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Abstract

Recent advances in analytical and computational modelling frameworks to
describe the mechanics of materials on scales ranging from the atomistic, through
the microstructure or transitional, and up to the continuum are reviewed. It is
shown that multiscale modelling of materials approaches relies on a systematic
reduction in the degrees of freedom on the natural length scales that can be
identified in the material. Connections between such scales are currently
achieved either by a parametrization or by a ‘zoom-out’ or ‘coarse-graining’
procedure. Issues related to the links between the atomistic scale, nanoscale,
microscale and macroscale are discussed, and the parameters required for the
information to be transferred between one scale and an upper scale are
identified. It is also shown that seamless coupling between length scales has not
yet been achieved as a result of two main challenges: firstly, the computational
complexity of seamlessly coupled simulations via the coarse-graining approach
and, secondly, the inherent difficulty in dealing with system evolution stemming
from time scaling, which does not permit coarse graining over temporal events.
Starting from the Born–Oppenheimer adiabatic approximation, the problem
of solving quantum mechanics equations of motion is first reviewed, with
successful applications in the mechanics of nanosystems. Atomic simulation
methods (e.g. molecular dynamics, Langevin dynamics and the kinetic Monte
Carlo method) and their applications at the nanoscale are then discussed.
The role played by dislocation dynamics and statistical mechanics methods
in understanding microstructure self-organization, heterogeneous plastic
deformation, material instabilities and failure phenomena is also discussed.
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Finally, we review the main continuum-mechanics-based framework used today
to describe the nonlinear deformation behaviour of materials at the local (e.g.
single phase or grain level) and macroscopic (e.g. polycrystal) scales. Emphasis is
placed on recent progress made in crystal plasticity, strain gradient plasticity and
homogenization techniques to link deformation phenomena simultaneously
occurring at different scales in the material microstructure with its macroscopic
behaviour. In view of this wide range of descriptions of material phenomena
involved, the main theoretical and computational difficulties and challenges are
critically assessed.

} 1. Introduction

Computational modelling of materials behaviour is becoming a reliable tool to
underpin scientific investigations and to complement traditional theoretical and
experimental approaches. In cases where an understanding of the dual nature of
the structure of matter (continuous when viewed at large length scales and discrete
when viewed at an atomic scale) and its interdependences are crucial, multiscale
materials modelling (MMM) approaches are required to complement continuum
and atomistic analyses methods. On transitional (or microstructure) scales
(in between continuum and atomistic), continuum approaches begin to break
down, and atomistic methods reach inherent time and length-scale limitations.
Transitional theoretical frameworks and modelling techniques are being developed
to bridge the gap between length-scale extremes. The power of analytical theories lies
in their ability to reduce the complex collective behaviour of the basic ingredients of
a solid (e.g. electrons, atoms, lattice defects, and single-crystal grains) into insightful
relationships between cause and effect. For example, the description of deformation
beyond the elastic regime is usually described by appropriate constitutive equations,
and the implementation of such relationships within continuum mechanics generally
relies on the inherent assumption that material properties vary continuously
throughout the solid. However, certain heterogeneities linked to either the micro-
structure or the deformation per se cannot be readily described within the framework
provided by continuum mechanics: dislocation patterns, bifurcation phenomena,
crack nucleation in fatigue, some non-local phenomena, etc. Some examples will
be discussed next to illustrate the role of MMM in nanomechanics and micro-
mechanics research.

Recent interest in nanotechnology is challenging the scientific community to
analyse, develop and design nanometre to micrometre-sized devices for applications
in new generations of computers, electronics, photonics and drug delivery systems.
These new exciting application areas require novel and sophisticated, physically
based approaches for design and performance prediction. Thus, theory and model-
ling are playing an ever-increasing role in these areas to reduce development costs
and manufacturing times. An important problem which concerns the microelectronic
industry is the reliable operation of integrated circuits, where the lifetime is limited
by the failure of interconnect wires in between submicrometre semiconducting chips.
In some cases, the nucleation and growth of even a single nanovoid can cause
interconnect failure. Statistical mechanics cannot adequately address this situation.
Future electronic and optoelectronic devices are expected to be even smaller, with
nanowires connecting a nano-sized memory and information storage and retrieval
nanostructures. Understanding the mechanics of such nano-engineered devices will
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enable high levels of reliability and useful lifetimes to be achieved. Undoubtedly,
defects are expected to play a major role in these nanosystems and microsystems
owing to the crucial impact on the physical and mechanical performance.

The potential of MMM approaches for computational materials design is also
great. Such possibility was recently illustrated on a six-component Ti-based alloy,
with a composition predetermined by electronic properties, which was shown to
exhibit an entirely new twin- and dislocation-free deformation mechanism, leading
to ‘unexpected new properties, such as high ductility and strength, and Invar and
Elinvar behaviour’ (Saito et al. 2003). Such an alloy would be unlikely to be found by
trial and error. This points to a paradigm shift in modelling, away from reproducing
known properties of known materials and towards simulating the behaviour of
possible alloys as a forerunner to finding real materials with these properties.

In high-pay-off, high-risk technologies, such as the design of large structures in
the aerospace and nuclear industries, the effects of ageing and environment on failure
mechanisms cannot be left to conservative approaches. Increasing efforts are now
focused on developing MMM approaches to design new alloys and material systems
in these areas. An illustration of an MMM based strategy for the development of
large components surrounding the plasma core of a fusion energy system is shown
in figure 1. The development of ultrastrong and yet ductile materials by combining
nanolayers with different microstructures also requires detailed understanding of
their mechanical properties. Such materials, if properly designed, may be candidates
for many demanding applications (e.g. microelectronics, optoelectronics, laser
mirrors, aircraft structures, rocket engines and fuel cells).

Appropriate validation experiments are also crucial to verify that the models
predict the correct behaviour at each length scale, ensuring that the linkages between
approaches are directly enforced. However, current nanoscale and microscale
mechanical experiments have been mostly limited to indentation (Loubet
et al. 1986, Wu et al. 1993) and bulge tests (Baker 1993, Small et al. 1994), and
to non-contact tests such as X-ray residual stress measurements (James 1980,
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Figure 1. Illustration of a MMM approach for the design of radiation-resistant materials for
fusion energy structures: MD, molecular dynamics.



Segmueller and Murakami 1988). Multiscale interconnected approaches will need to
be developed to interpret new and highly specialized nanomechanical and micro-
mechanical tests. One of the advantages of these approaches is that, at each stage,
physically meaningful parameters are predicted and used in subsequent models,
avoiding the use of empiricism and fitting parameters.

As the material dimensions become smaller, its resistance to deformation is
increasingly determined by internal or external discontinuities (e.g. surfaces, grain
boundaries and dislocation cell walls). The Hall–Petch relationship has been widely
used to explain grain-size effects, although the basis of the relationship is strictly
related to dislocation pile-ups at grain boundaries. Recent experimental observations
on nanocrystalline materials with grains of the order of 10–20 nm indicate that
the material is weaker than would be expected from the Hall–Petch relationship
(Erb et al. 1996, Campbell et al. 1998). Thus, the interplay between interfacial or
grain-boundary effects and slip mechanisms within a single-crystal grain may result
in either strength or weakness, depending on their relative sizes. Although experi-
mental observations of plastic deformation heterogeneities are not new, the signifi-
cance of these observations has not been addressed until very recently. In the same
metallic alloys, regular patterns of highly localized deformation zones, surrounded
by vast material volumes which contain little or no deformation, are frequently seen
(Mughrabi 1983, 1987, Amodeo and Ghoniem 1988). The length scale associated
with these patterns (e.g. typically the size of dislocation cells, the ladder spacing
in persistent slip bands (PSBs) or the spacing between coarse shear bands) controls
the material strength and ductility. As it may not be possible to homogenize such
types of microstructure in an average sense using either atomistic simulations or
continuum theories, new intermediate approaches will be needed.

The issues discussed above, in addition to the ever-increasingly powerful
and sophisticated computer hardware and software available, are driving the
development of MMM approaches in nanomechanics and micromechanics. It is
expected that, within the next decade, new concepts, theories and computational
tools will be developed to make truly seamless multiscale modelling a reality.
In this overview article, we briefly outline the status of research in each component
that makes up the MMM paradigm for modelling nanosystems and microsystems:
quantum mechanics (QM), molecular dynamics (MD), Monte Carlo (MC) method,
dislocation dynamics (DD), statistical mechanics (SM) and, finally, continuum
mechanics (CM).

} 2. Computational quantum mechanics

2.1. Essential concepts
There is little doubt that most of the low-energy physics, chemistry, materials

science and biology can be explained by the QM of electrons and ions and that,
in many cases, the properties and behaviour of materials derive from the quantum-
mechanical description of events at the atomic scale. Although there are many
examples in materials science of significant progress having been made without
any need for quantum-mechanical modelling, this progress is often limited as one
pushes forward and encounters the atomic world. For instance, the understanding of
the properties of dislocations comes from classical elasticity theory, but even in these
cases, until recently, very little was known about the core of a dislocation or the
effect of chemistry on the core, precisely because this part of the dislocation requires
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detailed quantum-mechanical modelling. The ability of QM to predict the total
energy and the atomic structure of a system of electrons and nuclei enables one to
reap a tremendous benefit from a quantum-mechanical calculation. Many methods
have been developed for solving the Schrödinger equation that can be used to
calculate a wide range of physical properties of materials, which require only a
specification of the ions present (by their atomic number). These methods are usually
referred to as ab initio methods.

In considering the motion of electrons in condensed matter, we are dealing with
the problem of describing the motion of an enormous number of electrons and nuclei
(about 1023) obeying the laws of QM. Prediction of the electronic and geometric
structure of a solid requires calculation of the quantum-mechanical total energy of
the system and subsequent minimization of that energy with respect to the electronic
and nuclear coordinates. Because of the large difference between the masses of
electrons and nuclei and the fact that the forces on the particles are the same, the
electrons respond essentially instantaneously to the motion of the nuclei. Thus, the
nuclei can be treated adiabatically, leading to a separation of the electronic and
nuclear coordinates in the many-body wave function

 ðfRI, rngÞ ¼  elðfrng; fRIgÞ nucðfRIgÞ, ð1Þ

which is the so-called Born–Oppenheimer approximation (Parr and Yang 1989,
Dreizler and Gross 1990). The adiabatic principle reduces the many-body problem
in the solution of the dynamics of the electrons in some frozen-in configuration {RI}
of the nuclei; this is an example of the philosophy behind systematic degree-of-
freedom elimination which is itself at the heart of multiscale modelling.

Even with this simplification, the many-body problem remains formidable. The
Hamiltonian for the N-electron system moving in condensed matter with fixed nuclei
is (in atomic units)

H ¼
XN
i¼1

�1
2
=2

i þ
XN
i¼1

v�i ðriÞ þ
1
2

X
i

X
j 6¼i

1

jri � rjj
, ð2Þ

where the first term is the kinetic energy operator, v�ðrÞ is the one-electron spin-
dependent external potential (e.g. the electron–nucleus interaction), and the third
term represents the effect of the electron–electron interactions which poses the most
difficult problem in any electronic structure calculation.

Density functional theory (DFT) (Hohenberg and Kohn 1964, Kohn and
Sham 1965, Jones and Gunnarsson 1989, Parr and Yang 1989, Dreizler and Gross
1990) has been proven to be a very powerful quantum-mechanical method in
investigating the electronic structure of atoms, molecules and solids. Here, the
electron density �ðrÞ, or spin density ��ðrÞ, is the fundamental quantity, rather
than the total wave function employed for example in Hartree–Fock theory
(Ashcroft and Mermin 1976). The DFT makes successful predictions of ground-
state properties for moderately correlated electronic systems (Perdew 1999). DFT
can provide accurate ground-state properties for real materials (such as total energies
and energy differences, cohesive energies of solids and atomization energies of mole-
cules, surface energies, energy barriers, atomic structure, and magnetic moments)
and provides a scheme for calculating them (Jones and Gunnarsson 1989, Fulde
1993, Perdew 1999).
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We next give a brief discussion of the essential concepts of DFT. Hohenberg and
Kohn (1964) proved that the total energy, including exchange and correlation, of an
electron gas (even in the presence of a static external potential) is a unique functional
of the electron density. The minimum value of the total-energy functional is the
ground-state energy of the system, and the density that yields this minimum value
is the exact single-particle ground-state density. Kohn and Sham (1965) then showed
how it is possible, formally, to replace the many-electron problem by an exactly
equivalent set of self-consistent one-electron equations

�1
2=

2
þ v�ðrÞ þ

ð
d3r0

�ðr0Þ

jr� r0j
þ v�xcðrÞ

� �
 k�ðrÞ ¼ �k� k�ðrÞ, ð3Þ

where  k�ðrÞ are the Kohn–Sham orbitals, and the spin-dependent exchange–
correlation potential is defined as

v�xcðrÞ �
dExc½�", �#�

d��ðrÞ
: ð4Þ

Here, Exc½�", �#� is the exchange–correlation energy and the density ��ðrÞ of electrons
of spin �(¼ " , #) is found by summing the squares of the occupied orbitals:

��ðrÞ ¼
X
k

j k�ðrÞj
2�ð�� �k�Þ, ð5Þ

where �ðxÞ is the step function and � is the chemical potential. The exchange–
correlation energy is ‘nature’s glue’. It is largely responsible for the binding of
atoms to form molecules and solids. The total electronic density is

�ðrÞ ¼ �"ðrÞ þ �#ðrÞ: ð6Þ

Aside from the nucleus–nucleus repulsion energy, the total energy is

E ¼
X
k�

h k�j �
1
2
=2

j k�i�ð�� �k�Þ þ
X
�

ð
d3r v�ðrÞ��ðrÞ þU½�� þ Exc½�", �#�, ð7Þ

where

U½�� ¼ 1
2

ð
d3r

ð
d3r0

�ðrÞ�ðr0Þ

jr� r0j
ð8Þ

is the Hartree self-repulsion of the electron density.
The Kohn–Sham equations represent a mapping of the interacting many-

electron system on to a system of non-interacting electrons moving in an effective
non-local potential owing to all the other electrons. The Kohn–Sham equations must
be solved self-consistently so that the occupied electron states generate a charge
density that produces the electronic potential that was used to construct the
equations. New iterative diagonalization approaches can be used to minimize
the total-energy functional (Car and Parrinello 1985, Gilan 1989, Payne et al.
1992). These are much more efficient than the traditional diagonalization methods.
If the exchange–correlation energy functional were known exactly, then taking
the functional derivative with respect to the density would produce an exchange–
correlation potential that included the effects of exchange and correlation exactly.

The complexity of the real many-body problem is contained in the unknown
exchange–correlation potential v�xcðrÞ. Nevertheless, making simple approximations,
we can hope to circumvent the complexity of the problem. Indeed the simplest
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possible approximation, that is the local-density (LDA) or local-spin-density
(LSDA) approximation, have been proven (Kohn and Sham 1965, von Barth and
Hedin 1972) very successful.

2.2. The local density approximation
This simplest method of describing the exchange–correlation energy of an

electron system has been the workhorse of condensed-matter physics for almost 30
years. In the LSDA the exchange–correlation energy of an electron system is
constructed by assuming that the exchange–correlation energy �xc per electron at a
point r in the electron gas is equal to the exchange–correlation energy per electron
in an electron gas of uniform spin densities �", �#, namely,

ELSDA
xc �", �#

� �
¼

ð
d3r �ðrÞ�unifxc ð�"ðrÞ�#ðrÞÞ: ð9Þ

The LSDA assumes that the exchange–correlation energy functional is purely local.
Several parametrizations exist for the exchange–correlation energy of a homogenous
electron gas all of which lead to total-energy results that are very similar (Kohn and
Sham 1965, Hedin and Lundqvist 1971, Vosko et al. 1980, Perdew and Zunger 1981).
These parametrizations use interpolation formulae to link exact results for the
exchange–correlation energy of high-density electron gases and calculations of
the exchange–correlation energy of intermediate and low-density electron gases.
The LDA or LSDA, in principle, ignores corrections to the exchange–correlation
energy at a point r due to nearby inhomogeneities in the electron gas. Considering
the inexact nature of the approximation, it is remarkable that calculations performed
using the LDA have been so successful. Recent work has shown that this success
can be partially attributed to the fact that the LDA gives the correct sum rules for
the exchange–correlation hole (Hariss and Jones 1974, Gunnarsson and Lundqvist
1976, Langreth and Perdew 1977).

A number of attempts to improve the LDA or LSDA use gradient expansions of
the charge or spin density. In this way, non-local information about the charge or
spin density could be provided from the gradient terms. These type of approximation
are in general referred to as gradient expansion approximations (Perdew 1999).
The most popular, the Perdew–Wang generalized gradient approximation (GGA)
(Perdew 1991, 1999, Perdew et al. 1996)

EGGA
xc �", �#

� �
¼

ð
d3r f ð�", �#,=�",=�#Þ ð10Þ

starts from the second-order gradient expansion of the exchange–correlation hole
density and then cuts off the spurious long-range (jr� r

0
j ! 1) parts to restore the

sum rules. The GGA is typically more accurate than LSD, especially for the rapidly
varying densities of atoms and molecules. In recent years, GGAs have made DFT
popular in quantum chemistry.

2.3. Basis functions
In the discussion of the Kohn–Sham equations earlier, nothing has been said

about the way that  kðrÞ itself will be determined. Many methods share the common
feature that the wave function is presumed to exist as a linear combination of some
set of basis functions which might be written generically as

 ðrÞ ¼
X
n

�n�nðrÞ, ð11Þ
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where �n is the weight associated with the nth basis function �nðrÞ. The solution of
the Kohn–Sham equations in turn becomes a search for unknown coefficients rather
than unknown functions. Part of the variety associated with the many different
implementations of DFT codes is associated with the choice of basis functions
and the form of the effective crystal potential. In deciding on a particular set of
basis functions, a compromise will have to be made between high-accuracy results,
which require a large basis set, and computational costs, which favour small basis
sets. Similar arguments hold with respect to the functional forms of the �nðrÞ. There
are several powerful techniques in electronic structure calculations. The various
methods may be divided into those which express the wave functions as linear
combinations of some fixed basis functions, say linear combination of atomic
orbitals localized about each atomic site (Eschrig 1989) or those which use a
free-electron-like basis, the so-called plane-wave basis set (Payne et al. 1992,
Denteneer and van Haeringen 1985). Alternatively, there are those methods which
employ matching of partial waves, such as the full-potential linear-augmented-plane-
wave method (Wimmer et al. 1981), the full-potential linear muffin-tin-orbital
method (Price and Cooper 1989, Price et al. 1992) and the full-potential
Korringa–Kohn–Rostoker method (Papanikolaou et al. 2002).

2.4. Nanomechanics applications
Electronic structure calculations based on DFT also can be applied for studies

of non-periodic systems, such as those containing point, planar or line defects, or
quantum dots if a periodic supercell is used. The supercell contains the defect sur-
rounded by a region of bulk crystal or vacuum for the case of a surface. Periodic
boundary conditions are applied to the supercell so that the supercell is reproduced
throughout space. It is essential to include enough bulk solid (or vacuum) in the
supercell to prevent the defects in neighbouring cells from interacting appreciably
with each other. The independence of defects in neighbouring cells can be checked by
increasing the volume of the supercell until the calculated defect energy is converged.
Using the supercell geometry, one can study even molecules (Rappe et al. 1992),
provided that the supercell is large enough that the interactions between the
molecules are negligible.

The implementation of the DFT within the LDA or the GGA for the exchange–
correlation energy, the development of new linearized methods for solving the single-
particle Schrödinger equations and the use of powerful computers allow for a highly
efficient treatment of up to several hundreds of atoms and has led to an outburst of
theoretical work in condensed-matter physics and materials physics. Representative
successful applications of DFT for a wide variety of materials ranging from metals to
semiconductors to ceramics include the electronic, structural and magnetic proper-
ties of surfaces (LaBella et al. 1999, Ruberto et al. 2002), interfaces (Batirev et al.
1999), grain boundaries (Wu et al. 1994, Lu et al. 1999, Lu and Kioussis 2001), alloys
(Kent and Zunger 2001, Janotti et al. 2002), chemisorption of molecules on surfaces
(Dürr et al. 2001), C nanotubes (Chan et al. 2001, Yildrim et al. 2001) and quantum
dots (Wang et al. 1999). For example, recent ab initio calculations predict that two
rows of hydrogen atoms chemisorbed on selective sites exterior to an armchair
carbon nanotube catalyses the breaking of the nearest-neighbour C–C bond of the
nanotube through the concerted formation of C–H bonds, leading to the unzipping
of the nanotube wall (Scudder et al. 2003). This remarkable hydrogen-induced unzip-
ping mechanism lends strong support to the recent experimental observations

3482 N. M. Ghoniem et al.



(Nikolaev et al. 1997) for the coalescence of single-walled nanotubes in the presence
of atomic H.

Finally, ab initio calculations have been recently applied to study the dislocation
core properties of isolated 111h i screw dislocations in bcc molybdenum and
tantalum (Woodward and Rao 2002). Alternatively, the Peierls–Nabarro model
has come to serve as a link between atomistic and continuum approaches, by
providing a means to incorporate information obtained from ab initio calculations
directly into continuum models (Lu et al. 2000, 2001, 2002). The resultant approach
can then be applied to problems associated with dislocation core structure and the
cross slip process, which neither atomistic nor conventional continuum models could
handle separately. This approach represents a combination of an ab initio treatment
of the interactions across the slip plane and an elastic treatment of the continua
on either side of the slip plane. Therefore, this approach is particularly useful for
studying the interaction of impurities with dislocations when empirical potentials
are either not available or not reliable to deal with such multielement systems.
Furthermore, it allows us to study general trends in dislocation core properties
and to correlate them with specific features of the underlying electronic structure.
One of the many successful applications of this approach was the elucidation of
the atomistic mechanism responsible for the hydrogen-enhanced local plasticity in
aluminium (Lu et al. 2001). The � surface for both the pure aluminium and the
aluminiumþ hydrogen system, shown in figures 2 (a) and (b), respectively, indicate
an overall reduction in energy in the presence of hydrogen. This, in turn, not only
facilitates dislocation emission from the crack tip but also enhances the dislocation
mobility dramatically.

2.5. Limitations of the density functional theory
The DFT within the LSDA and GGA generally works well for ground-state

properties of moderately correlated electron systems. In some systems, however,
the correlations among the electrons are stronger than might be expected from
the local spin densities. This occurs in systems where the electrons partially preserve
their localized atomic-like nature, as in the case for 4f (5f) states in rare-earth
(actinide) atoms and sometimes for 3d states of transition-metal atoms. Typical
examples include rare-earth metals, where LDA predicts a strong peak of 4f-orbital
in the density of states at the Fermi level, which is in disagreement with experiment,
and certain insulating transition-metal oxides, which LDA predicts to be metallic.
Other systems with anomalous electronic and magnetic properties are heavy-fermion
compounds, copper-oxide-based superconductors, colossal magnetoresistance
manganites, etc. In the past few years, there has been a growing sense that realistic
LDA-like approaches may be generalized to include the most significant correlation
effects for strongly correlated electron systems of the Mott–Hubbard and charge-
transfer variety (Anisimov 2000). All these approaches are based on LDA as a
starting point and introduce additional terms intended to treat Coulomb correlations
between electrons. Among these are the LDAþU method (Anisimov et al. 1991,
Lichtenstein et al. 1995), the self-interaction correction method (Perdew and Zunger
1981, Svane and Gunnarson 1990), the LDAþ dynamical mean-field theory method
(Georges et al. 1996) and the optimized effective potential method (Gross et al.
1998).

In addition, only limited information about spectroscopic properties is
available from such ground-state calculations. Quasiparticle excitations, as they
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occur in photoemission and tunnelling experiments, are not fully described by the
Kohn–Sham eigenvalues. In fact, the band structures given by the LDA are often
in distinct disagreement from experimental data, showing systematic deviations of
band dispersions and band gaps. In addition to the failures of the band structure,
two-particle excitations are not obtained with satisfying accuracy either. In partic-
ular, optical spectra, which correspond to electron–hole excitations in the electron
system, cannot be described by straightforward use of DFT or other ground-state
theories. A time-dependent extension of DFT (Gross et al. 1998) can treat excitation
properties, but so far the method is limited to finite systems. Excitation properties
have also been studied using the configuration interaction method (Dykstra 1998)
but, similarly, this method is very much restricted to small systems such as small
molecules or clusters. A major achievement in the field was given by the GW approx-
imation (where G stands for the Green’s function and W for the screened self energy
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Figure 2. The g (Jm�2) surfaces for displacements along a (111) plane for (a) pure aluminium
and (b) aluminiumþ hydrogen systems. (After Lu et al. (2001).)



correction) (Hedin and Lundqvist 1969) for the self-energy, which allows for a very
accurate evaluation of the self-energy on the basis of results from a preceding DFT
calculation. Highly accurate band structures for real materials have been obtained by
this method, including bulk semiconductors, insulators, metals, semiconductor sur-
faces, atoms, defects and clusters, thus making the GWA a standard tool in predict-
ing the electron quasiparticle spectrum of moderately correlated electron systems
(Louie 1996).

2.6. Connections to interatomic potentials
The direct use of DFT methods to perform full quantumMD simulations on real

materials is limited to a hundred or so atoms and a simulation time of a few
picoseconds. Thus, the next step of coarse graining the problem is to remove the
electronic degrees of freedom by imagining the atoms to be held together by some
sort of glue or interatomic potential, thereby allowing large-scale atomistic simula-
tions for millions of atoms and a simulation time of nanoseconds. Such simulations,
employing either the embedded-atom method (EAM) type (Daw and Baskes 1983,
1984) or the Finnis–Sinclair (1984) type in metals, and the Stillinger–Weber (1985)
type (Ackland and Vitek 1990) or the Tersoff (1986) type in covalent materials,
have been extremely useful in investigating generic phenomena in simple systems.
Empirical potentials involve the fitting of parameters to a predetermined experi-
mental or ab initio database, which includes physical quantities such as the lattice
constant, the elastic constants, the vacancy formation energy and the surface energy.
However, at the same time, they may not provide the desired physical accuracy for
many real complex materials of interest. For example, reliable interatomic potentials
usually are not available for multielement materials and for systems containing
substitutional or interstitial alloying impurities.

There is consequently growing need to develop more accurate interatomic
potentials, derived from QM, that can be applied to large-scale atomistic simulations.
This is especially so for directionally bonded systems, such as transition metals, and
for chemically or structurally complex systems, such as intermetallics and alloys. The
tight-binding (TB) (Cohen et al. 1994, Mehl and Papaconstantopoulos 1996) and the
self-consistent-charge density functional TB MD approach is becoming widespread
in the atomistic simulation community, because it allows one to evaluate both ionic
and electronic properties (Frauenheim et al. 1998). The success of TB MD stands on
a good balance between the accuracy of the physical representation of the atomic
interactions and the resulting computational cost. TB MD implements an empirical
parametrization of the bonding interactions based on the expansion of the electronic
wave functions on a very simple basis set. Recently, novel analytic bond-order
potentials have been derived for atomistic simulations by coarse graining the elec-
tronic structure within the orthogonal two-centre TB representation (Pettifor 1989,
Pettifor and Oleinik 1999, 2000). Quantum-based interatomic potentials for transi-
tion metals that contain explicit angular-force contributions have been developed
from first-principles, DFT-based generalized pseudopotential theory (Moriarty 1988,
Moriarty and Widom 1997, Moriarty et al. 2002).

2.7. Linear scaling electronic structure methods
Awealth of efficient methods, the so-called order-N (O(N)) methods, have recently

been developed (Yang 1991, Li et al. 1993, Ordejon et al. 1993, Goedecker 1999) for
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calculating the electronic properties of an extended system that require an amount
of computation that scales linearly with the size N of the system. On the contrary,
the widely used Carr–Parinello (1985) MD methods and various minimization tech-
niques (Payne et al. 1992) are limited because the computational time required scales
as N3, where N can be defined to be the number of atoms or the volume of the
system. Thus, these methods are an essential tool for the calculation of the electronic
structure of large systems containing many atoms. Most O(N) algorithms are built
around the density matrix or its representation in terms of Wannier functions
(Marzari and Vanderbilt 1997) and take advantage of its decay properties. To obtain
linear scaling, one has to cut off the exponentially decaying quantities when they are
small enough. This introduces the concept of a localization region. Only inside this
localization region is the quantity calculated; outside it is assumed to vanish. For
simplicity the localization region is usually taken to be a sphere, even though the
optimal shape might be different.

O(N) methods have become as essential part of most large-scale atomistic
simulations based on either TB or semiempirical methods. The use of O(N) methods
within DFT methods is not yet widespread. All the algorithms that would allow us to
treat very large basis sets within DFT have certain shortcomings. An illustration of
the wide range of areas where O(N) methods have made possible the study of systems
that were too large to be studied with conventional methods include the 90� partial
dislocation in silicon (Nunes et al. 1996), the surface reconstruction properties of
silicon nanobars (Ismail-Beigi and Arias 1999), the molecular crash simulation of C60

fullerenes colliding with a diamond surface (Galli and Mauri 1994), the irradiation-
mediated knockout of carbon atoms from carbon nanotubes (Ajayan et al. 1998) and
the geometric structure of large bimolecules (Lewis et al. 1997).

} 3. Large-scale atomistic simulations

The ab initio methods presented in } 2 are rigorous but limited by present-day
computers to systems containing a few hundred atoms at most. Such methods
serve two important purposes. Firstly, they provide direct information on the
response of materials to external environments (e.g. force and temperature).
Secondly, they also generate a database of properties that can be used to construct
effective (empirical) interatomic potentials. To determine the properties of an ensem-
ble of atoms larger than can be handled by computational QM, the description of the
atomic interactions must be approximated. The MD method is developed to enable
studies of the properties of material volumes containing millions to billions of atoms
with effective interatomic potentials. The basic idea is to eliminate all electronic
degrees of freedom and to assume that the electrons are glued to the nuclei. Thus,
the interaction between two atoms is represented by a potential function that depends
on the atomic configuration (i.e. relative displacement) and the local environment
(i.e. electrons). Based on the electronic structure database, or alternatively using
experimental measurements of specific properties, approximate effective potentials
can be constructed. According to classical Newtonian mechanics, the dynamic
evolution of all atoms can be fully determined by numerical integration. In principle,
once the positions and velocities of atoms in the finite ensemble within the simu-
lation cell are known, all thermodynamic properties can be readily extracted.
The implementation and practice of MD simulations are more involved than the
conceptual description alluded to here. A successful simulation depends on three
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major factors:

(i) the computational implementation of the MD method;
(ii) the construction of accurate interatomic potentials; and
(iii) the analysis of massive data resulting from computer simulations.

In the following, we briefly present key concepts in the numerical implementation
of MD methods and then discuss salient aspects of the last two topics.

3.1. The molecular dynamics method
The MD method is about the simultaneous motion and interaction of atoms

(or molecules). The following presentation outlines the basic equations and princi-
ples of the MD method, before proceeding to its numerical implementation. The
dynamic evolution of the system is governed by classical Newtonian mechanics,
where for each atom i, the equation of motion is given by

Mi

d2Ri

dt2
¼ Fi ¼ �=Ri

F, ð12Þ

which is derived from the classical Hamiltonian of the system:

H ¼
XMiV

2
i

2
þ F: ð13Þ

An atom of mass Mi moves as a rigid particle at the velocity Vi in the effective
potential FðRiÞ of other particles. The atomic force Fi is obtained as the negative
gradient of the effective potential: Fi ¼ �=Ri

F. Solving these second-order ordinary
differential equations for all the atoms in a simulation cell may appear simplistic.
A physical simulation involves proper selection of numerical integration scheme,
employment of appropriate boundary conditions, and stress and temperature control
to mimic physically meaningful thermodynamic ensembles.

A proper numerical integration scheme should be both numerically stable and
computationally efficient. The numerical integration of the equations of motion is
performed by either explicit or implicit methods. The simple Euler scheme is not
appropriate for MD simulations because it lacks numerical stability. In the explicit
Verlet’s leapfrog method, the equation of particle motion is split into two first-order
equations:

dRi

dt
¼ Vi,

dVi

dt
¼

Fi

Mi

: ð14Þ

Based on the half-step leapfrog method, this set of equations is converted for small
time increment dt to

Riðtþ dtÞ ¼ RiðtÞ þ dtViðtþ
1
2
dtÞ, ð15Þ

Viðtþ
1
2
dtÞ ¼ Viðt�

1
2
dtÞ þ dt

Fi

Mi

: ð16Þ

The Verlet algorithm is very popular in MD simulations because it is stable
and memory-efficient and allows for a reasonably large time-step. Another popular
implicit integration method for MD simulations is the predictor-corrector scheme, in
particular the Gear (1971) algorithm.
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Similar to the numerical integration scheme, proper use of boundary conditions
is crucial to obtaining a physically meaningful MD simulation. The boundary of a
simulation cell is usually within close proximity to each simulated atom, because of
limited computational power. Simulations for 109 atoms represent the upper limit of
computation today with simple interatomic potentials (for examples see Lennard-
Jones (1924)). Total simulation times are typically less than 10 ns as a result of short
integration time steps in the femtosecond range. The boundary of a simulation cell
may not be a real physical interface, rather it is merely the interface of the simulation
cell and its surroundings. Various boundary conditions are used in mechanics simu-
lations. Since dislocations dominate the linking of nanomechanics and micromecha-
nics, the following presentation focuses on those boundary conditions relevant to the
long-range strain fields of dislocations. These include the rigid boundary condition
(Kuramoto et al. 2000), the periodic boundary condition (Kido et al. 2000), the
direct linking of atomistic and continuum regions (Oritz and Phillips 1999), and
the flexible (Green’s function) boundary condition (Sinclair 1971, Hoagland 1976,
Woo and Puls 1976, Rao et al. 1998).

The rigid boundary condition is probably the simplest. According to this condi-
tion, boundary atoms are fixed during MD simulations. For simple dislocation
configurations, the initial strain field, say of an infinitely long straight dislocation,
is imposed on all atoms in the simulation cell. During subsequent simulations,
boundary atoms are not allowed to relax. This rigidity of the boundary condition
naturally leads to inaccuracy in the simulation results. The inaccuracy also exists in
the application of the periodic boundary condition. Here, the simulation cell is
repeated periodically to fill the entire space. When one dislocation is included in
the simulation cell, an infinite number of its images are included in the entire space
because of the infinite repetition of the simulation cell. Modifications have been
made to include dipoles in a simulation cell, and to subtract the image effects.
However, it is difficult to extend such modifications to general dislocation config-
urations, which are more complex.

In contrast with the two approximate boundary conditions, the direct linking
and flexible boundary conditions can be rigorous. The direct linking of atomistic and
continuum region (Qrtiz and Phillips 1999) aims at seamless bridging of two different
scales. This idea has been extended to include direct linking of atomistic and electro-
nic structure regions (Abraham et al. 1987). Once numerically robust and efficient,
the direct linking scheme should be the most reliable and desirable boundary con-
dition. At present, the other rigorous scheme, namely the flexible boundary condi-
tion, is more commonly used in dislocation simulations. This scheme has gone
through the implementations in two and three dimensions. In the 1970s, the two-
dimensional version of this boundary condition was implemented (Sinclair 1971,
Hoagland et al. 1976, Woo and Puls 1976), allowing the simulation of a single
straight dislocation. In these simulations, periodic boundary conditions are applied
along the dislocation line. On the plane normal to the dislocation line, the simulation
cell is divided into three regions. The innermost region is the MD region, in which
atoms follow Newtonian dynamics according to the MD method outlined earlier.
The intermediate region is the flexible region (or Green’s function region), in which
the force on each atom is calculated and then used to generate displacements of
all atoms in the simulation cell according to the Green’s function of displacement.
Since a periodic boundary condition is applied along the dislocation line, line forces
are calculated in the flexible region, making the displacement two dimensional. The
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outermost region contains atoms that serve as background for force calculations in
the flexible region. As a result of renewed interest in DD, flexible boundary condi-
tions have been extended to three dimensions and are often referred to as the Green’s
function boundary conditions (Rao et al. 1998). Flexible or Green’s function bound-
ary conditions have clear advantages in allowing for full relaxation of one or a few
dislocations in a simulation cell, without suffering from the artefacts of image dis-
locations. However, Green’s function calculations are time-consuming limiting
applications of the Green’s function boundary condition. Recently, a tabulation
and interpolation scheme (Golubov et al. 2001) has been developed, improving the
computational efficiency by two orders of magnitude and yet maintaining the accu-
racy of linear elasticity. With this improvement, the Green’s function boundary
conditions work well for static simulations of dislocations. However, they are not
applicable to truly dynamic simulations. During dislocation motion, elastic waves
are emitted and, when they interact with the simulation cell boundaries or borders,
they are reflected and can lead to interference or even resonance in the simulation
cell. Approximate approaches (Ohsawa and Kuramoto 1999, Cai et al. 2000) have
been proposed to damp the waves at the boundary, but a fully satisfactory solution is
still not available.

In addition to the numerical integration and boundary condition issues, success-
ful MD simulations rely on the proper control of thermodynamic variables: stress
and temperature. When the internal stress, as derived from interatomic interactions,
is not balanced by the external stress, the simulation cell deforms accordingly. At low
stress levels, this response is consistent with linear elasticity. Under general stress
conditions, the formulation of Parrinello and Rahman (1981) provides a mechanism
to track the deformation. In this formulation, the three vectors describing the
shape of simulation cell are equated to position vectors of three imaginary atoms.
The driving force of the imaginary atoms is the imbalance of internal and external
stresses, and the movements of those atoms are governed by Newton’s equations of
motion. This formulation works well when an equilibrated stress state is sought.
However, large fluctuations in the deformation are unavoidable according to the
Parrinello–Rahman method; the lattice constant may fluctuate by about 0.5%
around its equilibrium value. This large fluctuation may introduce artefacts in the
simulation of kinetic process, and caution should be exercised. The other thermo-
dynamic variable, temperature, is controlled through the kinetic energy or velocities
of all atoms. Using frictional forces to add or subtract heat, the Nose (1984)–Hoover
(1985) method provides a mechanism of controlling the temperature of a simulation
cell. When the temperature is uniform in space and constant in time, little difficulty
exists. When the temperature changes, however, the strength of the frictional force
dictates the transition time. A fast transition is usually necessary because of the short
time reachable in MD simulations. However, such a transition is generally too fast
compared with realistic processes. This transition problem exists in other tempera-
ture control mechanisms, such as velocity scaling or introduction of random forces.

3.2. Interatomic potentials
A proper MD method is a necessary condition for physically meaningful simu-

lations. However, the method says nothing about how simulated atoms interact
with each other. The latter aspect is solely determined by prescribed interatomic
potentials and is more crucial in obtaining physically meaningful results. In general,
there is a compromise between the potential rigorousness and the computational
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efficiency. For high computational efficiency, pair potentials, such as the Lennard-
Jones (1924) and the Morse (1929) potentials are used. With the increasing demand
on accuracy and available computational power, many-body potentials such as the
Finnis–Sinclair (1984) potential and the EAM (Daw and Baskes 1983, 1984) have
been commonly used. In the same category are effective-medium and glue models
(Ercolessi et al. 1986). Angle-dependent potentials, which are also many-body,
include the well-known Stillinger–Weber (1985) potential and the Tersoff (1986)
potential. Potentials that have a QM basis, such as the generalized pseudopotential
(Moriarty 1988, 1994), the bond order potential (Pettifor 1989) and the inversion
method (Chen 1990, Zhang et al. 1997) have also been used for greater accuracy.

In general, interatomic potentials are empirical or semiempirical and thereby
have fitting parameters. Simpler potentials, like the Lennard-Jones potential, have
very few fitting parameters, which can be easily determined from crystal properties.
On the other hand, these potentials suffer from non-transferability. Since these
potentials are fitted to only a few perfect crystal properties, their applicability in
studying defects is by default questionable. The more sophisticated potentials, like
the EAM, particularly the force matching approach (Ercolessi and Adams 1994), use
several or many defect properties to determine the EAM functions, in either analy-
tical or tabular form. Materials properties, of either the perfect crystal or the defec-
tive structures, are obtained from ab initio calculations and reliable experiments. It is
worth pointing out that these interatomic potentials apply for specific classes of
materials. Strictly speaking, pair potentials are applicable to simulations of rare-
gas behaviour. However, applications to simple metal systems can also provide
qualitative guidance. The EAM type of potential has proven to be a good choice
for simple metals. Applications to metals such as aluminium, copper, silver and iron
(except its magnetic properties) have been very successful. The radial function form
of the EAM is computationally advantageous. However, this advantage is accom-
panied by the inability to describe covalent systems, in which angular dependence
dominates. In studying silicon, diamond, carbon and other covalent systems, angular
dependent potentials, particularly the Stillinger–Weber (1985) potential, the Tersoff
(1986) potential, and the bond-order potential (Pettifor 1989) are among the leading
candidates. A modification of the EAM has been proposed to include the angular
dependence by Baskes (1987), and applied to SiC by Huang et al. (1995); the mod-
ification by Pasianot et al. (1991) is similar.

3.3. Applications of atomistic simulations in mechanics
This section focuses on the applications of MD simulations to mechanics

problems at the nanoscale. Furthermore, the presentation is focused on nano-
mechanics of point defects, dislocations and interfaces (free surfaces and grain
boundaries) under applied stress. Mechanics of nanotubes have also received
much attention (Dumitrica et al. 2003) but will not be treated here.

We start with point defects. Under stress, the normal diffusion process governed
by point defect motion is polarized by the action of the stress field. The diffusion
process of a point defect has been investigated by a combination of molecular statics
(MS) and MD simulations. Diffusion anisotropy, which is intrinsic in low-symmetry
crystals, can be enhanced by the action of stress (Woo et al. 2002). The stress effect
on a point defect, in particular its formation and migration energies, is crucial
to the analysis of kinetic processes, but this is usually not a first-order effect in
nanomechanics.
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The second type of defect, namely dislocations, has received much attention in
nanomechanics. In the following, we analyse the nanomechanics of dislocations in
terms of statics and dynamics. In dislocation statics, one is primarily concerned with
the final core structure of one or a few dislocations. The discovery of threefold
symmetry of a screw dislocation in bcc metals is a beautiful example of applications
of dislocation statics (Vitek 1974, Xu and Moriarty 1996, Duesbery and Vitek 1998,
Rao and Woodward 2001, Wang et al. 2001a). During dislocation motion, many
processes are involved; dislocation damping, dislocation intersection and dislocation
clustering, just to name a few. MD simulations have provided much insight to
details of kink–kink (Bulatov et al. 1995), dislocation–dislocation (Xu and Moriarty
1998, Zhou et al. 1998, Rodney and Phillips 1999, Rodney and Martin 2000),
dislocation–point-defect (Justo et al. 2001) and dislocation–grain boundary (Ortiz
and Phillips 1999) interaction processes. In the transonic velocity range, MD simula-
tions have revealed new mechanisms and possibilities. Gumbsch and Gao (1999)
demonstrated that transonic dislocations are possible. Later, it was shown that a
transonic dislocation can cross the sound barrier back and forth (Shi et al. 2002, Li
and Shi 2002). The availability of fast dislocations also enabled the study of disloca-
tion dipole stability at the atomic level (Wang et al. 2001b), to serve as direct con-
firmation of the elasticity analysis (Huang et al. 1999). As shown in figure 3, the
simulations further reveal that a dislocation dipole can be stabilized even with an
overshoot; which is a direct result of the finite speed of wave propagation.

In addition to the static and dynamic behaviours, the nucleation of dislocations
is another important area of nanomechanics. MD simulations have been applied in
studies of dislocation emission from crack tips (Bulatov et al. 1998), nucleation of
dislocations from surfaces (Liu et al. 2002a, b) and dislocation nucleation in nano-
crystals (Van Swygenhoven et al. 2001, Cleri et al. 1997). One of the challenging
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problems that remain is treating the interaction of boundaries with elastic waves
emitted by a moving dislocation. It is usually necessary to separate this interaction
from the true dynamics of a moving dislocation. Several recent studies have
attempted to damp out boundary effects (Ohsawa and Kuramoto 1999, Cai et al.
2000, Wang et al. 2001b), but the problem is still not satisfactorily solved.

Similar to point defects and dislocations, interfaces (e.g. surfaces and grain
boundaries) respond to mechanical loading. In connection with dislocations, sur-
faces are nucleation sites. Although grain boundaries also have this function, they
are more crucial in facilitating or blocking other deformation mechanisms. Using a
multiscale approach, Ortiz and Phillips (1999) have studied the interaction of a
dislocation with a grain boundary. It is well established that grain boundaries
serve as barriers to dislocation motion and give rise to the Hall–Petch effect,
which shows that the strength of materials is inversely proportional to the square
root of its grain size. However, for materials with grain sizes below a few nano-
metres, materials strength begins to decline when the grain size decreases
(Van Swygenhoven 2002). On the nanoscale, grain boundaries facilitate mechanical
deformation through grain-boundary sliding. At the same time, the grain structure
evolves as well, and this evolution in turn affects the mechanical deformation.
Taking thin slices of polycrystalline nanograins, Schonfelder et al. (1997, 1999)
have investigated mechanisms of grain-boundary interactions. As shown in
figure 4, high-angle grain boundaries shrink, and quadruple junctions are not stable
and are reduced to triple junctions.
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The presentation in this section has so far focused on physical aspect of nano-
mechanics. This physical understanding relies on identification and analysis of point
defects, dislocations and interfaces. Among the three types of defects, dislocations
are probably the most difficult to characterize or identify. The identification is
straightforward if the dislocation configuration is simple. One may rely on construct-
ing the Burgers circuit, using disregistry functions (such as the centro-symmetry
parameter), or tracking the atomic level stress or energy (Hamilton 1997,
Hamilton et al. 1999, Chang et al. 2001). When complex dislocation configurations
are involved, unambiguous identification of dislocation cores may require a combi-
nation of several of the methods discussed above. There is still not a universal
characterization method that fits all purposes.

Before closing this section, let us examine the type of information that can be
passed on to larger length scales. Here, we consider three types of defects: point
defects, dislocations, and interfaces (particularly grain boundaries). Information on
defect energetics and diffusion tensors obtained by MD or MS simulations
provide parameters to rate equations and MC methods describing microstructure
evolutions. Dislocation energetics (e.g. kink-pair formation energy and dislocation
core energy), Peierls stress and dislocation mobility are used as input parameters in
dislocation dynamics simulations at the mesoscopic level (Bulatov et al. 1998).
Finally, dislocation nucleation conditions and interaction mechanisms with other
defects (dislocations or grain boundaries or other interfaces) from MD simulations
are critical to DD simulations.

} 4. Mesomechanics and the role of defects

Studies of the mechanical behaviour of materials on a length scale larger than
what can be handled by direct atomistic simulations and smaller than what is poss-
ible with continuum mechanics represent particular difficulties. Two complementary
approaches have been advanced to model the mechanical behaviour in this meso-
scopic length scale. The first approach, that of DD, was initially motivated by the
need to understand the origins of heterogeneous plasticity and pattern formation. An
early variant of this approach (the cellular automata) was first developed by
Lepinoux and Kubin (1987), and that was followed by the proposal of DD
(Ghoniem and Amodeo 1988a, b, Amodeo and Ghoniem 1990a, b). In these early
efforts, dislocation ensembles were modelled as infinitely long and straight in
an isotropic infinite elastic medium. The method was further expanded by a number
of researchers (Guluoglu et al. 1989, Lubarda and Needleman 1993, Barts and
Carlsson 1995, 1998, Wang and LeSar 1995), with applications demonstrating
simplified features of deformation microstructure.

The second approach to mechanical models on the mesoscale has been based on
SM methods (Walgraef and Aifantis 1985, Gregor and Kratochvil 1990, Kratochvil
and Saxlov̀a 1992, Saxlov̀a et al. 1997, Hähner et al. 1998, Zaiser et al. 1998,
El-Azab 2000, Thomson et al. 2002). In these developments, evolution equations
for statistical averages (and possibly for higher moments) are to be solved for a
complete description of the deformation problem. The main challenge in this regard
is that, unlike the situation encountered in the development of the kinetic theory
of gases, the topology of interacting dislocations within the system must be included
(El-Azab 2000). In the following, we review the main theoretical and computational
advances in mesomechanics.
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4.1 Defect mechanics on the mesoscale
So far, we have dealt with simulations of the atomistic degrees of freedom, where

various levels of approximations have been introduced to give tractable and yet
rigorous solutions of the equations of motion. At present, MD simulations in the
nanomechanics area have been limited to sizes less than 100 nm, and time scales less
than tens of nanoseconds. Accurate descriptions of material volumes in the micro-
metre range where continuum descriptions break down are not yet attainable with
MD techniques. Fortunately, however, the mechanical behaviour of materials is
primarily determined by topological defects, ranging in size from atomic dimensions
(i.e. vacancies and interstitials), to line defects (e.g. dislocations) and surface defects
(e.g. voids, bubbles, cracks and grain boundaries). The mechanics problem can thus
be greatly simplified if all atomic degrees of freedom were adiabatically eliminated
(similar to the Born–Oppenheimer approach), and only those associated with defects
are retained. Because the motion of all atoms in the material is not relevant, and only
atoms around defects determine the mechanical properties, one can just follow
material regions around defects. Since the density of defects is many orders of
magnitude smaller than the atomic density, two useful results emerge. Firstly, defect
interactions can be accurately described by long-range elastic forces transmitted
through the atomic lattice. Secondly, the number of degrees of freedom required
to describe their topological evolution is many orders of magnitude smaller than
those associated with atoms. These observations have been instrumental in the
emergence of mesomechanics on the basis of defect interactions, which has its
roots in the pioneering work of Eshelby (1957), Kröner (1958a, b), Mura (1968,
1982) and Kossevich (1999). Because of the many computational advances during
the past two decades, the field has steadily moved from conceptual theory to prac-
tical applications. While early research in defect mechanics focused on the nature
of the elastic field arising from defects in materials, recent computational modelling
has shifted the emphasis to defect ensemble evolution. We review here some of the
more popular methods of computational mesomechanics that have been developed
during the last two decades. These are the MC, the discrete DD and the SM
methods.

4.2. The kinetic Monte Carlo method
The MC technique is a statistical method for solving deterministic or probabil-

istic problems, by sampling from random distributions utilizing concepts of prob-
ability theory. A simple method for generation of random numbers according to
a given distribution function is the inversion method (James 1990). In this approach,
if the distribution function is normalized to obtain a probability density function
(PDF) pðxÞ we can determine the probability that the random variable x0 is less
than an arbitrary x by integrating the PDF from the minimum value to x. The
integral of the PDF is called the cumulative distribution function (CDF) CðxÞ.
When the CDF is equated to a uniformly distributed random number 	, that is
CðxÞ ¼ 	, the resulting solution for x gives the desired distribution function. If
the PDF pðxÞ cannot be easily inverted analytically, sampling can be performed
by the Von Neumann rejection technique. Another method to achieve the same
result is known as importance sampling, and is a combination of the previous two
methods. Here, we replace the original distribution function pðxÞ by an approximate
form ~ppðxÞ for which the inversion method can be applied. Then we obtain trial
values for x with the inversion technique following p0ðxÞ. Finally, we accept trial
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values with the probability proportional to the weight w, given by w ¼ pðxÞ= ~ppðxÞ.
The rejection technique has been shown to be a special case of importance sampling,
where p0ðxÞ is a constant (James 1980).

When the configurational space is discrete, and all rates at which they occur
can be determined, we can choose and execute a single change to the system from
the list of all possible changes at each MC step. This is the general idea of the kinetic
Monte Carlo (KMC) method (Doran 1970, Beeler 1982, Heinisch 1995). The main
advantage of this approach is that it can take into account simultaneous different
microscopic mechanisms and can cover very different time scales.

First, we tabulate the rates at which each event will occur anywhere in the
system: ri. The probability of event occurrence is defined as the rate at which the
event takes place relative to the sum of all possible event rates. Once an event is
selected, the system is changed, and the list of events that can occur at the next step
is updated. Hence, one event denoted by m is randomly chosen from all of the
M events that can possibly occur, as follows:

Xm�1

i¼0

ri

�XM
i¼0

ri < 	 <
Xm
i¼0

ri

�XM
i¼0

ri, ð17Þ

where ri is the rate at which event i occurs (r0 ¼ 0) and 	 is a random number
uniformly distributed in the range [2 ð0, 1Þ].

After a particular event is selected, the table of all possible events is updated
(Battaile and Srolovitz 1997). In the Metropolis et al. (1953) scheme, a fixed time
increment is chosen such that at most one event occurs during a time step. However,
this approach is inefficient since, in many time steps, no events will happen. An
alternative technique, known as the n-fold way algorithm and introduced by Bortz
et al. (1975), ensures that one event occurs somewhere in the system. Thus, the time
increment itself, dt, corresponding to each step is variable, because it depends on the
corresponding event probability, as

�t ¼ � ln ð	Þ

�XM
i¼1

ri: ð18Þ

This method is particularly useful in cases where the events occur on very
different time scales, and the fastest events are only possible in certain rare situations.
For example, under high-energy ion or neutron irradiation conditions, self-intersti-
tial atom (SIA) clusters are produced by atomic collisions in the crystal. They can
be represented as rigid small prismatic dislocation loops that can migrate randomly
in the drift field of dislocations (Osetsky et al. 2000). The results of KMC simulations
shown in figure 5 (Ghoniem et al. 2002), illustrate the stages of SIA motion and
clustering in the stress field of dislocations.

4.3. Dislocation dynamics
Since it was first introduced in the mid-1980s independently by Lepinoux and

Kubin (1987) and by Ghoniem and Amodeo (1988a), DD has now become an
important computer simulation tool for the description of plastic deformation on
the microscale and mesoscale (i.e. the size range of a fraction of a micrometre to tens
of micrometres). The method is based on a hierarchy of approximations that enable
the solution of relevant problems with today’s computational resources.
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In its early versions, the collective behaviour of dislocation ensembles was
determined by direct numerical simulations of the interactions between infinitely
long straight dislocations (Lepinoux and Kubin 1987, Amodeo and Ghoniem
1988, 1990a, b, 1991, Ghoniem and Amodeo 1988a, 1990, Guluoglu et al. 1989,
Ghoniem 1992, Groma and Pawley 1993, Lubarda and Needleman 1993, Barts
and Carlsson 1995, 1998, Wang and LeSar 1995). Recently, several research groups
extended the DD methodology to the more physical, yet considerably more complex
three-dimensional simulations. The method can be traced back to the concepts of
internal stress fields and configurational forces. The more recent development of
three-dimensional lattice DD by Kubin and co-workers (Canova et al. 1992,
DeVincre and Condat 1992, DeVincre et al. 1992, Kubin and Canova 1992,
Kubin et al. 1992, Kubin 1993, DeVincre and Kubin 1994) has resulted in greater
confidence in the ability of DD to simulate more complex deformation microstruc-
ture. More rigorous formulations of three-dimensional DD have contributed to its
rapid development and applications in many systems (Hirth et al. 1996, Schwarz
and Tersoff 1996, Schwartz 1997, Schwarz and Le Goues 1997, Rhee et al. 1998,
Zbib et al. 1998, Ghoniem and Sun 1999, Ghoniem 1999, Ghoniem et al. 2000, 2001).
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Figure 5. Results of KMC simulations for SIA cluster agglomeration and interaction near
dislocation segments. The sequence of figures are for t¼ 0, 0.043, 0.189 and 0.416 ns.



When the Green’s functions are known, the elastic field of a dislocation loop can
be constructed by a surface integration. The starting point in this calculation is the
displacement field in a crystal containing a dislocation loop, which can be expressed
as (Volterra 1907, Mura 1968)

uiðxÞ ¼ �

ð
S

Cjlmnbm
o

o x0l
Gijðx, x

0
Þnn dSðx

0
Þ, ð19Þ

where Cjlmn is the elastic constants tensor, Gijðx,x
0
Þ are the Green’s functions at x due

to a point force applied at x0, S is the surface capping the loop, nn is a unit normal to
S and bm is the Burgers vector. The elastic distortion tensor ui, j can be obtained from
equation (19) by differentiation. The symmetric part of ui, j (elastic strain tensor) is
then used in the stress–strain relationship to find the stress tensor at a field point x,
caused by the dislocation loop.

In an elastically isotropic and infinite medium, a more efficient form of equation
(19) can be expressed as a line integral performed over the closed dislocation loop
(deWit 1960):

ui ¼ �
bi
4p

þ
C

Akdlk þ
1

8p

þ
C

�ikibiR, pp þ
1

1� 

�kmnbnR,mi

� �
dlk, ð20Þ

where � and 
 are the shear modulus and Poisson’s ratio respectively, b is the
Burgers vector with the Cartesian components bi, and the vector potential
AkðRÞ ¼ �ijkXisj=RðRþ R � sÞ satisfies the differential equation �pikAk, pðRÞ ¼ XiR

�3,
where s is an arbitrary unit vector. The radius vector R connects a source point on
the loop to a field point, as shown in figure 6, with Cartesian components Ri,
successive partial derivatives R, ijk...: and magnitude R. The line integrals are carried
along the closed contour C defining the dislocation loop, of differential arc length dl
with components dlk.

Consider the virtual motion of the dislocation loop. The mechanical power
during the virtual motion is composed of two parts:

(i) the change in the elastic energy stored in the medium upon loop motion
under the influence of its own stress (i.e. the change in the loop self-energy):

(ii) the work done on moving the loop as a result of the action of external and
internal stresses, excluding the stress contribution of the loop itself.
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Figure 6. Parametric representation of dislocation segments. (After Ghoniem et al. (2001).)



These two components constitute the Peach–Koehler (1950) work . The main
idea of DD is to derive approximate equations of motion from the principle of
virtual power dissipation of the second law of thermodynamics (Ghoniem et al.
2001), by finding virtual Peach–Kohler forces that would result in the simultaneous
displacement of all dislocation loops in the crystal. A major simplification is that this
many-body problem is reduced to the single-loop problem. In this simplification,
instead of moving all the loops simultaneously, they are moved sequentially, with
the motion of each one against the collective field of all other loops. The approach
is reminiscent of the single-electron simplification of the many-electron problem
in QM.

In finite systems, Green’s functions are not invariant under x ! x
0 transforma-

tions, and they become functions of both source and field points (i.e. not functions of
the radius vector alone any more). This does not allow the reduction of the surface
integral of equation (20) to a simpler line integral by application of the Stokes
theorem. In addition, closed-form solutions for Green’s functions and their spatial
derivatives are available only for elastically isotropic materials. Therefore, rigorous
three-dimensional DD in finite anisotropic systems (e.g. thin films and quantum
dots) are very demanding and have not yet been implemented.

If the material is assumed to be elastically isotropic and infinite, a great reduction
in the level of required computations ensues. Firstly, surface integrals can be
replaced by line integrals along the dislocation. Secondly, Green’s functions and
their derivatives have analytical solutions. Thus, the starting point in most DD
simulations so far is a description of the elastic field of dislocation loops of arbitrary
shapes by line integrals of the form proposed by deWit (1960) :

�ij ¼
�

4p

þ
C

1

2
R,mpp �jmndli þ �imndlj

� �
þ

1

1� 

�kmn R, ijm � �ijR, ppm

� �
dlk

� �
, ð21Þ

where � and 
 are the shear modulus and Poisson’s ratio respectively. The line
integral is discretized, and the stress field of dislocation ensembles is obtained by a
summation process over line segments.

Recently, Ghoniem and Sun (1999) and Ghoniem et al. (2001) have shown that,
if dislocation loops are discretized into curved parametric segments, one can obtain
the field by numerical integration over the scalar parameter that represents the
segment. One of these segments is described by a parameter ! that varies, for
example, from 0 to 1 at end nodes of the segment. The segment is fully determined
as an affine mapping on the scalar interval 2 ½0, 1�, if we introduce the tangent vector
T, the unit tangent vector t and the unit radius vector e, as follows: T ¼ dl=d!,
t ¼ T=jTj, e ¼ R=R. Let the Cartesian orthonormal basis set be denoted by
1 � f1x, 1y, 1zg, I ¼ 1� 1 as the second-order unit tensor, and � denotes the tensor
product. Now define the three vectors ðg1 ¼ e, g2 ¼ t, g3 ¼ b=jbjÞ as a covariant
basis set for the curvilinear segment, and their contravariant reciprocals as
g
i
� gj ¼ �ij, where �

i
j is the mixed Kronecker delta and V ¼ ðg1 � g2Þ � g3 the volume

spanned by the vector basis, as shown in figure 6.
The differential stress field is given by

dr

d!
¼

�V jTj

4pð1� 
ÞR2
g
1
� g1 þ g1 � g

1
� �

þ ð1� 
Þ g2 � g2 þ g2 � g
2

� �
� 3g1 � g1 þ I
� �� �

:

ð22Þ
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Once the parametric curve for the dislocation segment is mapped on to the
scalar interval {! 2 ½0, 1�}, the stress field everywhere is obtained as a fast numerical
quadrature sum (Ghoniem and Sun 1999). The Peach–Kohler (1950) force exerted
on any other dislocation segment can be obtained from the total stress field (external
and internal) at the segment as

FPK ¼ �b� t: ð23Þ

The total self-energy of the dislocation loop is determined by double line inte-
grals. However, Gavazza (1976) have shown that the first variation in the self-energy
of the loop can be written as a single line integral, and that the majority of the
contribution is governed by the local line curvature. Based on these methods
for evaluations of the interaction and self-forces, the weak variational form of the
governing equation of motion of a single dislocation loop was developed by
Ghoniem et al. (2000): ð

�

Ft
k � B�kV�

� �
drk dsj j ¼ 0: ð24Þ

Here, Ft
k are the components of the resultant force, consisting of the Peach–Koehler

force FPK (generated by the sum of the external and internal stress fields), the self-
force Fs and the osmotic force FO (in case climb is also considered (Ghoniem et al.
2000). The resistivity matrix (inverse mobility) is B�k, V� are the velocity vector
components, and the line integral is carried along the arc length of the dislocation
ds. To simplify the problem, let us define the following dimensionless parameters:

r
�
¼

r

a
, f

�
¼

F

�a
, t� ¼

�t

B
:

Here, a is lattice constant, � the shear modulus and t is time. Hence equation (24)
can be rewritten in dimensionless matrix form asð

G�

d r�T � f
�
�
dr�

dt�

� �
ds�
�� �� ¼ 0: ð25Þ

Here, f� ¼ ½f �1 , f
�
2 , f

�
3 �

T, and r
�
¼ ½r�1, r

�
2, r

�
3�
T, which are all dependent on the dimen-

sionless time t�. Following Ghoniem et al. (2000), a closed dislocation loop can
be divided into Ns segments. In each segment j, we can choose a set of generalized
coordinates qm at the two ends, thus allowing parametrization of the form:

r
�
¼ CQ: ð26Þ

Here, C ¼ ½C1ð!Þ,C2ð!Þ, . . . ,Cmð!Þ�, Cið!Þ, ði ¼ 1, 2, . . . ,mÞ are shape functions
dependent on the parameter (04!4 1), and Q ¼ ½q1, q2, . . . , qm�

T, where qi are a
set of generalized coordinates. Substituting equation (26) into equation (25) we
obtain XNs

j¼1

ð
Gj

�QT
� C

T
f
�
� C

T
C
dQ

dt�

� �
dsj j ¼ 0 ð27Þ

Let

f j ¼

ð
Gj

C
T
f
� dsj j, kj ¼

ð
Gj

C
T
C dsj j:

Multiscale modelling of nanomechanics and micromechanics 3499



Following a similar procedure to the finite-element method, we assemble the equa-
tion of motion for all contiguous segments in global matrices and vectors as

F ¼
XNs

j¼1

f j , K ¼
XNs

j¼1

kj;

then, from equation (27), we obtain

K
dQ

dt�
¼ F: ð28Þ

The solution of the set of ordinary differential equations (28) describes the
motion of an ensemble of dislocation loops as an evolutionary dynamic system.
However, additional protocols or algorithms are used to treat

(i) strong dislocation interactions (e.g. junctions or tight dipoles),
(ii) dislocation generation and annihilation and
(iii) adaptive meshing as dictated by large curvature variations (Ghoniem et al.

2000).

In the parametric method (Kukta and Freund 1998, Ghoniem 1999, Ghoniem
et al. 2000, 2001) presented above, the dislocation loop can be geometrically repre-
sented as a continuous (to second derivative) composite space curve. This has two
advantages: firstly, there is no abrupt variation or singularities associated with the
self-force at the joining nodes in between segments; secondly, very drastic variations
in dislocation curvature can be easily handled without excessive remeshing. Other
approximation methods have been developed by a number of groups. These
approaches differ mainly in the representation of dislocation loop geometry, the
manner by which the elastic field and self-energies are calculated, and some addi-
tional details related to how boundary and interface conditions are handled. The
suitability of each method is determined by the required level of accuracy and
resolution in a given application.

Generally, coarse resolution is obtained by the lattice method, developed by
Kubin et al. (1992) and Moulin et al. (1997), where straight dislocation segments
(either pure screw or edge in the earliest versions, or of a mixed character in more
recent versions) are allowed to jump on specific lattice sites and orientations. Straight
dislocation segments of mixed character in the the force method, developed by Hirth
et al. (1996) and Zbib et al. (1998) are moved in a rigid-body fashion along the
normal to their midpoints, but they are not tied to an underlying spatial lattice or
grid. The advantage of this method is that the explicit information on the elastic field
is not necessary, since closed-form solutions for the interaction forces are directly
used. The differential stress method developed by Schwarz and Tersoff (1996) and
Schwarz (1997) is based on calculations of the stress field of a differential straight
line element on the dislocation. Using numerical integration, Peach–Koehler forces
on all other segments are determined . The Brown (1967) procedure is then utilized to
remove the singularities associated with the self-force calculation. The method of
the phase field microelasticity (Khachaturyan 2000, Wang et al. 2000, 2001c) is of a
different nature. It is based on the Khachaturyan–Shatalov reciprocal space theory
of the strain in an arbitrary elastically homogeneous system of misfitting coherent
inclusions embedded into the parent phase. Thus, consideration of individual
segments of all dislocation lines is not required. Instead, the temporal and
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spatial evolution of several density function profiles (fields) are obtained by solving
continuum equations in Fourier space.

In the parametric DD method, the shape of loop ensembles is evolved using
equations of motion for generalized coordinates representing the position, tangent
and normal vectors of nodes on each loop. Figure 7 shows the results of such
computations for simulation of plastic deformation in single-crystal copper at a
constant strain rate of 100 s�1. The initial dislocation density of � ¼ 2� 1013 m�2

has been divided into 300 complete loops. Each loop contains a random number of
initially straight glide and superjog segments. When a generated or expanding loop
intersects the simulation volume of 2.2 mm side length, the segments that lie outside
the simulation boundary are periodically mapped inside the simulation volume to
preserve translational strain invariance, without loss of dislocation lines. The num-
ber of nodes on each loop starts at 5 and is then increased adaptively proportional to
the loop length, with a maximum number of 20 nodes per loop. The total number of
degrees of freedom starts at 6000 and is increased to 24 000 by the end of the
calculation. However, the number of interacting degrees of freedom is determined
by a nearest-neighbour criterion, within a distance of 400a (where a is the lattice
constant), and is based on a binary tree search. The dislocation microstructure is
shown in figure 7 at different total strain (Wang et al. 2003a). It is observed that fine
slip lines that nucleate at low strains evolve into more pronounced slip bundles at
higher strains. The slip bundles are well separated in space, forming a regular pattern
with a wavelength of approximately 1 mm. Conjugate slip is also observed, leading to
the formation of dislocation junction bundles and what appears to a stabilization of
a cellular structure.
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(After Wang et al. (2003a).)



4.4. Statistical mechanics
Two of the most fascinating features of microscale plasticity are the spontaneous

formation of dislocation patterns, and the highly intermittent and spatially localized
nature of plastic flow. Dislocation patterns consist of alternating dislocation-rich
and dislocation-poor regions usually in the micrometre range (e.g. dislocation cells,
subgrains, bundles, veins, walls and channels). On the other hand, the local values
of strain rates associated with intermittent dislocation avalanches are estimated to
be of the order of (1–10)�106 times greater than externally imposed strain rates
(Neuhäuser 1983, Zaiser 2001). Understanding such collective phenomena is of
paramount importance in two respects.

(i) It will allow materials design approaches that are more fundamentally
based to mitigate the detrimental effects of plastic deformation, fatigue and
fracture on material failure.

(ii) It will shed light on the intriguing physics of both self-organization
phenomena and the behaviour of critical-state systems (e.g. avalanches and
percolation).

Because of the high density of dislocations and the strong nature of interactions,
direct computer simulations of inhomogeneous plastic deformation and dislocation
patterns are still unattainable. Even if direct computer simulations are successful
in the description of these collective phenomena, it is very desirable to obtain
global kinetic or thermodynamic principles for understanding the self-organization
associated with plasticity on the microscale. To attain these objectives, and to enable
a direct link with continuum deformation theory, the SM approach has been
advanced (Neumann 1971, Walgraef and Aifantis 1985, Ghoniem et al. 1990,
Gregor and Kratochvil 1990, Kratochvil and Saxlov̀a 1992, Hähner 1996, Saxlov̀a
et al. 1997, Zaiser and Hähner 1997, Hähner et al. 1998, Zaiser et al. 1998,
El-Azab 2000, Thomson et al. 2002, LeSar and Richman 2003). The fundamental
difficulty here is that dislocations, unlike particles, are linear objects of considerable
topological complexity. Hence, when concepts of statistical mechanics and the
theory of rate processes are used, some level of phenomenological description is
unavoidable.

Statistical models of dislocation cells, PSBs, shear bands or other organized
dislocation structures attempt to develop continuum equations for dislocation den-
sities that contain spatial gradients that drive instabilities and self-organization.
Several models have been recently advanced, and will be reviewed briefly here.

The Walgraef–Aifantis (1985) statistical model has gained interest, because of
its ability to predict dislocation pattern formation under cyclic deformation. The
model is formulated as a set of reaction–diffusion equations with spatial derivatives
that lead to inhomogeneous dislocation distributions and will thus be considered
first here. In this model, the static dislocation density, formed by the immobilized
dislocations of the forest, subgrain walls or boundaries, is defined as �s, and the
mobile dislocation density for dislocations gliding between obstacles is defined as �m.
For simplicity, consider systems oriented for single slip. Hence, the mobile disloca-
tion density �m is divided into two subfamily densities representing dislocations
gliding in the direction of the Burgers vector (�þm) or in the opposite direction
(��m) (with �m ¼ �þm þ ��m). These dislocation densities are related to the strain
rate via the Orowan relation _�� ¼ b�mvg, where b is the length of Burgers vector,
�m the total mobile dislocation density and vg the glide velocity in the primary
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slip plane. Moreover, the dislocation densities are related to the internal stress by the
relation

�i ¼
�b

2p�
þ 	�b �1=2s ð29Þ

where � is the shear modulus and 	 is a constant. In the last equation, the first
contribution comes from obstacles such as precipitates or pre-existing walls sepa-
rated by an effective spacing � and, the second part is the contribution from the static
dislocation population which also opposes dislocation motion. The internal stress �i
reduces the effective stress �e defined as �e ¼ �a � �i, with �a representing the applied
stress. Finally, the glide velocity is related to the effective stress via appropriate
phenomenological relations expressing the fact that individual dislocation motion
is initiated when the effective stress acting on a dislocation exceeds the yield stress,
in the form vg / ð�e=�0Þ

m. This can be put more explicitly as

vg ¼ v0 exp �
�

kT

�e
�0

� ��m	 

, ð30Þ

where �0 is the yield stress and m > 1. The essential features of DD are their
mobility, which includes thermal diffusion and climb, and their mutual interaction
processes. By taking into account these mechanisms, the resulting dynamic system
can be written as (Walgraef and Aifantis 1985)

ot�s ¼ �= � Js þ vg�m�
1=2
s � vsd�

2
s � vg��m�s � �s þ vgGð�sÞ�m,

ot�
þ
m ¼ �= � Jþ þ



2
�s � vgGð�sÞ�

þ
m � vg��

þ
mð�s þ �

�
mÞ,

ot�
�
m ¼ �= � J� þ



2
�s � vgGð�sÞ�

�
m � vg��

�
mð�s þ �

þ
mÞ,

ð31Þ

where � is the characteristic separation length between dislocations for spontaneous
annihilation (Essmann and Mughrabi 1979), d is the characteristic length of sponta-
neous dipole collapse,  is the frequency of a dislocation freeing from the forest and
is proportional to vg= �dd where �dd is the characteristic dipole destabilization length
which is inversely proportional to the effective stress, and  ¼ 0vg�e. The different
characteristic lengths introduced here, or at least their order of magnitude, may in
principle be evaluated from microscopic analysis (Neumann 1971, Essmann and
Mughrabi 1979). Because of mutual interactions, thermal activation and climb,
the forest dislocations mobility is represented by a diffusive current J ¼ �Ds=�s,
which represents the effective diffusion within the forest. The current of mobile
dislocations is taken as J	 ¼ 	vg�

	
m and represents the flux caused by gliding dis-

locations, in the present case, it is the flux caused by their edge component. Stability
and numerical analyses of the previous set of equations have provided information
on the conditions for formation of PSBs in fatigued specimens. It is shown that PSB
formation is triggered by the clustering of dislocations or dislocation dipoles, which
become finally immobile and arrange themselves in regularly spaced walls of high
dislocation density (Walgraef and Aifantis 1985).

Another class of models is based on the evolution of dipolar loops, triggered by
their interaction with gliding dislocations (Kratochvil and Saxlov̀a 1992, Saxlov̀a
et al. 1997, Kubin and Kratochvil 2000). The proposed statistical models are of the
reaction–transport type and focus on the feedback between the evolution of glide
dislocations and the dipole density, as conceptualized earlier by Mughrabi (1981).
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The result is the sweeping of dipole loops by screw dislocations, which initiates the
formation of dislocation walls. In this approach, dipole generation and interactions
play a secondary role and are introduced in an ad hoc and qualitative way.

To illustrate briefly the statistical approach of Kratochvil and co-workers, let us
consider N loops of one type (i.e. either interstitial or vacancy), i ¼ 1, . . . ,N. For the
ith loop, the equation of motion can be then expressed as

dri
dt

¼ B
XN
j 6¼i

f intðri � rjÞ þ fext

 !
, ð32Þ

where B is the loop mobility, fext is the force caused by stress gradients and glide
dislocations and f int is the interaction force between dipoles. In order to obtain a
continuous field description, equation (32) is multiplied by the delta function
�ðr� riÞ, and the result is differentiated with respect to r; thus we have

d

dr

dri
dt
�ðr� riÞ

� �
¼ B

d

dr

XN
i¼1

f intðri � rjÞ þ fext

 !
�ðr� riÞ

" #
: ð33Þ

By introduction of the discrete density function %ðr, r1, . . . , rNÞ ¼
PN

j 6¼i �ðr� riÞ, and
taking the sum on the right-hand side of equation (33), it can be replaced by a
weighted integral. Summing the above equation for all loops, one obtains

d

dt
%ðrÞ þ

d

dr
BfðrÞ%ðrÞ½ � ¼ 0, ð34Þ

where

fðrÞ �

ð
f intðs� rÞ%ðsÞ dsþ fext: ð35Þ

As a first approximation it can be assumed that % in equation (34) and definition
(35) represents the local averaged loop density %ðrÞ independent of detailed loop
positions ri. Then, equation (34) represents the balance equation for the continuous
distribution of loops described by the density %ðrÞ. Since the interaction force
between loops fint is short range, Kratochvil and co-workers utilized a Taylor series
expansion of %ðrÞ around r to obtain finally

fðrÞ ¼ �
d%ðrÞ

dr

ð
ðs� rÞfintðs� rÞdsþ fext: ð36Þ

From the balance equation (34) and approximation (36), the problem of loop–
loop interaction was shown to be represented as a diffusion equation in a drift field:

d

dt
%ðrÞ ¼

d

dr
D
d%ðrÞ

dr

� �
þ

d

dr
fext, ð37Þ

where D is an effective diffusion coefficient, given by

D ¼ B%ðrÞ

ð
sEf intðsÞ ds: ð38Þ

When the motion of screw dislocations is coupled with equation (37), self-
organized patterns of dipolar loops may be attainable, as conjectured by Mughrabi
(1981).

In an attempt to generalize the statistical description of dislocations, El-Azab
(2000) described the dislocation content of a slip system by introducing the distribu-
tion �ðiÞðx, v, t, tÞ. Considering only glide motion, the tangent vector is described
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by a single scalar parameter: t ¼ tð�Þ. The distribution function �ðiÞ is defined in a
generalized phase space, such that �ðiÞðx, v, �, tÞ dxdv d� is the dislocation line length
contained in the phase space volume dxdv d� at time t on the ith slip system. The
approach of El-Azab (2000) is to consider the conservation equation of the disloca-
tion density tensor a, for which dislocations on the ith slip system contribute:

aðiÞðx, tÞ ¼

ð
v

ð
�

t� b
ðiÞ�ðiÞðx, v, �, tÞ dv d�: ð39Þ

The condition of compatibility of the total distortion field in the crystal is written
as aþ =� bP ¼ 0 (Kröner 1981). Considering a volume O, this can be extended to

A ¼

ð
O
a dOþ

ð
O
=� bP dO ¼ 0: ð40Þ

P is the plastic distortion tensor. Equation (40) corresponds to the principle of
invariance of the total Burgers vector. For interacting dislocations, however,
El-Azab (2000) included additional source terms to the conservation equations.
Thus, for the ith slip system we have

d

dt

ð
O
aðiÞ dO

� �
¼

ð
O

X
S
ðiÞ dO , i ¼ 1,N: ð41ÞP

S
ðiÞ includes all possible tensorial sources SðiÞ resulting from Burgers vector reac-

tions and cross-slip. The time rate of variation in the dislocation density tensor in
terms of the distribution function has been worked out by El-Azab (2000) as

d

dt

ð
x

a
ðiÞ
ðx, tÞ dx

� �
¼

ð
x

ð
v

ð
�

t� b
ðiÞ o

ot
þ v � =þ _vv � =v

� �
�ðiÞ dxdv d�, ð42Þ

where the terms containing _�� o=o� cancel each other. The right-hand side of equation
(41) can also be represented by a phase space integral of scalar source functionsð

O

X
S
ðiÞ dO ¼

ð
x

ð
v

ð
�

t� b
ðiÞ
X

SðiÞ dx dv d�: ð43Þ

From the last two equations, El-Azab (2000) finally obtained a set of kinetic equa-
tions, of the form

o

ot
þ v � =þ _vv � =v

� �
�ðiÞ ¼

X
SðiÞ, i ¼ 1,N: ð44Þ

It is also shown that this generalized approach can be reduced to the more simplified
formulation of Groma (1997) in the special case of a system of parallel edge disloca-
tions in a single-slip configuration. The linear stability analysis of Groma (1997)
shows that a homogeneous stationary solution is unstable and that density perturba-
tions grow, leading to pattern formation.

In an effort to connect DD simulations to continuum theories, Hartley (2003)
introduced the concept of a dislocation distribution vector, defined as

qðtÞ � t�ðtÞ ð45Þ

so that the magnitude of qðtÞ is

j qðtÞj ¼ qðtÞ, ð46Þ
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which is the total length per unit volume of dislocation lines with tangents parallel
to t, and with Burgers vector b. The dislocation distribution vector is related to
the Nye tensor a, by

a ¼
X


b � q , ð47Þ

where the sum is carried over all Burgers vectors in all slip systems. The curvature
tensor of the deformed volume is given by

j ¼ 1
2
Tr ðaÞ I� a: ð48Þ

Thus, it may be possible to compute the volumetric distortions associated with
the movement of dislocations within a simulation volume, and then connect these
distortions to continuum theories.

Zaiser (2001) noted that, because of the highly intermittent nature of plastic flow,
the instantaneous active slip volume in fcc metals is of the order of 10�6 only and
that, at typical strain rates of 10�4 s�1, the time between neighbouring avalanches
exceeds the lifetime of an individual avalanche by four to six orders of magnitude.
On that basis, he concluded that plastic deformation can be characterized as a slowly
driven non-equilibrium system exhibiting large fluctuations. To estimate the magni-
tude of such fluctuations, Hahner (1996) proposed that, if one neglects dislocation
multiplication and annihilation, the average work done by the internal stress must be
zero, and that the work of the external stress is dissipated into heat. Thus, one can
write

�intv


D E
¼ 0, ð49Þ

where �int and v are internal stresses and dislocation velocities on slip system .
Recognizing that the effective stress �eff has an external �ext plus an internal �int
component, and upon separating the stress and velocity into average (represented
by h� � �i) and fluctuating (represented by d � � �) components, Zaiser (2001) arrives at
the following expressions for the autocorrelation functions of the effective stress �eff ,
and dislocation velocity v fluctuations:

ðd�eff Þ
2

D E
¼ �int

D E
�eff

D E
,

ðdvÞ2
� �
v
� �2 ¼

�int

D E
�eff

D E ¼ b2� �int

D E
B _��
� � ,

ð50Þ

where B is the mobility, and _�� is the average shear strain rate. Using typical values
for copper in the previous equations, the relative velocity fluctuation is found to be
of the order of 107 Zaiser (2001) in accordance with the experimental measurements
of Neuhäuser (1983).

Recently, detailed measurements of the misorientation angles across dislocation
walls have been made by Hughes et al. (1998). Zaiser (2001) formulated a velocity-
averaged stochastic version of equation (44) for the distribution function of surplus
dislocation segments or geometrically necessary dislocations to show that the prob-
ability distribution function for misorientation angles is in good agreement with the
experimental measurements of Hughes et al. (1998).
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A percolation-type stochastic dislocation model has been advanced by Thomson
and co-workers (Thomson and Levine 1998, Shim et al. 2001, Thomson et al. 2002).
In this model, which is limited to stage III deformation, the weakest cell in a band
undergoes a burst of strain, which initiates a cluster of newly strained cells. Slip
transmission to neighbouring cells is assumed to be of the form s� ¼ as, where s is the
number of dislocations in the strained cell, a is a pile-up amplification factor and s� is
the number of dislocations in the previously unstrained cell. The key parameter a in
such a model is assumed to depend on two types of mechanisms: firstly, a random
distribution of sources within the cell walls and/or, secondly a distribution of locks
holding up dislocations within the cell walls. Their analysis shows that percolating
slip clusters conform to the universality class of percolation theory (Stauffer and
Aharony 1992). Furthermore, it can be effectively used to describe slip transmission
in stage III, and that a well-defined percolation threshold can be identified.

The power of SM can be brought to bear on one of the most important chal-
lenges for the multiscale modelling approach. The large disparity in time and length
scales during plastic deformation limit the reach of direct DD simulations. Hence, it
is of interest to determine the necessary coarse-graining strategies for both temporal
and spatial variables. LeSar and co-workers (Lesar et al. 1989, LeSar and Rickman
2002, 2003, Rickman et al. 2003) have begun to tackle this issue by investigations of
a number of specific problems, namely the combined motion of dislocations and
solutes, and the problem of the long-range interactions of blocks of dislocation
ensembles.

In the limit where the solute mobility is high relative to that of dislocations,
dislocation–solute atmosphere pairs can be treated as quasi-particles, and the
degrees of freedom associated with individual solute atoms can be eliminated
(Rickman et al. 2003). Thus, an effective mobility can be derived and can be related
to the details of such interaction. However, in the other extreme limit of low solute
mobility compared with dislocations, the solute atoms function essentially as
static traps for dislocations. In this case, LeSar and co-workers modelled slip as a
discrete one-dimensional ‘birth-and-death’ stochastic process (Van Kampen 1992).
LeSar and Rickman (2003) found that the dislocation diffusivity is modified by
�Dðc, �=kBTÞ:

�D

D0
¼ �c

�t=� � 1

c �t=� � 1ð Þ þ 1
, ð51Þ

where �t=� ¼ exp ��=kBTð Þ is the mean residence time in a trapped state, D0 is the
diffusivity when there are no traps, c � Nt=N is the trap (i.e. solute) concentration.
These examples show that it may be possible to average out fast time variables in DD
simulations.

The issue of spatial averaging has been recently dealt with by LeSar and
Rickman (2002) and Wang et al. (2003b). Starting from the work of Kossevich
(1979) on the interaction energy of systems of dislocations, an energy expression
in terms of the dislocation density tensor (Rickman et al. 2003) is derived. The basic
idea in this approach is to divide space into small averaging volumes to calculate the
local multipole moments of the dislocation microstructure and then to write the
energy (LeSar and Rickman 2002) or the force (Wang et al. 2003b) as an expansion
over the multipoles. Numerical implementation of the multipole expansion for the
Peach–Kohler force on a test dislocation separated from a volume containing a
dense dislocation aggregate revealed that such a technique is highly accurate and
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can result in significant coarse graining in current DD simulations. The relative error
in the multipole expansion, expressed as j�multipole � �accuratej=�accurate has been tested
by Wang et al. (2003b). These numerical tests are performed for different sizes (1 mm,
5 mm and 10 mm), different orders of the expansion and different R=h ratios (R being
the distance from the centre of the volume to the test dislocation and h being the
volume size). A representative result is shown in figure 8. It is clear that the multipole
approximate solution converges very rapidly, that the third-order expansion (quad-
ropole) gives a relative error less than 1% and that the fourth-order expansion gives
a relative error of less than 0:05%.

} 5. Continuum mechanics methods

In this section, an overview will first be given of the main CM-based framework
used today to describe the nonlinear deformation behaviour of materials at the
local (e.g. single-phase or grain level) and macroscopic (e.g. polycrystal level)
scales. Emphasis will be placed on recent progress made in crystal plasticity, strain
gradient plasticity, and homogenization techniques to link deformation phenomena
simultaneously occurring at different scales in the material microstructure with its
macroscopic behaviour.

Standard tensorial notation will be used throughout. Vectors will be described by
bold lower case letters, second-order tensors by bold capital letters and fourth-order
tensors by bold script capital letters. Also, a � b ¼ aibi, Ab ¼ Aijbj, A : B ¼ AijBij ,
AB ¼ AijBjk,L : A ¼ LijklAkl and ða� bÞij ¼ aibj, where Einstein summation applies
for repeated indices.

5.1. Continuum discretization of a boundary value problem
In a generic boundary value problem (BVP), the deformation of a body subjected

to external forces and prescribed displacements is governed by the

(i) equilibrium equations,
(ii) constitutive equations,
(iii) boundary conditions and
(iv) initial conditions.
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The ‘weak’ form of the boundary value problem is obtained when the equili-
brium equations and the boundary conditions are combined into the ‘principle of
virtual work’. This ‘weak form’ constitutes the basis for obtaining a numerical solu-
tion of the deformation problem via, for example, the finite-element method. Thus,
in a CM Lagrangian formulation of a quasistatic BVP, the principle of virtual
work is the vehicle by which the global equilibrium equations are obtained (for
example, Zienkiewicz and Taylor (1994)). The basic features of a generic
Galerkin-type discretization framework are given next.

Consider a structure occupying a domain V in the deformed configuration which
is subjected to external forces and displacements on its boundary, G. In the absence
of body forces and inertial effects, the principle of virtual work for the structure, in
its rate form, satisfies the following equation:ð

V

r : d_ee dV �

ð
G
t � �v dG ¼ 0, ð52Þ

for any arbitrary virtual velocity vector field dv compatible with all kinematics
constraints. In the above equation, t ¼ rn represents the boundary traction forces,
r the Cauchy stress, n the normal to the surface on which the tractions act, and d_ee
the virtual strain rate associated with the velocity field dv.

To solve a complex BVP numerically, the discretization of the principle of virtual
work is generally performed using the finite-element method. Let v be approximated
at a material point within an element by

v ¼
XNmax

i¼1

Ni
v̂v
i
� N v̂v, ð53Þ

where v̂v denotes the nodal values of the element velocity field and N are the isopara-
metric shape functions. Substituting equation (53) into equation (52) leads to the
discretized version of the principle of virtual work on the finite element Ve:

r v̂v
 �

� f
I
� f

E
¼ 0, ð54Þ

where

f
I
¼

ð
Ve

B
Tr dVe, f

E
¼

ð
Ge

N
T
t dGe, ð55Þ

are the internal and external global force vectors, respectively, and B relates the
symmetric strain rate tensor with v̂v. The global equilibrium relations (equation
(54)) represent a set of implicit nonlinear equations which may be solved incremen-
tally using a Newton-type algorithm. In a Newton–Raphson iterative scheme, the
nonlinear system (equation (54)) is typically expanded using Taylor series in the
neighbourhood of v̂v:

rfv̂v
k
þ �v̂v

k
g ¼ rfv̂v

k
g þ

orfv̂v
k
g

ov̂v
k

dv̂vk þOfdv̂vk
2

g, ð56Þ

where k represents a generic iteration and or=ov̂v is the global tangent stiffness or
Jacobian matrix of the nonlinear system of equations. The formulation of accurate
estimates of the global Jacobian is at the heart of most numerical schemes developed
to provide robust algorithms for the use of complex constitutive models with
continuum approaches (for example, Crisfield (1997), Esche et al. (1997) and
Busso et al. (2000)).
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5.2. Continuum approaches for single-crystal plasticity
Constitutive models developed to predict the anisotropic behaviour of single-

crystal materials generally follow either a Hill-type or a crystallographic approach.
As a common feature, they treat the material as a continuum in order to describe
properly the plastic or viscoplastic effects. Hill-type approaches (for example,
Nouailhas and Freed (1992) and Schubert et al. (2000)) are based on a generalization
of the von Mises yield criterion proposed by Hill (1950) to account for the non-
smooth yield or flow potential surface required to describe the anisotropic flow stress
behaviour of single crystals. In constitutive formulations based on crystallographic
slip, the macroscopic stress state is resolved on to each slip system following
Schmid’s law. Internal state variables are generally introduced in both formulations
to represent the evolution of the microstructural state during the deformation
process. Although recent developments in these two approaches have now reached
an advanced stage, the major improvements have been made by crystallographic
models due to their ability to incorporate complex micromechanisms of slip within
the flow and evolutionary equations of the single crystal models. These include the
effects of dislocation interactions (for example, Meric and Cailletaud (1991) and
Meric et al. (1991)), hardening and strain gradient phenomena (for example,
Gurtin (2000), Meissonnier et al. (2001) and Stainer et al. (2002)) and general
anisotropic plastic and viscoplastic behaviour (for example Jordan and Walker
(1992), Anand and Kothari (1996) and Busso and McClintock (1996)). A brief
outline of the salient features of local and non-local crystal plasticity approaches
are given below.

5.3. Generic local crystallographic framework
A generic internal-variable-based crystallographic framework is said to be local

when the evolution of its internal variables can be fully determined by the local
microstructural state at the material point. The description of the kinematics
of most crystal plasticity theories follows that originally proposed by Asaro
and Rice (1977), which has been widely reported in the computational mechanics
literature (for example Pierce et al. (1983), Asaro and Needleman (1985), Cuitiño
and Oritz (1992), Kalidindi et al. (1992) and Busso et al. (2000)). It relies on the
multiplicative decomposition of the total deformation gradient F into an inelastic
component F

p and an elastic component F
e (Lee 1969). Thus, under isothermal

conditions,

F ¼ F
e
F
p: ð57Þ

Although single-crystal laws can be formulated in a corotational frame, that is
the stress evolution is computed on axes which rotate with the crystallographic
lattice, the most widely used approach is to assume that the material response is
hyperelastic, that is that its behaviour can be derived from a potential (i.e. free
energy). Such a potential may be expressed in terms of the elastic Green–Lagrange
tensorial strain measure

E
e
¼ 1

2
ðF

eT
F
e
� 1Þ, ð58Þ

and the corresponding objective work conjugate (symmetric) stress (Hill 1978)
or second Piola–Kirchhoff stress T. Note that the Cauchy stress is related to T
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by r¼ detðFe
Þ
�1

F
e
T F

eT. The hyperelastic response of the single crystal is
governed by

T ¼
oFfEe

g

oEe , ð59Þ

where FfEe
g represents the Helmholtz potential energy of the lattice per unit refer-

ence volume. Differentiation of equation (59), and the assumption of small elastic
stretches yield

T 
 L : Ee: ð60Þ

where L is the anisotropic linear elastic moduli.
In rate-dependent formulations, the time rate of change in the inelastic defor-

mation gradient is related to the slip rates _��� on each slip system (Asaro and Rice
1977), as

_FF
p
¼

Xn�
�¼1

_��� P�

 !
F
p, with P

�
� m

�
� n

�: ð61Þ

Here, m� and n
� are unit vectors defining the slip direction and the slip plane normal

on the slip system.
In rate-independent formulations, in contrast, flow rules are based on the well-

known Schmid law and a critical resolved shear stress ��c , whereby the rate of slip is
related to the time rate of change in the resolved shear stress �� ð¼ T : P�Þ. Then,

_��� ¼ _���c ¼
Xn�
�¼1

h� _��� , if _��� > 0: ð62Þ

In the above equation, h�, the slip-hardening rates, is the slip interaction matrix
which accounts for latent hardening effects. Owing to the severe restrictions placed
on material properties, such as latent hardening, to ensure uniqueness in the mode of
slip (for example Anand and Kothari (1996) and Busso and Cailletaud (2003)),
and the associated difficulties in its numerical implementation, the use of rate-
independent formulations has been somehow restricted and is much more limited
than rate-dependent models. This has been compounded by the fact that, by cali-
brating their strain-rate sensitivity response accordingly, rate-dependent models have
been successfully used in quasirate-independent regimes. Thus, henceforth the focus
of the discussions will be on rate-independent approaches.

The slip rate in equation (61) can functionally be expressed as

_��� ¼b_��_��� ��,S�1 , . . . ,S�mS
, �

 �
, ð63Þ

where S�i for i ¼ 1, . . . ,mS denotes a set of internal state variables for the slip system
�, and � is the absolute temperature. A useful and generic expression for the overall
flow stress in the slip system can be conveniently found by inverting equation (63)
with mS ¼ 2:

�� ¼ 	 f̂f �v _���,S�2 , �
 �

	 cS S
�
1 , ð64Þ

where cS is a scaling parameter, and S�1 and S�2 represent additive and multiplicative
slip resistances respectively. Here the distinction between a multiplicative slip
resistance S�2 and an additive slip resistance S�1 is motivated by the additive and
multiplicative use of non-directional hardening variables rather than by mechanistic

Multiscale modelling of nanomechanics and micromechanics 3511



considerations. By expressing the flow stress in the slip system in the way shown in
equation (64), the contributions from viscous effects (first term in equation (64)), and
hardening mechanisms (second term) can be clearly identified. The majority of for-
mulations relied on power-law functions for equation (63), which results in S2 6¼ 0
and S1 ¼ 0 in equation (64) (for example Pierce et al. (1983)). This introduces
a coupling between the viscous term and microstructure which is inconsistent with
most strengthening mechanisms. Recently, work by Meric and Cailletaud (1991) and
Busso et al. (2000) have proposed flow stress relations with S1 6¼ 0 and S2 ¼ 0, which
allows a more physically meaningful interpretation of strengthening phenomena.
For a more detailed discussion in these issues, see Busso and Cailletaud (2003).

The crystallographic formulation is completed with the evolutionary relations for
the S�i internal slip system variables. The time rate of change in each internal slip
system variable _SS

�
i is, in its most general form, expressed as

_SS
�
i ¼

b_SS_SS�i S�1 , . . . ,S
�
mS
, _��1, . . . , _���, . . . , _��n� , �

 �
: ð65Þ

Note that the dependence of equation (65) on the slip rates on all systems enables
cross-hardening effects to be accounted for.

5.4. Non-local approaches
The study of experimentally observed size effects in a wide range of mechanics

and materials problems has received much attention recently. Most continuum
approaches and formulations dealing with these problems are based on strain gra-
dient concepts and are known as non-local theories since the material behaviour at a
given material point depends not only on the local state but also on the deformation
of neighbouring regions. Examples of such phenomena include the particle size
effects on composite behaviour (for example Nan and Clarke (1996)), the precipitate
phase size in two-phase single-crystal materials (for example Busso et al. (2000)), the
increase in measured microhardness with decreasing indenter size (for example
Swadener et al. (2002)), and the effects of decreasing film thickness (for example
Huber and Tsakmakis (1999)), among others.

The dependence of mechanical properties on length scales can in most cases be
linked to features of the microstructure, the boundary conditions or the type of
loading, which give rise to localized strain gradients. In general, the local material
flow stress is controlled by the actual gradients of strain when the dominant geo-
metric or microstructural length scales force the deformation to develop within
regions of less than approximately 5–10 mm wide in polycrystalline materials, and
of the order of 0.1–1 mm in single-crystal materials (Busso et al. (2000)). Thus,
gradient-dependent behaviour is expected to become important once the length
scale associated with the local deformation gradients becomes sufficiently large
when compared with the controlling microstructural feature (e.g. average grain
size in polycrystal materials). In such cases, the conventional crystallographic for-
mulations discussed in the previous section will be unable to predict properly the
evolution of the local material flow stress. To accommodate these strain gradients,
generation of geometrically necessary dislocations is required in these regions of
incompatibility (for example see Arsenlis and Parks (2001), Busso et al. (2000) and
Gao and Huang (2003)). The introduction of these geometrically necessary disloca-
tions, in addition to those stored in a random way (so-called ‘statistically stored’
dislocations), is what causes the additional strengthening of the material.

3512 N. M. Ghoniem et al.



One of the first non-local theories was that proposed by Aifantis (1987) and
Zbib and Aifantis (1988) to describe the formation of shear bands. This type
of formulations rely on first and second derivatives of strain linked to the flow
rule to describe strain gradient effects without the need to use higher-order stresses.
It requires additional boundary conditions, is relatively easy to implement
numerically into the finite-element method but is limited in describing strain gradient
problems that involve only one material length scale. Furthermore, by the nature
of the formulation, it provides a limited mechanistic insight into the non-local
phenomena.

A more physically intuitive continuum approach to describing strain gradient
effects is that followed by constitutive theories such as those developed by Acharya
and Beaudoin (2000), Busso et al. (2000), Arsenlis and Parks (2001) and Bassani
(2001). They rely on internal state variables to describe the evolution of the obstacle
or dislocation network within the material and generally introduce the strain gradi-
ent effects directly in the evolutionary laws of the slip system internal variables
without the need for higher-order stresses. Thus, in some of these formulations,
the functional dependence of the evolutionary laws of the slip system internal vari-
ables, such as the general form given for the slip resistance in equation (65), will now
include an additional dependence in the gradient = _��� of the slip rates. Then,

_SS
�
i ¼

b_SS_SS�i S�1 , . . . ,S
�
mS
, _��1, . . . , _���, . . . , _��n� ,= _��1, . . . ,= _���, . . . ,= _��n� , �

 �
, ð66Þ

This class of theories has been shown capable of providing considerable physical
insight into the effects of microstructure on the observed macroscopic phenomena,
including rate-independent plastic deformation and viscoplasticity in both single-
crystal and polycrystalline materials (for example Acharya and Beaudoin (2000),
Busso et al. (2000) and Arsenlis and Parks (2001)). One additional attractive aspect
of the these theories is that they are relatively easy to implement numerically and do
not require higher-order stresses or additional boundary conditions. However, one
limitation of these types of theory is that they are unable to describe problems which
may require non-standard boundary conditions such as the boundary layer problem
modelled by Shu et al. (2001).

A significant amount of work has been based on the treatment of the solid as a
Cosserat continuum (for example Mühlhaus (1989) and Forest (1998)), where the
material flow stress is assumed to be controlled not just by the rate of slip but also by
the material curvature. However, even though Cosserat-type models have shown to
be well suited to predicting localization phenomena, they are analytically complex
and phenomenological in nature, thus making it difficult to gain a direct insight into
the controlling physical phenomena at the microstructural level.

Another class of non-local theories with higher-order fields is that proposed
recently by Fleck and Hutchinson (2001) and by Gurtin (2003). They contain
higher-order stresses and are extensions of the original theory proposed earlier by
Fleck and Hutchinson (1997). In such non-local formulations, the balance laws are
based on a principle of virtual work where additional field variables, namely the
work conjugates of the slip and slip rate gradients, are required. Consider a crystal-
lographic approach and let q be a higher-order stress vector with components qi,
let the work conjugate to the slip rate gradients be = _���, and let p� be the work
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conjugate to the slip rate _���. Then,ð
V

r: d_eeþ
X
�

ð�� � ��Þ d _��� þ
X
�

q
�
� Jd _���

 !
dV

�

ð
G

r n � dvþ
X
�

q
�
� n d _���

 !
dG ¼ 0: ð67Þ

By integrating equation (67) by parts, it can be shown that, in addition to the usual
equilibrium relation in Vgiven by

div r ¼ 0, ð68Þ

the following microforce balance is obtained:

�� ¼ �� þ =q : 1, ð69Þ

where 1 is the second-order unit tensor and �� is the resolved shear stress previously
defined. Furthermore, equation (67) also implies that the following relations be
satisfied at the boundary G:

t ¼ rn or v, and q
�
� n, or _���: ð70Þ

It can be seen that, when no slip rate gradients are present, equation (68) gives
p� ¼ �� and equation (67) resolves to the local version of the principle of virtual
work given by equation (52).

The numerical implementation of these typically highly nonlinear theories
require the development of complex numerical algorithms. However, the introduc-
tion of higher-order stresses and the required boundary conditions to satisfy the
additional higher-order field equations introduced by some non-local theories
often precludes and limits the use of these formulations to in-house programmes
(e.g. see implementation of a coupled stress theory by Shu et al. 1999)).

5.5. Homogenization approaches for heterogeneous microstructures
The bridging between the mechanical behaviour of heterogeneous materials and

that of their individual constituents remains a topic of major interest and is at the
heart of homogenization schemes developed to predict the behaviour of materials at
different scales. Such schemes are based on the assumption that the mechanical
behaviour of individual constituents can lead to the description of the mechanical
response of a macroscopic aggregate through either suitable interaction laws or a
numerical averaging process.

When distinct heterogeneities exist at different microstructural levels, it is always
possible to identify at each level the smallest possible representative volume element
(RVE) of the microstructure which contains all the information concerning the
distribution and morphology of the material’s heterogeneities. Irrespective of the
homogenization schemes, once the relevant scales in the heterogeneous microstruc-
ture are identified, it is then necessary to select a RVE of the microstructure at the
level of interest. Typically, the representative length scales in the microstructure are
the average size D of the largest heterogeneity at that particular level and the size L
of the RVE. They must satisfy

D � L: ð71Þ
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The value of D can be, for instance, the average grain size in a polycrystal with
randomly oriented grains or can be defined by the size of the precipitates relative to
their mean spacing.

Homogenization schemes require not only constitutive models for the individual
constituents but also appropriate rules to make the transition between scales. The
cases to be discussed here are those where loading in the RVE is homogeneous. If the
loads applied on the RVE were inhomogeneous, then the homogenized equivalent
medium is said to be generalized, and special kinematics and equilibrium equations
would apply (for example Besson et al. (2002)). Some of the most widely used
approaches to link local fields with macroscale phenomena, such as the large defor-
mation and texture evolution of polycrystals, are Taylor-type (for example Kalidindi
et al. (1992)) or Sachs-type (for example Leffers (2001)) models. The former assumes
strain uniformity and can only fulfil compatibility at grain boundaries, but not
equilibrium. In contrast, Sachs-type models assume homogeneous stresses and
ignore local compatibility at grain boundaries. Among the most successful recent
methods proposed to overcome the limitations of the assumed plastic strain or stress
uniformity are those based on the relaxed constrained method (for example van
Houtte, Delannay and Samajdar (1999)) and on mean-field approaches, such
as self-consistent (for example Hill (1965)) and variational (for example Ponte
Castañeda (1991)) methods. Here, compatibility and equilibrium between grains
are satisfied at both the local and the macroscopic levels.

In the self-consistent averaging approach, the interaction between a single-crystal
grain and its neighbours is treated as that between an inclusion with the same
properties as those of the grain, embedded in an homogeneous equivalent medium
(HEM) which has the same (unknown) properties as those of the macroscopic
aggregate (figure 9 (a)). A critical aspect of the self-consistent method is that the
strain distribution within the inclusion is assumed uniform when in reality, in cases
of low strain-rate sensitivity and large property mismatch, it is seldom the case.

One of the simplest self-consistent frameworks is that proposed by Hill (1965),
where the stress-rate tensor _TT and strain-rate tensor _EE in each phase or grain are
related to those of the HEM, _rr and _ee, through an elastic accommodation tensor Le

_TT� _rr ¼ Le : _ee� _EE
� �

: ð72Þ

The determination of suitable interaction relations between the inclusion and HEM
is at the centre of most self-consistent approaches.

In equation (72), an elastic interaction between the grain and the polycrystal
aggregate is implicitly assumed; thus a high constraint is imposed on the inclusion
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by the surrounding elastic aggregate. In reality, such a high constraint is partially
relaxed by the plastic deformation of the polycrystalline aggregate. The work of
Berveiller amd Zaoui (1979) addressed this problem by introducing a plastic accom-
modation factor Lp. Thus, for the nonlinear case, equation (72) becomes

_TT� _rr ¼ Lp : _eep � _EE
p

� �
, ð73Þ

where the global and local strain-rate tensors are now the plastic tensors. Similarly,
the tangent approach method proposed by Molinari (2002) enables approximate
solutions for nonlinear material behaviour problems to be obtained while preserving
the structure of the Eshelby linear inclusion solution. Generally, self-consistent
schemes are well suited to plastic or viscoplastic aggregates which can be treated
as elastically rigid. The incorporation of elastic effects within a self-consistent frame-
work is more difficult and clear solutions remain elusive. As self-consistent schemes
are generally implicit, their numerical implementation require Newton-type iterative
procedures to solve the highly nonlinear systems of equations. A more elaborate self-
consistent approach (for example Herve and Zaoui (1993)), referred to as a general-
ized or a three-phase scheme, is illustrated in figure 9 (b). Here, a composite sphere
made up of two phases (i.e. matrix and inclusion) is embedded in an infinite matrix
which is the HEM of unknown properties. The additional requirement in this case is
that the average strain in the two-phase composite sphere must be the same as the
strain prescribed in the far field. Herve and Zaoui (1993) showed that such scheme
provides a framework for statistical analyses and demonstrated this by determining
the effective behaviour of a random assembly of arbitrary-size spheres.
Pitakthapanaphong and Busso (2002) used a similar generalized self-consistent
approach to determine the elastoplastic properties of functionally gradient materials.

An alternative homogenization method to the classical self-consistent approach
is that derived from a variational procedure. The variational formulation proposed
by Ponte Castañeda (1991) relies on the effective modulus tensor of ‘linear elastic
comparison composites’, whereby the effective stress potentials of nonlinear compo-
sites are expressed in terms of the corresponding potentials for linear composites
with similar microstructural distributions, to generate the corresponding bounds.
Ponte Castañeda’s variational principles have been used successfully to derive
elastoplastic relations for metal matrix composites, among other applications. For
further details, see the references given herein.

As a result of the ever-increasing computer power available, it is now becoming
possible to replace the approximate mean-field methods for more accurate techni-
ques based on numerical homogenization. One of the most powerful is that based on
periodic unit-cell concepts, whereby a microstructural ‘window’ of the constituents is
periodically arranged and subjected to homogeneous far-field loading. By defining
appropriate periodic boundary conditions on the smallest window or RVE which
contains all the information about the local heterogeneities, the average stress and
strain responses of the unit cell can be obtained numerically. Even though these
methods are computationally intensive, they offer the capability for digitized images
of typical microstructures to be easily superimposed on to a regular finite-element
mesh, thus enabling a precise model of the microstructure to be made and a frame-
work to predict accurately the inhomogeneity of the deformation at the level of the
individual phases. Alternatively, the finite-element mesh can be designed so that the
element boundaries correspond to phase boundaries. This method has the advantage
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that almost any heterogeneity can be modelled, but the modelling effort required is
generally impractical for very complex microstructures.

An example of a periodic unit cell of a typical heterogeneous single-crystal
superalloy RVE is presented in figure 10 (Regino et al. 2002). Figure 10 (a) shows a
scanning electron micrograph of the microstructure’s RVE at an intermediate scale,
and figure 10 (b) the predicted RVE contour plot of uniaxially equivalent accumu-
lated inelastic strain, after a 10% straining along the [010] orientation at a rate of
10�3 s�1 at 950�C. It can be seen that the localization of inelastic strain occurs in the
vicinity of the stronger (eutectic) region. For complex three-dimensional microstruc-
tures, such as those of polycrystal aggregates with randomly oriented grains, realistic
finite-element meshes can be built based on Voronoi tesselations (for example Ghosh
et al. (2002) and Barbe et al. (2002)).

} 6. Outstanding issues and future prospects

In this review, we have discussed the different modelling approaches which
address specific phenomena at different length scales and have highlighted the rich
variety of physical, computational and technological issues within the broad area
of nanomechanics and micromechanics which have been successfully addressed.
We conclude this article by briefly summarizing the current level of understanding
in these areas and discuss our expectations of forthcoming progress.

6.1. Bridging the length and time scales
Even though recent advances in computing power have led to new and vastly

improved simulation techniques at the atomistic and continuum levels, there has not
yet been a concerted effort to develop explicit links between atomistic and CM
models. When properly reinforced, links between length scales should bring the
overall field of material modelling one step closer to predict, ab initio, the final
properties of a proposed material.
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A natural sequence to produce a fully integrated multiscale modelling framework
will require the following:

(i) the prediction of crystal energies, structures and the derivation of inter-
atomic potentials from ab initio calculations;

(ii) the prediction of complex microstructural heterogeneities and morphologies
resulting from solidification from the surface energies and kinetics predicted
ab initio;

(iii) the identification of the crystal structures, slip systems and interface
structures of the phases and the kinetics of phase transformations during
subsequent thermal or thermomechanical processes using atomistic, DD and
topological modelling techniques;

(iv) the formulation of crystallographic models for each phase to describe the
dominant deformation processes and the development of homogenization
schemes to obtain the macroscopic mechanical response of the material.

Figure 11 illustrates the structure and the links between the modelling para-
digms, together with the outputs and inputs for each subarea. Here, the physical
properties of the alloy are predicted at the atomistic scale and these are linked to the
continuum level via appropriate constitutive and kinetic models. The properties
determined by ab initio calculations (e.g. crystal energies and structures, and inter-
atomic potentials) needs to be related to the range of compositions predicted after
solidification. The ab initio results can then be used in MD calculations of deforma-
tion mechanisms. The resulting defect structures and interface kinetics are then
fed into the continuum formulations to provide the crystallographic description
and slip systems of the individual phases present in the heterogeneous (multiphase)
microstructures. The overall behaviour of RVEs of such microstructures can finally
be determined using homogenization techniques.

While progress on linking length scales has just started, linking time scales
remains an outstanding problem. As pointed out earlier, systematic and rigorous
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reduction in the degrees of freedom that describe material evolution will lead to
self-consistent length scale linking, and hence confident predictions of mechanical
properties. On the other hand, methods for self-consistent linking of time scales are
still lacking. Events at the atomic scale are often in the picosecond to nanosecond
range, while microstructure evolution takes place on much longer time scales:
seconds to years. Since the time evolution of the microstructure is path dependent,
events that occur in the picosecond to nanosecond time scale (e.g. atomic jumps and
nucleation) may have profound effects on microstructure evolution. In addition,
relaxation time scales in atomic models cannot be matched by continuum relaxation
time scales. Thus, when a MD model is directly linked to the continuum, matching
can be accomplished for static or quasistatic problems, while it has not been shown
for fully dynamic problems. Progress in this area is needed.

6.2. Atomistic scales
Atomistic simulations have mainly supplemented experimentally obtained infor-

mation until now. Nevertheless, future developments are expected in four major
directions:

(i) higher accuracy;
(ii) larger systems;
(iii) computationally faster methods; and
(iv) more general approaches.

Density functional approaches have evolved rather rapidly during the past
decade to address accuracy. The introduction of generalized gradient corrections
has improved the accuracy of binding energies, surface energies and energy barriers.
While the standard local spin density and generalized gradient approximations for
the exchange–correlation energy can work for certain cases of strong correlation,
that is where electrons partially preserve their localized atomic-like nature, they
fail dramatically for others. Novel functionals, such as the recently developed
self-correlation-free meta-GGA and self-interaction-free hyper-GGA, might yield
a more reliable description of strong correlations. It is also possible that the use
of quantum MC methods for benchmark calculations could provide a fruitful path
to assess and improve density functionals. Concurrent with the above efforts
in developing more accurate functionals within the spirit of DFT, several other
methods have been recently developed to treat the ground-state properties of
condensed systems that exhibit strong correlations. As alluded to in } 2, these include
the self-interaction correction method, the LDAþU method, the LDAþdynamic
mean-field theory method, and the optimized effective potential method. In addition,
the time-dependent extension of DFT and the GWA will provide a way to treat the
excitation properties of moderately correlated electron systems.

Two other areas of developments, perhaps the most important ones, are faster
methods, to enable dynamic processes to be simulated over sufficiently long time
scales, and O(N) methods. Recasting the electronic structure calculations in an O(N)
form which scales linearly with N will have important conceptual and practical
implications for the treatment of sufficiently large systems. If the full calculation
on a large system could be carried out in a time of O(N), then the properties of a
small region of the large system could be calculated in a time independent of the
system size. Such quantum O(N) methods will have exactly the same scaling as
classical empirical potential methods. Furthermore the independence between the
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different regions will allow them to be readily adapted to parallel computations.
This would enable calculations on large systems of great interest in areas which
are beyond current capabilities, such as materials science and biology, to be
performed.

A single method is unlikely to meet all goals in multiscale modelling of nano-
mechanics and micromechanics. Even with O(N) algorithms, it will not be possible in
the foreseeable future to treat systems containing millions of atoms at a highly
accurate DFT level using large basis sets, as would be necessary for certain materials
science applications. Such problems can only be approached if one succeeds in
linking methods of different accuracies, such as DFT methods with classical force
fields, and applying the high-accuracy method only to regions where the low-
accuracy method is expected to fail. Hybrid methods of this type will certainly be
based on the same notions of locality as O(N) methods and will employ similar
techniques.

In atomistic MD simulations, two areas are worth exploring. The first is the
direct linking between atomistic and mesomechanics or microstructure–mechanics
simulations. Approaches linking directly atomistic and continuum methods do exist;
however, a two-way connection between atomistic and DD simulations has not yet
been achieved. Atomistic simulations are capable of providing interaction rules or
mechanisms for a finite number of dislocation configurations, most of these being
of high symmetry. In DD simulations, a few dislocations may interact at close
proximity, forming a low-symmetry configuration with respect to the simulation
cell boundaries. It would be desirable to take such a configuration, to describe it in
MD simulations and then to feed the resulting configuration back to DD simulations
in a seamless fashion. The second area is dislocation interaction with interfaces.
A dislocation behaves differently near a surface or at a grain boundary, when com-
pared with bulk dislocations. A fair understanding of how a dislocation nucleates at
a surface or grain boundary (i.e. dislocation absorption or blockage at interfaces)
exists. The interaction of a dislocation with an interface depends very much on the
nature of the interface. Different grain-boundary structures (e.g. low-angle versus
high-angle grain boundaries) and compositions (e.g. pure versus segregated grain
boundaries) lead to a large number of interaction mechanisms. Many of these
mechanisms remain to be explored; thus a comprehensive description of disloca-
tion–grain-boundary interaction needs to be developed.

In addition to the areas discussed above, it is worth pointing out that the
mechanics of nanotubes (and related nanocomposites) is within the reach of MD
simulations today. There are common features between the mechanics of nanotubes
and that of crystalline solids. For instance, the 5–7 structure in a nanotube glides in a
similar fashion to a dislocation in a crystal, thus making the study of the mechanics
of a single nanotube relatively easy. However, when the interface of a nanotube and
a matrix (e.g. polymer) is involved, the representation of atomic interactions can be a
challenging issue.

6.3. Transitional-continuum scales
The significant role that defects play in determining the mechanical properties of

metallic materials and the vast progress recently made in computational techniques
has led to the emergence of the field of mesomechanics, which focuses on the behav-
iour of defects rather than that of atoms. Thus mesomechanics describes the
mechanics of heterogeneities and irregularities in materials, including topological
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defects (point, line, surface and volume), and compositional and structural
heterogeneities. One of the most powerful mesomechanics methods is DD, where
considerable progress has been made during the past two decades owing to a variety
of conceptual and computational developments. It has moved from a curious
proposal to a full and powerful computational method. In its present stage of devel-
opment, DD have already addressed complex problems, and quantitative predictions
have been validated experimentally. Progress in three-dimensional DD has contrib-
uted to a better understanding of the physical origins of plastic flow and has pro-
vided tools capable of quantitatively describing experimental observations at the
nanoscale and microscale, such as the properties of thin films, nanolayered struc-
tures, microelectronic components and micromechanical elements. Advances in
areas such as the mechanical behaviour of very small volumes and dislocation–
interphase interactions are expected to continue in the near future.

One of the most difficult future challenges is the development of explicit
links between the transitional-microstructure scales addressed by mesomechanics
approaches and the continuum level. As previously discussed, mesomechanics
approaches are needed to complement atomistic methods and to provide informa-
tion about defect interaction and the kinetics of slip and interphase motion (see for
example figure 11). Such fundamental information can then be transferred to the
continuum level to underpin the formulation of flow and evolutionary behaviour of
CM-based constitutive equations. Crystallographic approaches for single-crystal
behaviour which rely on internal slip system variables will continue to provide
the most powerful framework to incorporate basic mechanistic understanding in
continuum models. Numerical and analytical homogenization techniques at the
continuum level will be relied upon to a much greater extent than at present to
model the behaviour of complex multiphase and polycrystalline microstructures.
This will enable the resulting constitutive models to incorporate explicit links
between features of the microstructure at different levels and the macroscopic
behaviour. However, further development of this type of multiscale material design
capability will require a few challenges to be overcome.

New and efficient computational techniques for processing and visualizing the
enormous amount of data generated in mesomechanical and continuum multiscale
simulations must be developed. Then, the issue of computational efficiency must be
addressed so that truly large-scale simulations on thousands of processors can be
effectively performed. Another example of the severe computational complexities
that can arise with deformation is given by the highly intermittent nature of plastic
slip, as it may require to be dynamically described as quick avalanche events
separated by long time intervals, thus imposing severe computational limitations.
Theoretical methodologies that enable the proper coarse graining of space should be
pursued, such as multipolar expansion techniques, continuum averaging of slip
gradients, grains and heterogeneous microstructures, and extraction of average
lattice curvatures. The increasing complexity of non-local formulations to predict
size effects in multiphase materials and composites will require improved and more
robust numerical schemes to be developed, especially when a more physical descrip-
tion of dislocation interaction with themselves and with grain boundaries or other
obstacles is required. Methods for a more direct coupling between DD simulations
and continuum methods would also be required to improve the ability of non-local
CM approaches to predict complex deformation phenomena, such as size effects.
For instance, details obtained by DD simulations can provide information about the
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evolution of the material topology, and the dislocation density tensor which can lead
to precise descriptions of lattice curvatures.

The integration of the approaches discussed in this section is expected to lead
to more physically based multiscale formulations and establish materials by design as
an approach to optimize the mechanical properties of materials with complex micro-
structures, and to develop exciting new materials with extraordinary properties.
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