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Multipole representation of the elastic field of dislocation ensembles
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A multipole expansion method is developed to determine the elastic field of dislocation loop ensembles of
arbitrary geometric complexity. The method results in reduction of the severe computational requirements in
large-scale dislocation dynami¢®D) computer simulations without an artificial cutoff on the interaction
range. Order ofN, O(N), algorithms for DD simulations is immediately accessible on the basis of the
developed procedure. Examples of dislocation interaction with large dislocation arrays representing a tilt
boundary and a dislocation wall show that the method results in speeding up the calculation of Peach-Kohler
interaction forces by a factor of 100, with an error of less than 0.4%. The multipole expansion reveals a
physical connection to Kier's continuum theory of dislocations, with the zeroth order moment being Nye’s
dislocation density tensor. Higher-order tensors in the expansion correspond to moments of a basic tensor
comprised of the tangent and Burgers vectors, and can be used to characterize the spatial distribution of
dislocation loop ensembles.
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[. INTRODUCTION large-scale computer simulations of dislocation microstruc-
ture evolution. This is enabled by a substantial reduction of
The development of a physically based theory of plasticthe speed of computation.

ity has been one of the most challenging endeavors at- (2) To remove the cutoff distance limitation in
tempted in recent years. Despite the recognition of the inaddislocation-dislocation interactions, and hence facilitate our
equacy of Continuum mechanics to reso|ve importanynderstanding Of miclrostructure evolution SenSitiVity to such
features of plastic deformation, attempts to include the physcomputational limitation. o o
ics of plastic deformation through constitutive relations are (3 To allow efficient determination of the “effective” in-
far from satisfactory. This is particularly evident for the reso-uénce of dislocation array@.g., in some representation of
lution of critical phenomena, such as plastic instabilities,9"ain boundariés or complex dislocation blockge.g., in

work hardening, fatigue crack initiation, persistent slip bandd'smca.t'on yvalls gnd tanglgson the interaction with ap-
formation. etc. proaching dislocations.

] - . (4) To enable embedding into well establish&d(N),
An alternative method for providing access to the physics . :
' . : . .‘computational procedures for particle systems of long-range
of plastic deformation at the mesoscale is the direct numeri-

: . \ . : ) interactive force field$!
cal simulation of discrete dislocation microstructure evolu- (5) To shed more light on the connection between discrete
tion, which is commonly known as the dislocation dynamicsdislocation d namicg the Krer-Kosevich continuum
(DD) method~7 Y '

Although DD has been successfully applied to a Widetheory of dislocationd? and moments of a basic local tensor

: ; : that characterize the spatial distribution of dislocations.
range of physical problems, especially for problems involv-

ing length scales in the 10—-10° range®° the extension of We present the multipole expansion metH&EM) for-
the approach to larger length scalesg., for application in  muylation in Sec. II. INO(N) methods for calculation of the
polycrystalline material deformations still a daunting task. effective fields in particle systems with long-range interac-
The main impediment in this direction is the lack of methodstion force fields, moments evaluated for smaller volumes are
for systematic and rigorous “coarse graining” of discrete dis-ysually transferred or combined with moments defined in
location processes. Notable recent developments in this areaher volumes. This issue will be explained in Sec. IIl. Re-
have been advanced by Lesar and Rickrifan. sults for the far-field expansion of the stress field and inter-
The main objective of the present work is to develop aaction forces are given in Sec. IV, while applications of the
coarse-graining approach for evaluation of the elastic field ofnethod to dislocation arrays in special boundaries or dislo-

large dislocation loop ensembles of arbitrary geometric comgation walls are presented in Sec. V. Finally conclusions of
plexity. The method is an extension of the Lesar-Rickmanhijs work are presented in Sec. VI.

multipole expansion of the elastic energy of dislocation
ensembled’ The broad coarse-graining objective of the Il. EORMULATION OE THE MULTIPOLE
present work is associated with a number of motivating rea- REPRESENTATION

sons for this development, as given below. _ _ _ _
The stress field at any point from a single closed disloca-

(1) To access the physics of plasticity through directtion loop can be written &3

0163-1829/2004/647)/1741027)/$22.50 69174102-1 ©2004 The American Physical Society



WANG, GHONIEM, AND LESAR PHYSICAL REVIEW B69, 174102 (2004

Substituting these expansions in Eg), and recognizing
that R%,,p, Rijm» Rppm @nd their higher-order derivatives
depend only orR°, we find
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FIG. 1. lllustration of the geometries ¢d) a single volume with

A . : 1
cente_r(_) containing dlslocatlonsﬁb)_ a single volume(centerQ’) + rekm,{ Rf’ijmankJr Rf’ijmqﬁnqur ER?ijmqsynkqs
containing many small volumes with centeDs". v :

2
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whereR=Q—P is the vector connecting field poilQ@ and +- ] (4)

source poinP at dislocationgFig. 1(a)]. The stress field per

unit volume of an ensemble of dislocation loops in a volumewhere we define the dislocation moments of zeroth order
), some of them may not be closed withihy is given by within the volume(Q as

Nclosed closed
M NL
‘T”:% gl ﬂgg[R,mpp(fjmndli"'eimndlj) E éEgdH—— Clzmed+l gEﬁ-cﬂ
L
2 1 L
1, kmlRijm = 8ijR ppm)dli == > fEﬁ-dl, (5)
Q é= Nclosed+l &
N
+ > f R mpe €jmnd i+ €imndl)) wheredl=|dl| is an infinitesimal line length along the unit
g=N{losedyy ¢ tangentt. The Eshelby rational tensdg;;, defined asE]

=Dbft{(P), is a local tensor because it is defined at p8iain
a Ioopg Wheretf is the tangent vector at positighandb?
+ Efkmn(R,ijm_‘siiR,ppm)dlk} ' 2 is the Burgers vector of the loop. It is clear that the only
contribution to the tensow;; is from open loopdi.e., the
where NEIosed is the number of closed dislocation loops §econd tern since the contribution of closed-loops is |d¢n-
within the volume(2, N°Pe"is the number of open disloca- tically zero by virtue of the closed-loop property. Equation

tion loops, which intersect the surfaces of the volufae (s?r?lsvgﬁe’\cl)tlle Sre?;fg?g(medleaﬁgg :ir;\slgit re terT:(Itsn ten-
N, =N¢'osedt NOPe s the total number of dislocation loops y y*

in the volume(}. 1
Suppose that the distance between péirdgn a disloca- k==Tr(a)l — e, (6)
tion and a field poin@Q is relatively larger than the sizeof 2

acgrtain voI_ume- that contains the dislocation loop, as ShOW(R/herel is the second-order unit tensor. Higher-order tensors
in Fig. 1. PointO is the center of the volume. Let us write the

. : o ¥, ... correspond to higher-order moments of the Es-
Taylor-series expansion of the derivatives of veckrat ﬁe’rbgrational tensF())r and arg defined as
point O as follows: '

138
o) fo) ik — T~ r Edl,
Rum R|Jm+R|Jmkrk+ 21 |]mklrkrl+3| |Jmklnrkrlrn ﬂ”k Q ;1 3 k=i

+.., 3 1 N
ikl = rer E;dl,
wherer=0—-P andR°=Q—-0. Nk 521 £ K
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1 N NE‘
l/fijquzﬁ ;1 §l'|<|'|l’qujd|, B:?k’ 2 f kEgdl— gl fg(rk_"rkm)Eigjdl
1 M 1 M . .
Likig- =@ ggl [Tirg e oyl (7) =5§§1 nEfdi+g Z rrESd|
; . . . . =fMgMm 4 m,m
We can write the stress field resulting from a dislocation (Bijtricer
ensemble within the volum@ as N
M 0 1 7”k|— E rkr|’Eﬁd|
JijT g~ 2 _[ ,mppa, - - (Ejmn<§nia ~»-a>
8m =b t! 3y 1 =My BN B M),
+€|mn<§njal at>)+ fkmnR”mal ,';1t<§nka:L > T (9)

wheref™=0" ¢, N andN¢'°*¢" are volume fraction, the

2 . :
_EﬁijekmnR,oppmai-~»at<§nka1~-at> , (8)  number of total dislocation loops, and the number of closed
loops in themth volume, respectively.
' . Then, the total moments of dislocation loop distributions
where(Zjj...) represent the moments defined above differ-

within the large volume are given by
ent orders, asyj, Bij, Yiju » €tc. These moments depend

only on the selected center poidtand the distribution of the
dislocation microstructure within the volume. They can be
evaluated for each volume independently. After the moments
are determined, the stress field and interaction forces on
other dislocations that are sufficiently well separated from
the volume() are easily obtained.

M
:mE:l a” 2 fm |l’

M M
Bij= 2 Bl= 2> (BN +rial),
m=1 m=1

Ill. RULES FOR COMBINATION OF MOMENTS /
Vi = > Vi = > f™Cyij + 1B Bk a),
For a fixed field point, if the distance of a volume to this m=1 m=1
point is larger than its characteristic size, we can utilize mo-
ments obtained from smaller subvolumes to generate mo- (10)
ments for the total volume. This procedure is similar to the
“parallel axis theorem” for shifting moments of inertia for
mass distributions in mechanics. Suppose that this large vol- "
ume is composed of several subvolumes and we have multi-

pole expansions for each subvolume, we develop here a pro- Sijay -2y~ 2
cedure to obtain multipole expansion for the large volume
from those for the subvolumes instead of doing the calcula-
tions again for each dislocation loop. This idea is very suit-
able for hierarchical tree algorithms, such as the Greengard-
Rokhlin method® We will describe formulations for

Equation(10) can be written in a compact form as

n Cp
f lZ {2 [(rgrg 1o

m=1 p=0 | q=1

><<§{]-1p+1...tn>]“, (11)

combination of multipole expansions in this section.
Assume that a large material volunie centered aQ’

containsM small subvolumes centered@f”, with their vol-

umes af)™, wheremis an indexFig. 1(b)]. Here,r™ is the

vector connecting®™ and O’. The new vector connecting

the centerO’ and a point on a dislocation is'=r+r™,
wherer™=0’

mth small material volume asj}, B, ..., we canwrite

the moments of dislocations in thath subvolume in the

large volume as follows:

Efou—fm m

w1 =
@i :5 E @jj

&= Ntlosefw+ 1

— O™, With the dislocation moments for the

p
wheren=0,1,2 ... is theorder of the moment. Her@chl

means thar™s subindex group oty, ... t, are selected
from then index group ofa,, in a permutational manner, and
group of indicesty, 4, ... t, are the corresponding—p
indices ofa,, after the selection.

IV. NUMERICAL RESULTS

Based on the equations developed in the previous sec-
tions, we numerically implement here the multipole expan-
sion for the stress field of a dislocation ensemble, expressed
by Eqg.(8). We consider here the results of the full calculation
based on Eq(2) as reference, and calculate relative errors
from the MEM as|oyey— 0reil/0ve;. Tests are performed
on a volume withh=10 um for different expansion orders
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FIG. 2. Relative error of the MEM v&a) the expansion order,
(b) the R/h value for a simulation volume with an edge length of
10 um.

FIG. 3. lllustration of a tilt boundary. A single dislocation from
an F-R source lies on thl11] glide plane with Burgers vector
[101] interacts with the tilt boundary.
and different values oR/h. Dislocations are generated ran-
domly inside the volume and with a density of 5 Dislocation motion under the influence of the externally
x 108 cm/cn®. Numerical results are shown in Fig. 2. From applied stress and the internal stress generated by the tilt
these results, it is clear that the approximate moment soluoundary is determined by using the method of parametric
tions converge fast. For different valuesRih, the second- dislocation dynamics:® Interaction forces between the tilt
order expansion gives a relative error less than 1%, while theoundary and the F-R source dislocation are calculated by
fourth-order expansion gives a relative error less thariwo methodsi(1) the fast sum methodiwhich adds up the

0.05%. contributions of every dislocation segment within the bound-
ary; (2) the current MEM up to second-order quadropole
V. APPLICATIONS TO DISLOCATION BOUNDARIES term. Dislocation configurations at different time steps are
AND WALLS shown in Fig. 4a). The relative error in the MEM in the
_ o _ ] _ position of the dislocation(at its closest point to the tilt
A. Dislocation interaction with a tilt boundary boundary is shown in Fig. 4b). The results of the simulation

An important consequence of heavy plastic deformation ishow that the MEM is highly accuraterror on the order of
the rearrangement of dislocations into well-separated tangled4%), and that the overall dislocation configuration is indis-
or periodic arrays. Dislocation tangles evolve into walls thattinguishable when evaluated by the two methods. However,
can act as sources of new dislocations, or stop approachirfjeé MEM is found to be 22 times faster than the full field
glide dislocations from neighboring volumes. On the othercalculation.
hand, some grain boundaries can be represented by disloca-
tion arrays. The elastic field generated by grain boundaries in g pisiocation interaction with a dense dislocation wall
compatibility can thus be determined from the dislocation . ) ) . .
array representing its structure. Such dislocation microstruc- 1h€ physical role of dislocation walls in material defor-
tures have profound effect on the deformation characteristic@1ation is recognized to be significant because they control
of materials, and more often, some effective properties arée free path of mobile dislocations within sub.gra%ﬁﬂs-”
needed. In this section, we investigate the feasibility of eflocation walls ge_nerally contaln_ high _d|slocat|0n_ densm_es.
fective elastic representation of periodic dislocation arrayd nerefore, explicit large-scale simulation of the interaction
and dislocation walls utilizing the MEM derived earlier. We Petween these walls and approaching dislocations can
will first analyze the effective influence of a tilt boundary on Present computational difficulties. If the nature of decay of

the deformation of a dislocation emitted from a nearby

Frank-ReadF-R) source. We will then investigate the nature , "% g B
of the Peach-Koehler force on dislocations approaching ag ’
dense entanglement of dislocations within a dislocation wall. § 75 o6l
The following examples are for single crystal Cu, with the 3 g
following parameters: shear modulys=50 GPa, lattice 574001 §0~4-
constanta=3.615< 10 1 m, Poisson’s ratio’=0.31. z ,
Figure 3 shows the geometry of a 1° tilt boundary con- 27350- 4 0
taining 35 dislocations witi[101] Burgers vector. A F-R 580300 T T R R VR Ty
source is located um away from the tilt boundary. The Position x in local coordinate system Time Steps

source, which lies on thgl1l] glide plane, emits disloca-
tions with[121] tangent vector and[101] Burgers vector
as well. The initial length of the F-R source dislocation be- FIG. 4. (a) Dislocation configurations at different simulation
tween pinned ends is 780A constant uniaxial stress of 25 time steps:t;=0 ns, t,=0.31 ns, t;=0.62 ns, t,=1.23 ns; (b)
MPa is applied in th¢100] direction. relative error of the dislocation position along the IXén (a).

(@ (©)
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FIG. 6. (a) P-K forces on a small dislocation segment at differ-
ent positions along directior, (b) relative error of the P-K force
from MEM with respect to that from full calculation.

FIG. 5. Dislocation wall structure with dislocation density 5 416 sec to 3712 sec for the full calculation, when the number
X 10" cm/cn?. A small dislocation segmer@with Burgers vector  of dislocations in the wall increases from 250 to 2200. How-
3[101] lies alongx. ever, the CPU time does not change much for the MEM
L ) . . (varying from 39 sec to 40 sgfor the same increase in the
the elastic field away from the wall is determined, this would, mper of dislocations. For the case of 2200 dislocations
be help_ful in studies of. dislocation interaction with such yithin the wall, a speedup factor of almost 100 is achieved
walls without the excessive details. for the MEM. Recognizing that the CPU time for the MEM
_ Aspecial algorithm was designed to implement the MEMig 5imost constant and mostly dependent on the hierarchical
in dense dislocation walls. The wall was divided into manyyee sructure, it is concluded that the method is very suitable

small volumes, and a hierarchical tree structure was CONgyr |arge-scale simulations, which involve high dislocation
structed on the basis of these small volumes. Each level Qfensities

the hierarchical tree contains one or several nodes that cor- Itis of interest to determine the decay nature of the elastic

respond to specific volumes of the wall. Larger volumes coryjgq emanating from dislocation walls. Figuréabshows a
respond to higher levels of the tree. For each volume, we,mparison between various forms of the spatial decay of the
determine the properties: center, size, dislocation distribup_g force as a function of the distanBeaway from the walll,
tion, and various moments. Dislocation moments for the,,malized to the force &®,=0.59 um. It is seen that the
lowest level volumes are first calculated. Then, by using Eggyce decays faster thaR~2, and it can be simply repre-

((jlelt)e,r?ri]?rI]oe((:jation moments for upper tree levels can be easilygnaq by an exponential function of the form

The procedure for calculations of the Peach-Koehler
(P-K) force on an approaching dislocation at poitis as
follows.

— -1 ; ;

(1) The distance between the volume center and the point/Nereé@=1.36 um=. Such simple exponential representa-
P is first evaluated. If the distance is larger than the volume'dion is a result of the self-shielding of the dislocations within
size, MEM is used. the wall.

(2) If the distance is smaller than the volume size and the
volume does not have sub-volumes, the P-K force is deter- VI. CONCLUSIONS
mined by full calculation.

(3) If the distance is smaller than the volume’s size and The MEM presented here shows a number of features that
the volume has subvolumes, the algorithm checks on thé&cilitates investigation into the physical and computational

distance betwee® and the center of each subvolume, andaspects of large dislocation ensembles in materials undergo-
the above procedures are repeated. ing plastic deformation. The following conclusions are

drawn from the present work.

Figure 5 shows a dislocation wall structure with a density (1) By re-expressing the elastic field of dislocation en-
of 5x10®cm/cn?. The wall dimensions are %5  sembles as a series solution of moments, the relative contri-
X 0.2 um®. The P-K force on a small dislocation segment, butions of open loops, dipoles, quadropoles, etc., are easily
located at various positions along the center IKewith separated out.

F(R)=F(Ry)e “R~Ro), (12

Burgers vectoé[lOT] was evaluated by both MEM and full (2) The method results in significant computational ad-
calculations. The results of the P-K force and the relativevantages as compared to calculations performed in most dis-
errors are plotted in Fig. 6. location dynamics simulation method. First, vast computa-

While the relative error using MEM of order 2 is very tional speedup is achieved, especially in simulations of dense
small[see Figure )], a great advantage in computational dislocation interactions. Second, the method offers a simple
speed is gained. The results show that the CPU fiomea  algebraic procedure for transfer of moments from one vol-
Pentium-4 CPU, 2.26 GHzncreases almost linearly from ume to another, in a manner similar to the parallel axis theo-
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rem for moments of inertia in the mechanics of distributed APPENDIX A: R AND ITS DERIVATIVES
masses. This property is well suited to algorithms based on
hierarchical tree methods that are now efficiently used ir‘b
O(N) calculations.

R is the vector connecting field poik and another point
on the dislocation 00O, center of the volumésee Fig. L

R and its derivatives are used in expressions of displace-

(3) The zeroth order term in the MEM expansion is the ts. strai i d . f dislocafidte
Nye’s dislocation density tensor, which is a direct measure O%ner:js]:_s rains, SIresses, 2;2 edngrgées ordsloc re,
lattice curvature, and is affected only by open dislocation)[’;isoer |fr£rgsway to expressand its derivatives in compact
loops within the ensemble. Diagonal components of this ten- Define ’
sor describe screw dislocations, while off-diagonal compo-
nents represent edge dislocations. On the other hand, higher- X
order moments of the Eshelby tensor are associated with R={x} and g={—'], (A1)
definite length-scale measures that may be useful in connec- R
tions between discrete dislocation simulations and the Con\ivhereR=|R| Thus
tinuum theory of dislocations. ' '

(4) The analysis of dense dislocation walls indicates that X
the Peach-Koehler force has an exponential decay character Ri:_':gi ' (A2)
as a result of mutual shielding effects of multipole disloca- " R
tions within random ensemble constituting the walls.
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|
Based on the above derivations and after careful analysis, By defining
we can write these derivatives as
1={e;} (A8)
-1 n—1[n/2|
R=(?) > | (-=D"(2n—3-2m)!! and
m=0
c2Mzm-1)11 RMW= {Raa, -at (A9)

x 2 (Bt 0, Oy sty
we can write Eq(A7) as

X Oty 19tomez” 'gtn)} ' (A7) —q\n-1ln2
o R(”)=<—) > | (-=1)™2n-3-2m)!!
wheretq, t,, ..., ty, are a group of indices selected from R m=0
a, in a permutation manner, angl,. ¢, ..., t, are the other

2ma~2
Cn CZm

group of a, after such a selection. The summation
x 2 [(Me"?Mg)(Me™)][.  (AL0)

c2™am-1)n : .
>+n “ means taking sum over all combinations.
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In this equationm is the number of5’s and is from 0 to

[n/2| which indicates the largest integer not larger tinaR.

The symbollI®" indicates that there are a number of
items ofg or 1 with the operation® . The second summation

2m~2
3C"C2n means doing summing in a permutation and com-
bination manner, with the number of iterhisas 2m and the

number of itemgy asn—2m. For example, witm=1 and
n=4, we have

PHYSICAL REVIEW B 69, 174102 (2004

c2Mem-1)!1
Y [(Te"2Mg)(Ile2m)]

2
Ca

= [(Ie%g)(II1921)]=1010geg+1egelog+1

2099 1+g01R10g+go1egol+goge 19 1.
(A11)
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