a process has been viewed with great skepticism. In part, this skepticism stems
from the realization that computer simulations are also based on some ad hoc assumptions, and
that the numerics still represent gross approximations. However, the last decade has seen tremen-
dous advances on a number of computational and physical fronts that have alleviated most of that
skepticism. Adavancs have been made in atomistic simulation techniques, with better and more
rigorous ways to approximate the quantum mechanical behavior of atoms and molecules. These
advances have been matched by the ability to devise empirical, yet physically-based interatomic
potentials for performing more accurate classical MD simulations. The simulated system size has
also increased, almost exponentially, during the past decade, thanks to the increase in computing
power and reduction in its cost. The connection between classical MD and ab intio calculations
are now being made in a clear and rigorous fashion.
At the meso-scale, inbetween the atomistic and macroscopic, a few attempts have made it possible

to find new in-roads into modeling this forbidding regime! Over a decade ago, there were only 2-D
computer simulations of collective dislocation phenomena. The confidence in the realism of these
simulations was not very high, because several ad hoc rules had to be introduced to account for
short-range dislocation processes. Nonetheless, the fact that several phenomena of dislocation
pattern formation were demosnstrated with direct computer simulations gave rise to hope that
there is something useful to be done in this area. Recently, reserach on mesoscopic plsticity models
has kicked into high gears, as a result of concentrated efforts by many groups around the world
to develop a physical description of plastic deformation. These efforts utilize new computational
methods of 3-D Dislocation Dynamics, as well as new physical statistical models for the collective
behavior of dislocations.
Although it is felt now that sooner or later, a coherent description for the mechanics of materials

will emerge, and that such a description will be physically-based with no ad hoc assumptions, the
road is still not entirely clear. A number of challenges and obstacles remain, as we briefly discuss
them in the following. The main challenges in the development of seamless multi-scale modeling
methodology are the length-scale, the time-scale, the numerical accuracy and the self-consistency
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of multiscale models, as outlined below.

A. The Length Scale

The number of atomic degrees of freedom in a typical material system is extremely large, and if
one is to model a cubic micron of the material, the equations of motion of a few billion atoms must
be numerically solved. At the sub-continuum length scale, the material system of interest is usually
small enough that current computing capabilities can model it realistically. Furthermore, there
exist several multiscale methods to combine atomistic model and continuum models in a single
simulation framework. These atomistic and multiscale methods have been successfully applied to
investigate diverse defect structures within static or quasi-static descriptions.
Even though some aspects of the length scale problem have been overcome in the sense that one

can model the material system of interest with full atomic scale details, there remains the very
challenging problem of structural complexity at meso-scales. As the number of atoms in a system
increases, the possible local minimum energy configurations also grow very rapidly. Analysis of
N atom cluster shows that the number of local minimum energy configurations grows faster than
eN . Without knowing all the relative energy values of these local configurations, it is very difficult
to prepare initial atomic configurations which are most relevant to real physical systems. This
problem of configuration multiplicity is closely related to the other problems of time scale and
accuracy of atomistic simulations. If one can run simulations long enough for a system to search
through all the relevant configurations, the complexity of the atomic structures can be overcome
by systematic sampling with different initial configurations. On the other hand, the inaccuracy of
an interatomic potential can introduce errors in relative energies of diverse configurations and also
in energy barriers separating different configurations. Both of these problems seriously influence
the reliability of atomistic simulations.
Although substantial recent progress has been made in the mesoscopic simulation area, a number

of challenges remain. As the system size becomes within the nano- and micro-scale, applications of
3-D DD becomes very attractive. The number of dislocation loops required to represent full-scale
plasticity of a sub-micron crystal is relatively manageable, and the solution requires integration of a
few thousand equations of motion. However, the long-range nature of the stress field of dislocations,
the topological complexity of dislocation lines, the treatment of periodic boundary conditions that
ensure statistical consistency of the results, the accurate solution of dislocation interaction with
surfaces and the inclusion of elastic anisotropy and inertial effects into dislocation dynamics remain
as tough, yet doable problems in the near future. The more challenging problem of polycrystalline
plasticity will require additional breakthroughs, because of the conceptual difficulties of connecting
DD to crystal plasticity models in a self-consistent fashion. The main question here is how to
retain the characteristic length scale from the discrete dislocation to the continuum description.
A variety of strain gradient theories have been proposed during the last decade. Since most of
them are formulated in a phenomenological manner, the characteristic length scale in invoked into
the theory, without rigorous treatment of its dislocation origins. In addition, there are indications
that a single length scale is not always realistic, and that a spectrum of scales may be more
appropriate. These issues will require intensive research to clearly establish the links between
mesoscopic simulations and continuum mechanics.

B. The Time Scale

The severe limitaions on the total simulation time in atomistic modeling is a result of the
intrinsic time scale of atomic dynamics, which is typically on the order of femto seconds. In
numerical simulations using finite time steps, the step size is required to be small enough to keep
the numerical simulation stable. Sub-continuum microstructure evolution is not an equilibrium
process, and there are complex defect structural changes during kinetic processes. Therefore, it is
necessary to follow the dynamic evolution of a system over a realistic experimental time scale to
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accurately describe microstructure evolution mechanisms. The experimental time scales are very
long (micro seconds or larger), compared to atomic time scales so that more than billion time steps
are needed for these simulations.
Diverse simulation techniques are currently developed to overcome this time scale problem.

These efforts are based on the observation that while the atomic time scale is determined by
thermal motion of atoms around a local minimum energy configuration, the kinetic evolution
of the microstructure is dictated by much slower transitions between neighboring local minimum
configurations. Kinetic Monte Carlo (KMC) is a popular method to overcome the atomic time scale
problem by evolving the system directly from one configuration to another configuration without
thermal motion of atoms. However, KMC requires a complete list of possible events to simulate
the time evolution of a system, and this list is known as the event catalogue. The accuracy of KMC
is critically governed by the accuracy and completeness of the event catalogue. If a critical event
is missing in the catalogue, the resulting KMC evolution may not provide meaningful information
of the simulated system. The same argument applies to the accuracy of the transition rates in the
event catalogue.
Another approach to overcome the time scale limitations in atomistic simulations is to modify

the MD scheme in such a way that the duration of thermal motion is shortened, or that the
configuration search is accelerated. Several promising methods (e.g., hyperdynamics) are currently
developed, but the general applicability of these new methods to complex atomic processes is
yet to be firmly established. Another promising direction is to develop a systematic scheme to
search possible events using accelerated MD methods or direct configuration space search methods.
Nudged elastic band (NEB) is such a method which can be used to identify transition states
separating initial and final configurations. This systematic search of events will enable a systematic
development of event catalogues for KMC simulations.
When one considers the evolution of the dislocation microstructure, similar imitations are im-

mediately obvious. When two dislocations interact at close range, such as the case for junction
or dipole formation, the dynamics is very fast, with time steps on the order of picoseconds. On
the other hand, the evolution of dislocation cell walls and persistent slip bands occurs on a much
longer time scale, on the order of kiloseconds, characteristic of fatigue and creep processes. These
transitions from direct DD simulations (which are in fact for very short time scales) to longer time
scales characteristic of experimental observations remain as a challenge.

C. Accuracy

The accuracy of interatomic potentials in classical atomistic simulations (MD, MC, KMC) is a
critical problem since interatomic potentials are reliable only within the range of parameter fitting.
Therefore, the question of the influence of the accuracy of empirical interatomic potentials on
the predictions of atomic simulations of large systems is vexing, and casts doubts on the fidelity
of final conclusions. The accuracy problem can be overcome by quantum simulation, but the
stiff increase in computational cost associated with quantum simulations limits its applicability to
very small nano-scale systems. Since the accuracy problem of interatomic potentials is intrinsic to
classical atomistic simulations, it is necessary to understand the range of validity of each interatomic
potential. Based on a clear understanding of the limitations and accuracy of interatomic potentials,
it will be possible to extract reliable conclusions from atomistic simulations.
Mesoscopic simulations have also been confronted with severe accuracy issues during this past

decade. At the lowest level of desired accuracy, dislocations can be discretized into relatively
long segments with average Peach-Koehler forces acting on them, and with crude estimates of
the self forces retraining them. Several methods, as discussed earlier, have emerged to engender
higher levels of accuracy and rigor to these earlier treatments. In this regard, benchmark problems
have been used to gauge the accuracy of simulations, with added rigor to the underlying theory.
However, when one considers fully-anisotropic materials, or in truly dynamical applications such as
high-speed deformation, the computational cost increases by several orders of magnitude to achieve
the same level of accuracy. It is expected, therefore, that a variety of levels of approximations will
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be applicable for the solution of specific problems, and that in some cases, a rigorous treatment
would be an over-kill, while in others, it may not give accurate information. The challenge here is to
identify where and how to apply the various levels of approximations with mesoscopic simulations.

D. Self-consistency of Multi-scale Models

At the present time, there appears to be a great need to develop general mathematical and
computational methods for a truly seamless multiscale approach to computer simulations of nano-
and micro-systems. Since the field is in its infancy, the computational techniques are developed
within a specified range of space and time scales. There seems to be the understanding that the
transition between one space-time range to another is carried out by a process of hand-shaking, that
is the information gained from a lower scale is summarized into a finite set of parameters, and passed
on to the higher scale. This procedure is acceptable, as long as such parameters are well-defined,
and represent a rigorous reduction of the enormous degrees of freedom of a lower length scale
into a few generalized degrees of freedom represented by those parameters. However, theoretical
foundations and computational implementation of a more rigorous process remain unresolved. If
there could be generlizations of the concept of degress of freedom from those associated with
space-time (e.g. geometry), to those representative of statistical configurations (e.g. conductivity,
mobility, etc.), then smooth transitions between various length scales can be worked out.

V. FUTURE DIRECTIONS

Multiscale Modeling of Materials (M3) is in its very early stage of development, and there are
many scientific and mathematical problems to be addressed in the future. It is a rich field of
physical, numerical, computational, and mathematical challenges. It is also going to play a key
role in the simulation and design methodology for the newly emerging field of nanotechnology.
The practical application of multiscale simulation will be in the analysis and design of nano- and
micro-scale devices, and we expect that the next decade will be critical for this development.
There are many exciting engineering science problems as well as practical nano- and micro-device
applications waiting for us to investigate with M3. The key problems to be investigated in the
future are: (1) the limitations on the time scale in atomistic and mesoscopic simulations, (2) the
limitaions on the length scale in atomistic and mesoscopic simulations, (3) the effects of modeling
accuracy on the simulation results, and (4) the development of self-consistent seamless methods of
multi-scale.
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