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Abstract

This article reviews and expands on recent research by the author on the develop-
ment and applications of a new approach to the description of heterogeneuos plastic
deformation in materials. The equations of motion of three-dimensional (3-D) inter-
acting dislocation loops are developed on the basis of irreversible thermodynamics.
Variational methods are utilized to obtain the speci¯c forms of these equations. The
method is aimed at facilitating large-scale computer simulations of inhomogeneous
plastic deformation, and associated applications in pattern-forming plastic instabili-
ties. Each dislocation segment is represented as a parametric space curve of speci¯ed
smooth shape functions and Degrees of Freedom (DF) associated with beginning and
end nodes. Kinetic equations for speci¯c generalized coordinates describing disloca-
tion motion are derived. For general climb/glide 3-D motion of a curved dislocation
segment, the number of degrees of freedom NDF = 3n, where n = 1 for linear; n = 2
for cubic; and n = 3 for quintic parametric splines, respectively. It is also shown
that the position P, tangent T, and normal N vectors at segment nodes are su±cient
to describe general 3-D dislocation motion. For constrained glide motion, however,
we also show that only two degrees of freedom are adequate for determination of
dislocation loop pro¯les, including crystal structure constraints. A fast sum method
for determination of the elastic ¯eld of dislocation ensembles is developed and ap-
plied to determine displacements, strains, stresses, energies and forces associated with
arbitrarily curved dislocation loops. A number of examples are given to illustrate
the following features of the method: (1) adaptive node generation on interacting seg-
ments, (2) variable time-step determination for integration of the equations of motion,
(3) dislocation generation by the Frank-Read mechanism in Face Center Cubic (fcc),
Body Center Cubic (bcc) and Diamond Cubic (dc) crystals, (4) loop-loop deformation
and interaction, (5) formation of dislocation junctions, and (6) dislocation microstruc-
ture evolution.

1 I N T RODUCT I ON

A fundamental description of plastic deformation has been recently pursued in many
parts of the world as a result of dissatisfaction with the limitations of continuum plas-
ticity theory. Although continuum models of plastic deformation are extensively used in
engineering practice, their range of application is limited by the underlying database. The
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reliability of continuum plasticity descriptions is dependent on the accuracy and range
of available experimental data. Under complex loading situations, however, the database
is often hard to establish. Moreover, the lack of a characteristic length scale in contin-
uum plasticity makes it di±cult to predict the occurance of critical localized deformation
zones. Although homogenization methods have played a signi¯cant role in determining
the elastic properties of new materials from their constituents (e.g. composite materi-
als), the same methods have failed to describe plasticity. It is widely appreciated that
plastic strain is fundamentally heterogenous, displaying high strains concentrated in small
material volumes, with virtually undeformed regions in-between. Experimental observa-
tions consistently show that plastic deformation is internally heterogeneous at a number
of length-scales [1]- [4]. Depending on the deformation mode, heterogeneous dislocation
structures appear with de¯nitive wavelengths. It is common to observe Persistent Slip
Bands (PSB's), shear bands, dislocation pile ups, dislocation cells and sub grains. How-
ever, a satisfactory description of realistic dislocation patterning and strain localization
has been rather elusive. Attempts aimed at this question have been based on statistical
mechanics [5]- [10], reaction-di®usion dynamics [11]- [13], or the theory of phase transitions
[14]. Much of the e®orts represented by Refs. [5]- [14] have aimed at clarifying the fun-
damental origins of inhomogeneous plastic deformation. On the other hand, engineering
descriptions of plasticity have relied on experimentally veri¯ed constitutive equations.

Because the internal geometry of deforming crystals is very complex, a physically-based
description of plastic deformation can be very challenging. The topological complexity is
manifest in the existence of dislocation structures within otherwise perfect atomic ar-
rangements. Dislocation loops delineate regions where large atomic displacements are
encountered. As a result, long-range elastic ¯elds are set up in response to such large,
localized atomic displacements. As the external load is maintained, the material deforms
plastically by generating more dislocations. Thus, macroscopically observed plastic defor-
mation is a consequence of dislocation generation and motion. A closer examination of
atomic positions associated with dislocations shows that large displacements are con¯ned
only to a small region around the dislocation line (i.e. the dislocation core). The major-
ity of the displacement ¯eld can be conveniently described as elastic deformation. Even
though one utilizes the concept of dislocation distributions to account for large displace-
ments close to dislocation lines, a physically-based plasticity theory can paradoxically be
based on the theory of elasticity!

The properties and interactions of simpli¯ed dislocation geometries have been the sub-
ject of intensive investigations for the past few decades ([15], [16]). The strength, mechan-
ical, and some physical properties have been rationalized as a consequence of dislocation
behavior in materials. Methods for evaluation of the elastic ¯eld of dislocations in mate-
rials are largely based on analytical solutions for special geometries of single dislocation
lines, circular dislocation loops, or ¯nite straight segments ([15], [16]). Interaction forces
and energies between dislocations are also available in closed analytical form for simpli¯ed
dislocation line geometries, which involve series summations over Bessel functions [17], or
elliptic integrals ([18]- [21]).

A relatively recent approach to investigating the fundamental aspects of plastic defor-
mation is based on direct numerical simulation of the interaction and motion of disloca-
tions. This approach, which is commonly known as Dislocation Dynamics (DD), was ¯rst
introduced for 2-D straight, in¯nitely long dislocation distributions [22] - [34], and then
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later for complex 3-D microstructure [35] - [51]. In DD simulations of plastic deformation,
the computational e®ort per time-step is proportional to the square of the number of in-
teracting segments, because of the long-range stress ¯eld associated with dislocation lines.
The computational requirements for 3-D simulations of plastic deformation of even single
crystals are thus very challenging. It is therefore advantageous to reduce the total number
of Equations Of Motion (EOM) during such calculations. Pioneering 3-D DD simulations
of plasticity using straight segments are based on analytical solutions of the elastic ¯eld of
pure screw and edge segments [35] - [45], or segments of mixed character [46]- [50]. Zbib,
Rhee and Hirth [50] have shown that the length of each straight segment is roughly limited
to » 50¡ 200 units of Burgers vector. Longer segments may have substantial force varia-
tions, thus limiting the usefulness of one single equation of motion for the entire segment.
While Fig. 1 shows a schematic representation for the position of displaced segments, Fig.
2 illustrates force distributions on them. Singular forces and stresses arise at sharp inter-
section points of straight segments, which result in divergence of the average force over
the straight segment as the segment length is decreased, as can be seen schematically from
Fig. 2. When the dislocation loop is discretized to only screw or edge components, which
move on a crystallographic lattice [35] - [45], the accuracy of strong dislocation interac-
tions is compromised because line curvatures are crudely calculated. In addition, motion
of dislocation segments on a ¯xed lattice produces inherent limitations to the accuracy
of the overall dislocation dynamics. Recently, Schwartz [47] - [49] developed an adaptive
method to reduce the segment size when dislocation interactions become strong. Using a
modi¯ed form of the Brown formula [52] for the self-force on a segment, the ¯eld divergence
problem for very short segments was circumvented . For closely interacting dislocations,
substantial curvature and re-con¯guration of dislocations occur during the formation of a
junction, dipole, or other con¯guration [49]. However, the number of straight segments
required to capture these processes is very large, and the segment size may have to be on
the order of a few Burgers vectors. Most of these di±culties recognized from Figs. 1 and 2
arise from the linear segment approximation, the di®erential treatment for their equations
of motion, and the required curvature approximation for the self-force.

The study of dislocation con¯gurations at short-range can be quite complex, because
of large deformations and recon¯guration of dislocation lines during their interaction.
Thus, adaptive grid generation methods and more re¯ned treatments of self-forces have
been found to be necessary [47]- [49]. In some special cases, however, simpler topologi-
cal con¯gurations are encountered. For example, long straight dislocation segments are
experimentally observed in materials with high Peierel's potential barriers (e.g. covalent
materials), or when large mobility di®erences between screw and edge components exist
(e.g. some BCC crystals at low temperature). Under conditions conducive to glide of
small prismatic loops on glide cylinders, or the uniform expansion of nearly circular loops,
changes in the loop shape is nearly minimal during its motion. Also, helical loops of nearly
constant radius are sometimes observed in quenched or irradiated materials under the in-
°uence of point defect °uxes. It is clear that, depending on the particular application
and physical situation, one would be interested in a °exible method which can capture
the essential physics at a reasonable computational cost. A consequence of the long-range
nature of the dislocation elastic ¯eld is that the computational e®ort per time step is pro-
portional to the square of the number of interacting segments. It is therefore advantageous
to reduce the number of interacting segments within a given computer simulation, or to
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Figure 1: Discretization of a dislocation loop with linear segments leads to loss of connec-
tivity when the equations of motion are developed only for mid-points.

develop more e±cient approaches to computations of the long range ¯eld ( [26], [31], [50]).
Dislocation loops in DD computer simulations are treated as dynamical systems, which

can be described by the time dependence of speci¯ed coordinates. Obviously, if one at-
tempts to solve the equations of dynamics for each atom within and surrounding the
dislocation core, the number of equations is prohibitively large. On the other hand, if one
knows that certain modes of motion for groups of atoms are closely-linked, many equa-
tions can be adiabatically eliminated, as is now conventional in the treatment of dynamical
systems. Thus, instead of developing equations for the geometry of each single atom, one
can ¯nd a much smaller set of geometric generalized coordinates, which would adequately
describe the dynamical behavior of an entire dislocation loop. In Lagrangian descriptions,
a number of generalized coordinates, qr, is selected, where the subscript r represents a
speci¯c Degree of Freedom (DF) for the dynamical system. In a numerical computer sim-
ulation, however, the size of the system depends on available NDF . Within the context
of DD, one would expect that NDF is relatively small in loops which conform to speci¯c
crystallographic or mobility constraints, while NDF can be somewhat large in situations
where strong interactions, cross-slip, or similar processes take place. In general, it is not of
interest to follow every wiggle and bump on dislocation lines, unless such details develop
into full-°edged instabilities. For speci¯c applications, however, we intend to reduce NDF

as much as reasonable for the description of the physical situation at hand. This will be
clari¯ed by a number of examples, where physical constraints are imposed on dislocation
motion.

Our plan here is to describe the equations of motion for generalized coordinates in
much the same way as in Lagrangian mechanics. Regardless of the dislocation loop shape
complexity, we will develop an integral equation of motion for each curved segment within
the loop, such that only relationships between global thermodynamic variables are obeyed.
For concreteness, we focus the current approach on dislocation line representation by
parametric dislocation segments, similar to the Finite Element Method (FEM). Thus,
the equations of motion for the transport of atoms within the dislocation core should be
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Figure 2: Force distribution on the straight segment AB from neighboring segments shows
singular behavior at sharp corners. Force averaging over linear segments diverges as its
length is decreased.

consistent with the thermodynamics of irreversibility. A challenging prospect in such a
description is the enormous topological complexity of materials containing dislocations.
Dislocation lines assume complex shapes, particularly during heavy deformation and at
high temperatures where they execute truly 3-D motion as a result of combined glide
and climb forces. These dislocations can be highly curved because of their strong mutual
interactions, externally applied stress ¯elds, as well as other thermodynamic forces. It is
apparent that whenever large curvature variations are expected, the accuracy of computing
the dynamic shape of dislocation loops becomes critical.

The motivation behind the current work can be stated as follows:

1. To reduce the computational burden by providing a high degree of °exibility in the
selection of both length and shape of a dislocation segment.

2. To avoid numerical problems arising from singularities at intersecting straight seg-
ments.

3. To calculate the self-force on dislocation segments with a high degree of accuracy.

4. To provide a °exible tool which sheds more light on the physics of close-range inter-
actions involving in-plane high curvature variations.

5. To e®ectively deal with the physics of climb and cross-slip, which require out-of-plane
dislocation line curvature.

Although the theoretical foundations of dislocation theory are well-established (e.g.
[15], [16], [53]- [54]), e±cient computational methods are still in a state of development
(e.g. [39], [50], [55]- [57]). Other than a few cases of perfect symmetry and special
conditions ( [18], [19], [17],), the elastic ¯eld of 3-D dislocations of arbitrary geometry
is not analytically available. The ¯eld of dislocation ensembles is likewise analytically
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unattainable. We plan, therefore, to present the main elements of 3-D dislocation theory
such that the restrictions and limitations of the present computational method are clari¯ed.
The main steps in deriving equations for all ¯eld variables will thus be given, while the
interested reader can ¯nd more helpful details in references ( [21], [54], [57]).

The article is organized as follows. First, a brief review of experimental observations
on inhomogeneous plastic deformation is given in Sec. 2. This is followed by a discussion
of irreversible thermodynamics of dislocation motion in Sec. 3, in which we discuss energy
components and entropy production during loop motion. This leads to an integral form
of the variation in Gibbs energy in Sec. 4. A weak form of a variational procedure is
pursued to formulate the equations of motion for the degrees of freedom based on the
Galerkin approach. Di®erential geometry of complex dislocation loops, as well as associ-
ated computational protocols which are used to handle close-range interactions are then
discussed in Sec. 5. In Sec. 6, we present a self-su±cient outline of a calculation proce-
dure for the elastic ¯eld variables (e.g. displacement, strain, stress, energy and forces) for
complex-shape dislocation loops. Several test cases for veri¯cation of the fast sum method
are then given in Sec. 7. We compare calculation results for the stress ¯eld and energies
of dislocation loops with those of known analytical and numerical solutions. Computer
simulations of several problems of loop-loop interaction and dislocation generation in fcc,
bcc and diamond cubic (dc) Si crystals are given in Sec. 8 . Finally, conclusions and
discussions follow in Sec. 9.

2 E XP E RI M E N T AL E VI DE N CE OF I N H OM OGE N E OUS
P LAST I C DE FORM AT I ON

Plastic deformation of materials has been observed to be heterogeneous at several length
scales. At the macroscopic level, shear bands are known to localize plastic strain, leading
to material failure. At smaller length scales, dislocation distributions are mostly hetero-
geneous in deformed materials, leading to the formation of a number of strain patterns
([1], [58] - [62]). Generally, dislocation patterns are thought to be associated with en-
ergy minimization of the deforming material, and manifest themselves as regions of high
dislocation density separated by zones of virtually undeformed material. Dislocation-rich
regions are zones of facilitated deformation, while dislocation poor regions are hard spots
in the material, where plastic deformation does not occur [63]. Dislocation structures,
such as Persistent slip Bands (PSB's), planar arrays, dislocation cells, and subgrains, are
experimentally observed in metals under both cyclic and steady deformation conditions
[64]. Persistent slip bands are formed under cyclic deformation conditions, and have been
mostly observed in copper and copper alloys [60], [65], [66]. They appear as sets of parallel
walls composed of dislocation dipoles, separated by dislocation-free regions. The length
dimension of the wall is orthogonal to the direction of dislocation glide. Fig. 3 shows a
TEM picture of experimental observations of PSB's.

Dislocation planar arrays are formed under monotonic stress deformation conditions,
and are composed of parallel sets of dislocation dipoles, as shown in Fig. 4. While PSB's
are found to be aligned in planes with normal parallel to the direction of the critical
resolved shear stress, planar arrays are aligned in the perpendicular direction. Dislocation
cell structures, on the other hand, are honycomb con¯gurations in which the walls have

6



Figure 3: Transmission microscopy picture of Persistent Slip Bands (PSB's) in cyclically-
deformed copper. Picture adapted from the work of Essman and Mughrabi [86]

Figure 4: Plannar dislocation arrays. Picture adapted from the work of Neuhauser [61]

high dislocation density, while the cell interiors have low dislocation density. An example
of the experimental observations of dislocation cells is shown in Fig. 5, while a schematic
illustration of cell evolution from the work of Takeuchi and Argon [67] is illustrated in
Fig. 6. cells can be formed under both monotonic [63], [68] and cyclic [58] deformation
conditions. However, dislocation cells under cyclic deformation tend to appear after many
cycles. Direct experimental observations of these structures have been reported for many
materials (e.g. Refs. [1], [68], [63]).
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Figure 5: Dislocation cell structure in Iron. Picture adapted from the work of Reppich
[68]

Figure 6: Schematic of Dislocation cell structure evolution. Picture adapted from the
work of Takeuchi and Argon [67]
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Figure 7: Representation of loop motion in an in¯nitesimal transition, illustrating ther-
modynamic variables

3 I RRE VE RSI B LE T H E RM ODYN AM I CS OF DI SLOCA-
T I ON M OT I ON

Consider a body, volume  and its boundary S, in thermodynamic equilibrium, containing
a dislocation loop in an initial position (1), as shown in Fig. 7. Under the in°uence of
external mechanical forces (F e ), and thermodynamic internal forces (Fi), the dislocation
loop will undergo a transition from the initial state to a new one designated as (2). Every
point on the dislocation loop line is translated to a new position. In the meantime, material
points in the body will deform elastically. During this transition of states, energy will be
exchanged with the elastic medium, as given by the ¯rst law of thermodynamics:

dU t + ±Et = ±Qt + ±Ct + ±W t (1)

where: dU t is the change in internal energy, ±Et the change in kinetic energy, ±Qt the
change in heat energy, ±Ct the change in chemical energy by atomic di®usion, and ±W t the
change in its mechanical energy. The left hand side of Eq. 1 represents the total change
in the energy of the body. We will ignore here changes in the kinetic energy, and restrict
the applications of the present model to dislocation speeds less than approximately half
of the transverse sound speed (see Refs. [46], [69], [70] for the e®ects of kinetic energy on
the dynamics).

Now the total internal energy can be written as a volume integral: dU t =
R


dUd,

where dU is the speci¯c (per unit volume) change of the internal energy. The mechanical
power is composed of two parts: (1) change in the elastic energy stored in the medium
upon loop motion under the in°uence of its own stress. This is precisely the change in
the loop self-energy within a time interval ±t, (2) the work done on moving the loop as
a result of the action of external and internal stresses, excluding the stress contribution
of the loop itself . These two components constitute the Peach-Koehler work. Thus:
±W t =

R


¾ikd²ikd. Care must be exercised in evaluating the elastic ¯eld variables, as

will be discussed later. The change in the total chemical energy can be written as a
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volume integral of the chemical potential ¹i, over the atomic concentration change dni,
which is negative for mass transport out of the volume. Additionally, if loop motion
produces geometric defects (e.g. jogs and vacancies), chemical energy is deposited. Thus:

±Ct =
R


µ
dPd ¡

P
i

¹idni

¶
d. Finally, the net change in the heat energy is composed of

two parts: (1) heat energy (dH¤) generated by the loop as a result of atomic damping
mechanisms (e.g. phonon and electron damping), and (2) heat transported across the
boundary to the external reservoir, which is negative by convention. Hence, we have:
±Qt =

R


dH¤d ¡ R
S

Q ² dS. Here Q is the outgoing heat °ux at the boundary. Using the

divergence theorem for boundary integrals, we obtain:

Z



"
(dU ¡ dH¤ ¡ dPd) + (Qk;k +

X

i

¹idni ¡ ¾ikd²ik)

#
d = 0 (2)

We will denote the enthalpy change dH = dH¤ + dPd, as the energy dissipated in
defect generation and as heat. It is noted that in the special case where there is no
heat or mass transport (i.e. Qi;i = dni = dPd = 0), no loop motion (i.e. ±WPK = 0),
and under a hydrostatic stress ¯eld (i.e. ¾ik = ¡P±ik), we get: ¾ikd²ik = ¡P±ikd²ik =
¡Pd²ii = ¡PdV , for a unit initial volume. Thus, we recover the familiar relationship
between enthalpy and internal energy: dU = dH ¡ PdV . For an isothermal process, the
Gibbs energy change is given by: dG = dH ¡ TdS. Thus:

±Gt =

Z



"
(dU ¡ TdS) + (Qi;i +

X

i

¹idni ¡ ¾ikd²ik)

#
d (3)

In addition to energy conservation, loop motion must result in a total increase in the
entropy of the body and its surroundings. The Clausius-Duhem statement of the second
law of thermodynamics can be phrased as [71]: "the total entropy production rate of the
body and its surroundings must be positive for an irreversible process". Following Erringen
[71], and Malvern [72], we construct the following entropy production inequality for the
solid:

±©t = ±St ¡ B ¡
Z

S
¥ ² dS ¸ 0 (4)

where ±©t ´ R


©d is the total entropy production during ±t, ±St the total change in

entropy, b the local entropy source per unit volume with B ´ R


bd, and ¥ the entropy

in°ux due to heat input across the boundary S. Utilizing the divergence theorem again
in Eq. 4, we obtain the following inequality per unit volume:

© = ±S ¡ b ¡ ¥k;k ¸ 0 (5)

Now, the entropy °ux crossing the boundary is: ¥ = Q
T , and the °ux divergence is given

by:

¥k;k =

µ
Qk

T

¶

;k
=

1

T
Qk(lnT ));k ¡

1

T
Qk;k (6)
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While the local entropy source is given by:

B =

Z



dH

T
=

Z



1

T

"
dU + Qk;k ¡ ¾ikd²ik +

X

i

¹idni

#
d (7)

Substituting Eqs. 6 and 7 into Eq. 4, we obtain:

Z



(
(dU ¡ TdS) + Qk(lnT );k ¡ ¾ikd²ik +

X

i

¹idni

)
d · 0 (8)

Comparing the entropy production inequality 8 with Eq. 3, we can immediately see that a
consequence of irreversibility (i.e. entropy production) is a decrease in Gibbs free energy.
Following arguments similar to Erringen [71], we write the internal energy in terms of
entropy variations as:

±Gt =

Z



"
(
@U

@S
¡ T )±S + Qk(ln(T ));k ¡ ¾ikd²ik +

X

i

¹idni

#
d · 0 (9)

Since the inequality must be valid for all variations of ±S, its coe±cient must vanish [71],
[72]. Thus, the principle of entropy production results in the following statement:

±Gt =

Z



"
Qk(lnT );k ¡ ¾ikd²ik +

X

i

¹idni

#
d · 0 (10)

Under conditions where heat generation during dislocation motion is signi¯cant (e.g.
high-speed deformation), additional equations must be solved for the coupled point-defect
and heat conduction. Thus, equations for point-defect conservation, as well as generalized
forms of Fick's and Fourier laws must be added. These are expressed in the following:

C°
;t = J°

k;k (11)

J°
k = ¡D°

ikC;i ¡ Dik

µ
Q¤C
kT 2

¶
T;i (12)

Q®;t = ¡·ikT;i ¡ Q¤Di®C;i (13)

where ·i® is the thermal conductivity tensor, D°
ik the di®usion tensor of defect °, Q¤ the

corresponding heat of transport, and Qk;t the rate of change of the thermal energy.
We treat here the speci¯c case where thermal e®ects are small (i.e. the ¯rst term in Eq.

10 is ignored), and where climb motion of the dislocation loop is a result of point defect
absorption (i.e. the third term in Eq. 10 is summed over only vacancies and interstitials).
In Eq. 10, the volume integrals of the elastic term and the chemical term (osmotic) can be
converted to line integrals over the dislocation loop. The stress tensor acting on any point

is decomposed into a contribution resulting from the loop itself (i.e. self- stress ¾
(s)
ik ), and

a contribution resulting from other dislocations, defects, Peierls stress, and the applied

stress ¯eld (i.e. external stress ¾
(e)
ik ). Thus, when the stress tensor in Eq. 10 is written

as: ¾ik = ¾
(s)
ik + ¾

(e)
ik , the elastic term results in two contributions to Gibbs energy, while

the chemical term results in one additional contribution. We outline in the following how
these three contributions can be converted to line integrals over the loop.
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Now consider an in¯nitesimal variation in the position of a dislocation loop, depicted
by the motion of the segments

S
(AB;BC; CD; ¢¢) in a time interval ±t. During this

motion, the dislocation core line length has changed from L to L + ¢L. The dislocation
line vector is denoted by ds = t j s j, and the change in position for every atom on the
dislocation line is described by the vector ±r. For the change in the amount of work done
on the dislocation loop during its transition from state(1) to state(2) in Fig. 7 above, we
assume that the stress ¯eld is uniformly acting on every surface element dA = b£ds. The
associated element of virtual force is: dF = § ² dA. During loop motion from state(1) to
state(2), the variation in this Peach-Koehler work [73] obtained by integration along the
path ¡ is given by:

Z



[¾ikd²ik]
(e)d = ±WPK =

I

¡

dF ² ±r =

I

¡

(b£ ds ² §) ² ±r (14)

=

I

¡

(b ² § £ t) ² ±r j ds j

=

I

¡

(2ijk ¾jmbmtk±ri) j ds j

The unit vector t is tangent to the dislocation line, and lies on its glide plane, while
2ijk is the permutation tensor.

The total self- energy of the dislocation loop is obtained by double integrals along the
contour ¡. Gavazza and Barnett [74] have shown that the ¯rst variation in the self- energy
of the loop can be written as a single line integral of the form:

Z



[¾ikd²ik]
(s)

d =

I

¡

µ·
E(t) ¡ (E(t) + E00(t)) ln(

8

"·
)

¸
· ¡ J(L;P)

¶
n ² ±r jdsj + [dU ]core (15)

where n is normal to the dislocation line vector t on the glide plane, and " =j b=2 j is
the dislocation core radius [21]. The ¯rst term results from loop stretching during the
in¯nitesimal motion, the second and third are the line tension contribution, while J(L;P)
is a non-local contribution to the self-energy. The dominant contributions to the self-
energy (or force) are dictated by the local curvature ·, and contain the pre-logarithmic
energy term E(t) for a straight dislocation tangent to the loop at point P, and its second
angular derivative E 00. [dU ]core is the contribution of the dislocation core to the self-

energy. De¯ning the angle between the Burgers vector and the tangent as ® = cos¡1( t²b
jbj ),

Gore [75] showed that a convenient computational form of the self- energy integral for an
isotropic elastic medium of º = 1

3 can be written as:

Z



[¾ikd²ik](s) d =

I

¡

µ
¡· [E(®) + E00(®)] ln(

8

"·
) + ¹b2[·(

21 + cos2®

64¼
) + ¹·(

2 cos2® ¡ 1

2¼
)]

¶
n²±r jdsj

(16)

where the energy pre-factors are given by:

E(®) =
¹b2

4¼(1 ¡ º)
(1 ¡ º cos2®) (17)

E 00(®) =
¹b2 º

2¼(1 ¡ º)
cos 2® (18)
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Figure 8: 3-D motion of a curved dislocation segment involving in-plane glide and out-of-
plane climb.

Accurate numerical calculations of the self-energy of any complex-shape loop have been
performed by Ghoniem and Sun [56], where the double line integral is converted to a fast
summation over the loop segments and quadrature points. However, a purely numerical
method for evaluation of the self-energy requires intensive computations because of the
need to use large quadrature order for good accuracy [56]. Eq. 16 is an alternate convenient
approximation, in which the contributions of various terms are easily computed. Schwarz
[48] conducted a numerical study to determine the e®ects of various terms on the self-
force, and concluded that the major contribution results from the ¯rst two terms in Eq.
16, which are the usual line tension approximation. However, the relative importance of
the third term (which represents contributions from the dislocation core and dislocation
line stretching) and fourth term (which is an approximation to non-local contributions
from other parts of the loop) can be seen by a simple argument. The non-local term is
obtained by approximating the loop as a pure shear loop at an average curvature of ¹·.
For a reasonable size loop of approximate radius in the range 1000 ¡ 10000 j b j, it can
be shown that the total contribution of non-local, core and stretch terms is on the order
of less than 18%. The contribution of the non-local term is about half of this amount for
purely edge components. Hence, a computationally e±cient and very accurate method is
obtained when all contributions are combined in Eq. 16.

Absorption of point defects by dislocation segments can be treated by considering the
in°uence of the chemical term in Eq. 10 on its motion. Incorporation of atomic defects
into dislocation cores leads to dislocation climb. The thermodynamic force associated
with this motion is referred to as the osmotic force. As illustrated in Fig. 8, during climb
motion of atoms within the dislocation core, the number of vacancies (or interstitials) per

unit length
dn°

L , changes by the amount:

dn°

L
=

j b j m ² ±r

°
(19)

where ° is the vacancy (interstitial) volume, and m is a unit vector normal to the glide
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plane (see Fig. 8). The change in chemical potential per vacancy (interstitial) is given by:

¹° = kT ln (
C°

Ceq
°

) (20)

Here C° is the non-equilibrium concentration of vacancies (or interstitials), which may
result from quenching, a sudden change in temperature, irradiation or an externally applied
stress [78], and Ceq

° is the thermodynamic equilibrium concentration of the atomic defect.
The corresponding contribution from point defect °ow to the variation in Gibbs energy for
the entire loop can now be obtained by line integration. Incorporating Eqs. [14,16,19,20]
into inequality 10, we obtain:

±Gt = ¡
I

¡

(fS + fO + fPK) ² ±r j ds j· 0 (21)

where we de¯ne the following generalized thermodynamic forces:

² fPK ´ the Peach-Koehler force per unit length = b ²§ £ t

² fS ´ the self- force per unit length

Ã
¡·

£
E(®) + E00(®)

¤
ln(

8

"·
) + ¹b2[·(

21 + cos2®

64¼
) + ¹·(

2 cos2® ¡ 1

2¼
)]

!
n

² fO ´ the total Osmotic force [46] for defect ° per unit length = ¡P
°

° kT jbj
 °

ln
³

C°

Ceq
°

´
m

where ° = (¡1) for vacancies and(+1) for interstitials

In compact tensor form, Eq. 21 can be written as:

±Gt = ¡
I

¡

f t
k±rk j ds j · 0 (22)

where f t
k is the k-component of the total force: f t = fS + fO + fPK , and ±rk is the

displacement of core atoms in the k-direction.

4 VARI AT I ON AL FORM ULAT I ON FOR T H E E QUAT I ON S
OF M OT I ON

4.1 Gover ning I ntegr al E quation

Inequality 10 suggests that the components of Gibbs energy can be written as conjugate
pairs, representing the inner products of generalized thermodynamic forces and generalized
displacements. The equations of motion can thus be obtained if one de¯nes an appropriate
set of generalized coordinates and conjugate generalized thermodynamic forces, in such
a way as to result in entropy production and a corresponding decrease in ±G during a
virtual in¯nitesimal transition. Let's assume that atoms within the dislocation core are
transported in some general drift force ¯eld, as a consequence of the motion of atomic size
defects (e.g. vacancies, interstitials, kinks and jogs). The drift velocity of each atom is
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given by Einstein's mobility relationship: V¸ = 1
kT Df¸, where V¸ is the drift velocity, D

is a di®usion tensor, and f¸ is a generalized thermodynamic force representing process ¸.
Similarly, the °ux resulting from a given process can be related to a corresponding ther-
modynamic force. We consider here three thermodynamic forces: (1) forces of mechanical
origin (i.e. Peach-Koehler forces), as a result of variations in virtual work on the disloca-
tion loop and variations in the stored elastic energy in the medium when the dislocation
changes its shape, (2) gradients in point defect concentrations within the surrounding
medium (i.e. chemical forces), and ¯nally (3) temperature gradient forces associated with
heat °ow.

A generalization of the previous analysis can be accomplished if one postulates that
near equilibrium, thermodynamic forces are su±ciently weak that we might expand the
°ux in a power series in f¸ [76]. Let's denote Jk(ff¸g as type-k °ux as a result of a general-
ized thermodynamic force ¸, ff¸g. Thus, a generalization of Einstein's phenomenological
transport relationship is given by:

Jk(ff¸g) = Jk(0) +
X

¸

µ
@Jk

@f¸

¶

0
f¸ +

1

2

X

¸m

Ã
@2Jk

@f¸@fm

!

0

f¸fm + ¢ ¢ ¢¢ (23)

In the linear range of irreversible processes, Eq. 23 is restricted to only the ¯rst
two terms in the expansion. Moreover, at thermodynamic equilibrium in the absence
of generalized forces, all modes of atom transport vanish, and the ¯rst term, J(0), is
identically zero. Taking the velocity of atoms on the dislocation line (i.e. representing
the core) to be proportional to the atomic °ux, and de¯ning generalized mobilities via

a mobility tensor L with components: Lij =
³

@Vi
@fj

´
0
, the phenomenological relationship

(Eq. 23) is simpli¯ed to:

V¯(ff¸g) =
X

¸

L¯¸f¸ (24)

As a consequence of the increase in entropy production ©, or equivalently the decrease
in Gibbs energy±G, Prigogine [76] showed that: L¯¸f¯f¸ ¸ 0. This relationship gives a
positive de¯nite quadratic form, which imposes restrictions on the matrix of coe±cients to
be positive. The generalized mobilities Lij are subject to additional temporal symmetries
as a result of the principle of detailed balance, as shown by Onsager [77] : L¯¸ = L¸¯.
The mobility matrix relates the in°uence of an independent thermodynamic force of the
¸-type to the partial °ux of the k-type. In most applications of DD so far, the mobility
matrix L¸¯ is assumed to be diagonal and independent of the type of thermodynamic
force. However, we will assume that dislocation mobility is spatially anisotropic, since the
speed of screw segments is usually smaller than edge segments as a consequence of the
crystal structure. These simpli¯cations lead to direct proportionality between the velocity
and total force along each independent direction. Thus, we can denote B®k as a diagonal
resistivity (inverse mobility) matrix, and substitute in Eq. 22 to obtain the following
equivalent from of the Gibbs energy variation:

±Gt = ¡
I

¡

B®kV®±rk j ds j (25)
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The resistivity matrix can have three independent components (two for glide and one
for climb), depending on the crystal structure and temperature. It is expressed as:

[B®k] =

2
4

B1 0 0
0 B2 0
0 0 B3

3
5 (26)

Combining Eq. 22 with Eq. 25, we have:

I

¡

³
f t

k ¡ B®kV®

´
±rk j ds j= 0 (27)

The magnitude of the virtual displacement ±rk is not speci¯ed, and hence can be arbi-
trary. This implies that Eq. 27 is actually a force balance equation on every atom of the
dislocation core, where the acting force component f t

k is balanced by viscous dissipation
in the crystal via the term B®kVk. However, this is not necessarily desirable, because one
needs to reduce the independent degrees of freedom which describe the loop motion, yet
still satis¯es the laws of irreversible thermodynamics described here. To meet this end,
we develop a general method, with greatly reduced degrees of freedom for the motion of
dislocation core atoms.

4.2 T he Galer kin M ethod

Assume that the dislocation loop is divided into Ns curved segments, as illustrated in Fig.
1 . The line integral in Eq. 27 can be written as a sum over each parametric segment j,
i.e.,

NsX

j=1

Z

j
±ri(f

t
i ¡ BikVk) j ds j= 0 (28)

Note that in Eq. 28, we sum over the number of segments j and follow the standard rules
of 3-D tensor analysis. We now choose a set of generalized coordinates qm at the two ends
of each segment j. Then, the segment can be parametrically described as:

ri =
NDFX

m=1

C im(u)qm (29)

where C im(u) are shape functions, dependent on the parameter u (0 · u · 1). Eq. 29 is a
general parametric representation of the dislocation line for segment j. Possible convenient
parameterization methods are discussed in Refs. [25], [56]. In Sec. 5 we introduce quintic
splines as °exible and convenient parametric curves for complex dislocation loop geometry,
while the applications in Sec. 7 illustrate the utilization of several types of parametric
elements on the same loop. It is noted that the index m is assumed to be summed from
1 to NDF , where NDF is the number of total generalized coordinates at two ends of the
loop segment. Accordingly, the three components of displacement vector are given by:

±ri =
NDFX

m=1

C im(u)±qm (30)
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On the other hand, we have for the velocity of any point on the dislocation line, within
segment j:

Vk = rk;t =
NDFX

n=1

C knqn;t (31)

And the arc length di®erential for segment j is given by:

j ds j = (rl;url;u)
1
2 du =

0
@

NDFX

p;s=1

qp C lp;u C ls;uqs

1
A

1
2

du (32)

An ensemble of dislocation loops is considered a continuous dynamical system, where
every point on dislocation lines is subject to continuous displacement. The ¯nite element
process in continuum mechanics is based on approximating the continuous displacement
¯eld by a linear combination of piece-wise known shape functions over speci¯ed domains.
To obtain the unknown coe±cients in the linear combination, an integral form of the
governing equation is formulated, and an element-by-element assembly is extracted. The
result is a system of equations for standard discrete systems, which can be handled by
numerical methods. We will follow a similar approach here, in which the weight functions
in the integral form are the same as the shape functions of the problem. Minimization
of the weighted residuals results in symmetric matrices, which simpli¯es integration of
the equations of motion. This variational approach is thus coincident with the Galerkin
method as a special case of the method of weighted residuals. Recently, a number of
investigators formulated microstructure evolution problems in a similar manner (see, for
example Refs. [79], [80]).

At this point, we may substitute Eqs. 30, 31, and 32 into the governing Eq. 28, and
obtain the following form:

NsX

j=1

1Z

0

NDFX

m=1

±qm C im(u)

2
4f t

i ¡ Bik

NDFX

n=1

C knqn;t

3
5

0
@

NDFX

p;s=1

qp C lp;u C ls;uqs

1
A

1
2

du = 0 (33)

Appropriate collection of terms into more convenient functions can reduce the apparent
complexity of this form of the equation of motion. We will de¯ne here two such functions:
an e®ective force and an e®ective resistivity. A generalized force, fm, is de¯ned as:

fm =

Z 1

0
f t

i C im(u)

0
@

NDFX

p;s=1

qpNlp;uNls;uqs

1
A

1
2

du (34)

while a resistivity matrix element, °mn, is given by:

°mn =

Z 1

0
C im(u)Bik C kn(u)

0
@

NDFX

p;s=1

qp C lp;u C ls;uqs

1
A

1
2

du (35)

It is noted that [°mn] is a symmetric matrix because of the structure of the above de¯ni-
tion and symmetric mobilities. With these two parameters de¯ned above, the variational
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integral form of the Gibbs energy equation is readily transformed to a discrete form, given
by:

NsX

j=1

2
4

NDFX

m=1

±qm(fm ¡
NDFX

n=1

°mnqn;t)

3
5 = 0 (36)

For the entire dislocation loop, we map all local degrees of freedom q
(j)
i of each segment

j onto a set of global coordinates, such that the global coordinates are equal to the local
coordinates at each beginning node on the segment:

fq(1)
1 ; q

(1)
2 ; q

(1)
3 ; :::::; q

(2)
1 ; q

(2)
2 ; q

(2)
3 ; ::::g = fQ1; Q2; Q3; :::; QNgT (37)

where N is the total number of degrees of freedom of the loop. Similar to the ¯nite element
procedure, the local segment resistivity matrix [°mn] is added into corresponding global
locations in the global resistivity matrix [¡kl], such that:

NsX

j=1

NDFX

m=1

NDFX

n=1

[±qm°mnqn;t]
(j) =

NtotX

k=1

NtotX

l=1

±Qk¡klQl;t (38)

where Ntot = NsNDF is the total number of degrees of freedom for the loop. The global
resistivity matrix [¡kl] is also symmetric and banded or sparse. The component ¡kl is zero
if the degrees of freedom k and l are not connected through a segment. In addition, the
global force vector fFkg can similarly be represented as

NsX

j=1

NDFX

m=1

[±qmfm](j) =
NtotX

k=1

±QkFk (39)

Therefore, Eq. 36 can be expressed as:

NtotX

k=1

±Qk

Ã
Fk ¡

NtotX

l=1

¡klQl;t

!
= 0 (40)

Since the virtual displacements in the generalized coordinates are totally arbitrary, the
previous equation can only be satis¯ed if:

Fk =
NtotX

l=1

¡klQl;t (41)

Eq. 41 represents a set of time-dependent ordinary di®erential equations which describe
the motion of dislocation loops as an evolutionary dynamical system. Similar microstruc-
ture evolution equations have been derived by Suo [80] in connection with grain and void
growth phenomena. Furthermore, the above spatially resolved equations can be discretized
in time by the so-called generalized trapezoidal family of methods [81] as:

NtotX

l=1

¡
(n+®)
kl Q

(n+1)
l =

NtotX

l=1

¡
(n+®)
kl Q

(n)
l + ¢tF (n+®)

k (42)
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Figure 9: A space dislocation loop discretized into a ¯nite number of curved segments, Ns

where ¢t is the time-step and n is the time-step index. In addition, ® is a parameter,
which determines explicit or implicit time-integration, taken to be in the interval [0,1] such
that:

® = 0 {for forward di®erence integration (Euler) ;
® = 1=2 { for midpoint or trapezoidal integration;
® = 2=3 { for Galerkin integration, and ;
® = 1 {for backward di®erence (Euler) integration.

5 COM P UT AT I ON AL GE OM E T RY OF DI SLOCAT I ON
LOOP S

The core of an arbitrary-shape, 3-D dislocation loop can be reduced to a continuous line.
Assume that the dislocation line is segmented into (ns) arbitrary curved segments, labeled
(1 · i · ns), as shown in Fig. 9. For each segment, we de¯ne r̂(u) = P(u) as the position
vector for any point on the segment, T(u) = T t as the tangent vector to the dislocation
line, and N(u) = Nn as the normal vector at any point (See Fig. 10). The space curve is
then completely described by the parameter u, if one de¯nes certain relationships which
determine r̂(u). Note that the position of any other point in the medium (Q) is denoted
by its vector r, and that the vector connecting the source point P to the ¯eld point is
R, thus R = r¡ r̂. In the following developments, we restrict the parameter 0 · u · 1,
although we map it later on the interval ¡1 · û · 1, and û = 2u ¡ 1 in the numerical
quadrature implementation of the method.

To specify a parametric form for r̂(u), we will now choose a set of generalized coordi-

nates q
(j)
i for each segment (j), which can be quite general. If one de¯nes a set of basis

functions C i(u), where u is a parameter, and allows for index sums to extend also over the
basis set (i = 1; 2; ::; I), the equation of the segment can be written as:

r̂(j)(u) = q
(j)
i C i(u) (43)
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Or, in compact component (k) form, this can be put as:

r̂
(j)
k (u) = q

(j)
ik C i(u) (44)

Thus, the components of the displacement vector are given by:

±r̂
(j)
k (u) = ±q

(j)
ik C i(u) (45)

At this point, we must specify the form of parametric description for the dislocation
line. Although this step is open to pure computational convenience, we present here those
parametric forms which we use later in this work. Parametric dislocation representation
discussed below are also su±cient to describe the majority of experimentally observed
dislocation line geometry.

5.1 Cir cular , E lliptic and H elical Loops

Small prismatic loops of circular (or nearly elliptic) shapes are observed in many materials
under deformation, irradiation and quenching conditions [82]. Helical loops of unusual
regularity have also been experimentally observed under large vacancy supersaturation
[82]. Therfore, it seems natural to use a simple representation for such loops, where the
shape functions are given by:

C 1 = cos(2¼u); C 2 = sin(2¼u); C 3 = u (46)

And their parametric derivatives, which we use later in determining the arc length, are
simply given by:

C 1;u = ¡2¼ C 2; C 1;u = 2¼ C 1; C 3;u = 1 (47)

Note that in this case, the description is not in Cartesian coordinates, and that the gen-
eralized degrees of freedom are given by:

q1 = a; q2 = b; ; and q3 = c (48)

Loop motion is described in terms of the time variations of the generalized coordinates,
a; b, and c.

5.2 Linear P ar ametr ic Segments

The majority of 3-D dislocation dynamics developments are based on analytic solutions
to the elastic ¯eld of linear segments [35]-[49]. Sometimes it is just as convenient to use
a purely numerical method, without any loss of computational speed or accuracy [56].
Under these conditions, the shape functions C i(u) and their derivatives C i;u take the form:

C 1 = 1 ¡ u C 2 = u and (49)

C 1;u = ¡1 C 2;u = 1 (50)

The available degrees of freedom for a free, or unconnected linear segment (j) are just the
position vectors of the beginning(j) and end (j + 1) nodes. Thus:

q
(j)
1k = P

(j)
k ; and q

(j)
2k = P

(j+1)
k (51)
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Figure 10: Basic elements of a space curve representing one dislocation segment

5.3 Cubic Spline P ar ametr ic Segments

The self-force on a dislocation segment can be approximated as a simple function of its
curvature ( [15], [16], [74]). To allow for continuity of the self-force along the entire dislo-
cation loop, and to capture non-linear deformations of the dislocation line itself during, a
higher order parametric representation is desired. For cubic spline segments, we use the
following set of shape functions, their parametric derivatives, and their associated degrees
of freedom, respectively:

C 1 = 2u3 ¡ 3u2 + 1; C 2 = ¡2u3 + 3u2; C 3 = u3 ¡ 2u2 + u; and C 4 = u3 ¡ u2 (52)

C 1;u = 6u2¡6u; C 2;u = ¡6u2 +6u2; C 3;u = 3u2¡4u+1; and C 4;u = 3u2¡2u (53)

q
(j)
1k = P

(j)
k ; q

(j)
2k = P

(j+1)
k ; q

(j)
3k = T

(j)
k ; and q

(j)
4k = T

(j+1)
k (54)

5.4 Quintic Spline P ar ametr ic Segments

A dislocation loop is divided into a set of curved segments connected at their end nodes,
with each segment represented as an independent parametric space curve with parameter
u varying in the range 0 to 1. A general vector form of the dislocation line equation for
segment (j) can be expressed as:

r(j)(u) =
nX

i=0

A
(j)
i ui (55)

where n is a polynomial order and Ai represent the associated vector coe±cients. The
value of n determines the segment type. Thus, when n = 1 the segment is a straight line,
when n = 3 the segment is a cubic polynomial and when n = 5 , the segment is a ¯fth-order
(quintic) polynomial. The coe±cients Ai are determined by boundary conditions imposed
on beginning and end nodes. These boundary conditions can be described in terms of
speci¯ed geometric properties, such as the nodal position, tangent, curvature, or torsion.
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To solve for the six coe±cients A0 to A5 of a quintic spline segment, we have to assign six

independent vectors, to be determined by six boundary conditions r(j)(0), r(j)(1), r
(j)
;u (0),

r
(j)
;u (1), r

(j)
;uu(0), and r

(j)
;uu(1), where r

(j)
;u = dr(j)=du and r

(j)
;uu = d2r(j)=du2. Geometrically,

r(j)(0) and r(j)(1) are the position vectors of nodes j and j + 1, i.e., P(j) and P(j+1). The

vectors r
(j)
;u (0) and r

(j)
;u (1) are the tangent vectors of nodes j and j + 1, i.e., T

(j)
E t(j) and

T
(j+1)
B t(j+1), respectively, where T

(j)
E and T

(j+1)
B are magnitudes of tangent vectors at the

end (E) and beginning (B) of each segment, while the unit vectors t(j) and t(j+1) are the

dislocation sense vectors at nodes j and j +1, respectively. The vectors r
(j)
;uu(0) and r

(j)
;uu(1)

are linear combinations of the tangent and normal vectors because they lie on the plane
spanned by them. Because the resultant loop pro¯le is a composite curve, dislocation line
continuity may not be maintained at each node if boundary conditions on segments are
arbitrarily assigned . In general, C0(position) and C1(tangent) continuity can be easily
satis¯ed if we assign the same position and tangent vectors at each node. However, since
self-forces on dislocation segments are proportional to the local curvature (see Eq. 16, C2

continuity will ensure the continuity of self-forces at segment nodes as well. The curvature
of a general point on segment j can be expressed as

· =
kr(j)

;u (u) £ r
(j)
;uu(u)k

kr(j)
;u (u)k

3 (56)

To maintain C2 continuity at each node, we let the curvature of the end point of segment
j be equal to the curvature at the beginning node of curved segment j + 1.

kr(j)
;u (1) £ r

(j)
;uu(1)k

kr(j)
;u (1)k

3 =
kr(j+1)

;u (0) £ r
(j+1)
;uu (0)k

kr(j+1)
;u (0)k

3 (57)

From Eq. 57, and the fact that r
(j)
;uu is a linear combination of T&N, the tangent component

of vector r
(j)
;uu does not in°uence the line curvature. Therefore, we can just assign the

normal vectors N
(j)
E n(j) and N

(j+1)
B n(j+1) for r

(j)
;uu(1) and r

(j+1)
;uu (0), respectively, where

N j
E and N

(j+1)
B represent magnitudes associated with the unit vectors n(j) and n(j+1).

After substituting all boundary conditions into Eq. 55 and rearranging terms, we obtain:

r(j)(u) = C 1P
(j)+ C 2P

(j+1)+ C 3T
(j)
E t(j)+ C 4T

(j+1)
B t(j+1)+ C 5N

(j)
E n(j)+ C 6N

(j+1)
B n(j+1) (58)

Note that the superscript on the LHS of Eq. 58 refers to segment j, while on the RHS, it
is associated with nodes j and j + 1 on the same segment. The coe±cients C 1 to C 6 are
invariant shape functions, and can be expressed in terms of parameter (0 · u · 1) as:

C 1 = ¡6u5 + 15u4 ¡ 10u3 + 1

C 2 = 6u5 ¡ 15u4 + 10u3

C 3 = ¡3u5 + 8u4 ¡ 6u3 + u

C 4 = ¡3u5 + 7u4 ¡ 4u3

C 5 = ¡0:5u5 + 1:5u4 ¡ 1:5u3 + 0:5u2

C 6 = 0:5u5 ¡ u4 + 0:5u3
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We can cast the parametric Eq. 58 into a convenient matrix form for a single parametric
quintic spline of a segment, if we re-organize the generalized coordinates qm as:

fqmg = fq1; q2; q3; :::; q18gT (59)

where the ¯rst nine components are for the beginning node of the segment; with q1 ¡ q3

being three components of position, q4 ¡ q6 three components of the tangent vector, and
q7 ¡ q9 three components of the normal vector. Correspondingly, q10 to q18 indicate all
coordinates at the end of a segment. The shape functions for the quintic spline can also
be organized in the following matrix form:

[C im] =

2
4
C 1 0 0 C 3 0 0 C 5 0 0 C 2 0 0 C 4 0 0 C 6 0 0
0 C 1 0 0 C 3 0 0 C 5 0 0 C 2 0 0 C 4 0 0 C 6 0
0 0 C 1 0 0 C 3 0 0 C 5 0 0 C 2 0 0 C 4 0 0 C 6

3
5

(60)
With this notation, Eq. 58 can be cast in the computational form of Eq. 29. The

total number of available degrees of freedom for a quintic spline segment is thus equal to
the number of components in the Cartesian vector qm, i.e. NDF = 6 £ 3 = 18. However,
because of geometric and physical restrictions on dislocation motion, NDF can be greatly
reduced, as we will discuss next.

Forces and energies of dislocation segments are given per unit length of the curved
dislocation line. Also, line integrals of the elastic ¯eld variables are carried over di®erential
line elements. Thus, if we express the Cartesian di®erential in the parametric form:

d`
(j)
k = r̂

(j)
k; udu = q

(j)
sk C s; udu (61)

The arc length di®erential for segment j is then given by:

j d`(j) j =
³
d`

(j)
k d`

(j)
k

´ 1
2 =

³
r̂
(j)
k; ur̂

(j)
k; u

´ 1
2 du (62)

=
³
q
(j)
pk C p; u q

(j)
sk C s; u

´ 1
2 du (63)

5.5 Constr ained Glide M otion and Reduced Degr ees of Fr eedom

It is apparent that general dislocation motion would involve many degrees of freedom
NDF in the most general case. Fortunately, however, NDF is small in practice. As a
result of segment connectivity at common nodes, only half of the total DF's are required
per segment, and NDF = 9 for general 3-d motion, and NDF = 6 for motion on a glide
plane. The Peach-Koehler force on the glide plane imposes an additional constraints.
As can be seen from Eqs. 14 and 16 , both external and self-forces on a dislocation
node are along the normal direction n. Also, because n ² t = 0, NDF is reduced further
from 6 to 4 for 2-d glide motion; that is one for the displacement magnitude, two for
the tangent vector, and one for the magnitude of the normal. Furthermore, we introduce
here two additional conditions, which simplify the loop pro¯le calculations even further.
A smoothness condition is invoked such that rapid variations of curvature are avoided
when two segments of vastly di®erent lengths are connected via a composite spline. If the
magnitude of the tangent is not related to nodal positions, undesirable cusps may develop
on the dislocation line. Thus, we take the magnitude of the tangent vector to be estimated
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from the arc length between previous nodal positions on the segment. This criterion is
exact when the parameter u = s, where s is the arc length itself. On the other hand,
the line curvature can be independently computed from the dislocation con¯guration and
nodal loading in a simple manner. If the forces at the node are not near equilibrium (i.e.
the acting forces are much larger than the self-force), the curvature is determined from
three neighboring nodes on the dislocation line. On the other hand, near equilibrium,
the curvature of a node is readily computed from Eq. 16, once the local external force
is known. These approximations can lead to an additional reduction of two degrees of
freedom, and we are left with solving for only two equations per node. These constraints
can be relaxed, if one is interested in more complex details of dislocation motion. We will
show later in Sec. 7 that dislocation glide motion can be adequately described in most
cases with only two degree of freedom per node.

We derive here the constrained discrete equations of motion, when dislocation lines
are con¯ned to their glide plane. In this special case, there is a total of six independent
unknowns. That is, ¢Px; ¢Py; ¢Tx; ¢Ty; ¢Nx; ¢Ny, which correspond to incremental
displacements, tangents, and normals in the x- and y-directions, respectively. Let us ¯rst
consider the geometric constraints. Because the normal is always perpendicular to the
tangent at the node, we have:

(T(i) + ¢T) ² (N(i) + ¢N) = 0

¢Tx¢Nx + ¢Ty¢Ny + N (i)
x ¢Tx + T (i)

x ¢Nx +

N (i)
y ¢Ty + T (i)

x ¢Ny + T (i)
x N (i)

x + T (i)
y N (i)

y = 0 (64)

where the symbols with superscript (i) refer to a previous time-step of known values (i.e.
T(i+1) = T(i) + ¢T). Furthermore, from a geometric point of view, the curvature of the
loop at a current time-step is related to the normal and tangent vectors as:

· =
jjNjj
jjTjj2 (65)

where the curvature is assumed to be determined by local forces or nodal positions, as
discussed earlier. The norm (magnitude) of the current tangent vector is proportional to
the previous arc length of a segment. That is:

jjTjj = ´ (66)

where ´ is determined by the arc length of the previous time-step. Finally, the displacement
vector is perpendicular to the tangent direction of the considered node.

¢Py

¢Px
= ¡T

(i)
x

T
(i)
y

= ° (67)

where ° is a constant determined by previous tangent components. Thus, by introducing
an angle µ, which is the angle between the tangent vector and the x-direction, the six
independent unknowns can be reduced to only two: ¢Px and µ, such that all constraints
are automatically satis¯ed:

¢Px = ¢Px
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¢Py = °¢Px

¢Tx = ´cosµ ¡ T (i)
x

¢Ty = ´sinµ ¡ T (i)
y

¢Nx = ¡·´2sinµ ¡ N (i)
x

¢Ny = ·´2cosµ ¡ N (i)
y

Moreover, a linearization technique can be used to approximate sine and cosine func-
tions in terms of ¢µ, as long as the time-step is small, and hence the tangent angle
variation is small between time-steps. Based on the above constraints, Eq. ?? may ¯nally
be simpli¯ed with a reduced set of shape functions ~C as:

f±rig =
h
~C im(u)

i
f±qmg (68)

where:

f±rig =

½
±x
±y

¾
(69)

f±qmg =

8
>><
>>:

±PxB

±µB

±PyE

±µE

9
>>=
>>;

(70)

h
~C im(u)

i
=

· C 1 D1 C 2 D2

° C 1 D3 ° C 2 D4

¸
(71)

and

D1 = ¡´L C 3sinµB ¡ ·B´2
B C 5cosµB

D2 = ¡´E C 4sinµE ¡ ·E´2
E C 6cosµE

D3 = ´L C 3cosµB ¡ ·B´2
B C 5sinµB

D4 = ´E C 4cosµE ¡ ·E´2
E C 6sinµE

It is noted that the subscripts B and E refer to Beginning and End nodes of one segment
of the dislocation loop.

5.6 Adaptive P r otocols for N ode and T ime-step Assignments

Because of the evolving nature of dislocation line geometry as a result of strong interac-
tions, it is highly desirable to develop adaptive methods which capture essential physics
without excessive computations. Control of the magnitude of the computational time-
step, and nodal positions on each segment has a direct in°uence on the ¯nal accuracy of
DD simulations. For node redistribution, we ¯rst compute a reference curvature ¹· for the
entire loop, which is normally taken as the average curvature of all nodes. Then, we com-
pare the curvature ·i of each node with ¹·, and classify nodes into high curvature groups
(·i > ¹·) and low curvature groups (·i < ¹·). Finally, we increase the number of nodes
for each high curvature group and decrease the number of nodes for each low curvature
group. After adding or removing nodes, we redistribute the nodes evenly for that group.

25



To prevent the number of nodes from increasing or decreasing too fast, we only add or
remove one node at a time. If the number of nodes for a low curvature group is less than
a speci¯ed minimum, we keep the current nodes because a prescribed minimum number
of nodes is required to maintain the loop geometry. After redistributing nodes on each
segment, we calculate the displacement and tangent angle of each new node based on the
current loop geometry. The radius of curvature of each new node is determined by a linear
interpolation from old nodes for open loops, or by circular arc approximations for closed
loops. The highest curvature occurs always at ¯xed nodes or in the close proximity of
other dislocations. In regions of high curvature, large self-forces occur and the curvature
at the segment will be near its equilibrium value. Thus, the curvature in these special
locations can be determined directly from the equilibrium condition on the segment. The
entire geometry of the loop is ¯nally determined by using Eq. 58 at next time-step.

Time-step selection is determined by dislocation segment velocity and its adjacency to
other segments. The time-step is selected such that, on average, dislocation-dislocation
interaction is resolved within about 100 steps. If the dislocation density is ½, the average
distance between segments is on the order of ½¡1=2 » 10¡5 ¡ 10¡6 m. In fcc crystals,
the dislocation resistivity is on the order of 5 £ 10¡5 Pa s, while it is about 8 orders of
magnitude higher for screw segments in bcc crystals [83]. These considerations lead to a
time-step of » 1ns for fcc crystals and » 0:1s for bcc crystals at low temperatures. When
two loop segments approach each other, a short-range reaction occurs, and the time-step
must be reduced to determine whether the reaction will lead to annihilation or junction
formation. In case of annihilation, two loops join together and form di®erent new loops
as a mode of plastic recovery. On the other hand, junction formation leads to hardening
and stabilization of dislocation patterns. In either case, the minimum distance between
segments on the loop itself, or on two adjacent loops is determined by calculating all local
minimum distances from each node to a curved segment. By scanning all possible nodes
of on a loop, we obtain the minimum distance dmin between two loops or between two
segments on the loop itself. If this value is less than two times the maximum displacement,
i.e. 2dmax, then the time-step is adjusted to 0:25dmin=dmax. This procedure is repeated
until loop annihilation or junction formation is completed. After annihilation or junc-
tion formation is completed, the time-step is gradually increased to its maximum assigned
value, as discussed above. During short-range encounters, local dislocation segment ve-
locity can approach the sound speed, and inertial e®ects may have to be accounted for, if
one is interested in the exact details of the short-range reaction (see [70]).

If new loops are generated during the short-range reaction, all nodes on the loop are
rearranged. For loop junction formation, new loops are not generated, and the nodes are
ordered to allow formation of straight junction segments. However, ¯ve possible cases for
generating new loops are considered during segment annihilation. On the glide plane, a full
dislocation loop may be totally closed, or may have closure on other glide plane via sessile
threading arms. Thus, we may have one of the following possibilities:(1) annihilation of
two segments on the same open loop to produce one new open loop and one new closed
loop; (2) annihilation of two segments on the same closed loop to produce two new closed
loops; (3) annihilation of two segments on two di®erent open-loops to produce two new
open loops; (4) annihilation of two segments, one an open loop and the other on a closed
one to produce one new open loop; (5) annihilation of two segments on two di®erent
closed loops to produce one new closed loop. In each case, the nodes on generated loops
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are reordered.

6 E LAST I C FI E LD VARI AB LE S AS FAST SUM S

In this section, we present a reasonably self-consistent discussion of isotropic elastic the-
ory which leads to the present fast sum computational implementation. A number of
equivalent formulations are available in the literature [16], [15], [84]. However, because
the present development is mainly computational, we follow the tensor index formulation
of deWit [21], KrÄoner [18], and Kroupa [20]. The following discussion outlines the basic
notation and main relationships in elastcity theory, which will be used throughout this
section and associated appendices.

The position vector dyadic is written as: r = riei, where (ri = x; y; z) ,and (ei) are
three unit vectors along the Cartesian directions for (i = 1; 2; 3). The magnitude of the

position vector is: r = (riri)
1
2 , while the displacement vector is: u = uiei. The components

of the deformation gradient tensor are: ui;j = @ui
@rj

, while the components of the symmetric

strain tensor are given by: ²ij = 1
2(ui;j+uj;i). The equations of translational and rotational

equilibrium, and the stress-strain relations, respectively, are given by:

¾ij;j + fi = Cijkluk;lj + fi = 0 (72)

¾ij = ¾ji (73)

¾ij = Cijkl²kl = Cijkluk;l (74)

Where (Cijkl) is a fourth rank tensor of 81 components. Because the strain energy density
W = 1

2¾ij²ij = 1
2Cijkl²ij²kl is single valued, then: Cijkl = Cklij. Now, let I ´ ij, and

J ´ kl, and utilize the following engineering notation:

¾1 ´ ¾11; ¾2 ´ ¾22; ¾3 ´ ¾33; ¾4 ´ ¾23; ¾5 ´ ¾13; ¾6 ´ ¾12 (75)

²1 ´ ²11; ²2 ´ ²22; ²3 ´ ²33; ²4 ´ 2²23; ²5 ´ 2²13; ²6 ´ 2²12 (76)

Then, the stress-strain relationship can be expressed as: ¾I = CIJ²J , where I; J =
1; 2; 3; :::; 6. For an isotropic elastic solid, the number of independent elastic constants
are only two, given by the following relations:

C11 = C22 = C33 = ¸ + 2¹ (77)

C44 = C55 = C66 = ¹ (78)

C12 = C13 = C23 = ¸ (79)

Where ¸ = G and ¹ are Lam¶e's constants. The general stress-strain equation may ¯nally
be put in the form:

¾ij = 2¹²ij + ¸±ij²kk (80)

It is also easy to show that, for an isotropic material, the elastic constants can be cast in
the form:

Cijkl = ¹(±ik±jl + ±il±jk) + ¸±ij±kl (81)
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6.1 T he Displacement Field

The displacement ¯eld associated with a dislocation loop is given in its computational
form in this section. We follow the development of deWit [21], [54], and provide su±cient
detail to allow for future elaborations. Derivation steps are given in Appendices B & C.

The dislocation is formed by cutting over an arbitrary surface S, followed by rigid
translation of the negative side of (S¡), while holding the positive side (S+) ¯xed, as
illustrated in Fig. 11. De¯ne the dislocation line vector, t , as the tangent to the disloca-
tion line. The Burgers vector b is prescribed as the displacement jump condition across
the surface (S). The elastic ¯eld is based on Burgers equation [85], which de¯nes the
distribution of elastic displacements around dislocation loops. The strain tensor can be
obtained from deformation gradients, while the stress tensor is readily accessible through
linear constitutive relations. Once the stress and strain tensors are found, elastic self
and interaction energies can be obtained. Referring to Fig. 11, we de¯ne the dislocation
loop by cutting over the surface S, translating the negative side by the vector b, while
holding the positive side ¯xed. Along any linking curve ¡, the closed line integral of the
displacement vector is b. Thus:

b =

I

¡

du ; orbi =

I

¡

ui;jdxj (82)

For a given force distribution fm (r̂) in the medium, the displacement vector is given by:

uk (r) =

Z

allspace

Ukm (r¡ r̂) fm (r̂) d3r̂ (83)

Where Ukm (r ¡ r̂) are the isotropic elastic Green's functions, given by:

Ukm (R) =
1

8¼¹

·
±kmR;pp ¡

¸ + ¹

¸ + 2¹
R;km

¸

For the volume V̂ , bounded by the surface Ŝ, and upon utilization of the divergence
theorem, we obtain (see Appendix B):

um (r) = ¡bi

Z

Ŝ

CijklUkm;l (r ¡ r̂) dSj (84)

For an elastic isotropic medium, the fourth rank elastic constants tensor is given in
terms of Lam¶e's constants. Substituting Eq. 81 into Eq. 84, and re-arranging terms, the
displacement vector is given by:

um(r) =
1

8¼

Z

Ŝ

bmR;ppjdŜj

+
1

8¼

Z

Ŝ

(blR;ppldŜm ¡ bjR;ppmdŜj)

+
1

4¼
(

¸ + ¹

¸ + 2¹
)

Z

Ŝ

(bjR;ppmdŜj ¡ bkR;kmjdŜj) (85)
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Figure 11: Creation of a dislocation by a cut on the surface (S)

Eq. 85 can be converted to a line integral, if one recalls Stokes Theorem, extended to
any rank tensor T , expressed as:

R
S
2ijk Tabc¢¢;idSk =

H
C

Tabc¢¢dlj. Noting the relationship

between the Kronecker and permutation tensors, i.e. 2ijk2klm= ±il±jm ¡ ±im±jl, allows
us to write Stokes theorem as:

R
S

(±il±jm ¡ ±im±jl)Tabc¢¢;jdSi =
H
C
2lmj Tabc¢¢dlj . Using the

substitution property of the Kronecker delta, Stokes' theorem can also be expressed in the
hat coordinates in the following form:

Z

Ŝ

³
Tabc¢¢¢;mdŜl ¡ Tabc¢¢¢;ldŜm

´
=

I

C

2klm Tabc¢¢¢dlk (86)

The ¯rst integral in Eq. 85 is the solid angle fraction subtended by the loop times the
burgers vector ( see Appendix A), while utilization of Eq. 86 can reduce the second and
third terms to their line integral form. Therefore, a convenient form for the displacement
vector components is given by:

ui = ¡bi

4¼
+

1

8¼

I

C

·
2ikl blR;pp +

1

1 ¡ º
2kmn bnR;mi

¸
dlk (87)

Eq. 87 determines the displacement ¯eld of a single dislocation loop. For a loop ensemble,
one can use the property of linear superposition. Thus, the line integral in Eq. 87 can be
converted into a fast numerical sum over the following set: quadrature points (1 · ® ·
Qmax) associated with weighting factors (w®), loop segments (1 · ¯ · Ns), and number
of ensemble loops (1 · ° · Nloop). Therefore, a computational form for the displacement
vector is:

ui =
1

4¼

NloopX

°=1

8
<
:¡bi +

1

2

NsX

¯=1

QmaxX

®=1

w®

µ
2ikl blR;pp +

2kmn bnR;mij

1 ¡ º

¶
r̂k;u

9
=
; (88)
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In appendix A, we list successive derivatives for the modulus of the radius vector R,
surface and line integral forms of the solid angle , and its derivatives. Detailed derivation
steps in the equation sequence can be reviewed in Ref. [57].

6.2 Str ain and Str ess Fields

Once the displacement ¯eld is determined, the strain and stress ¯elds can be readily
obtained. If we denote the deformation gradient tensor by uij, the strain tensor eij in
in¯nitesimal elasticity is its symmetric decomposition: uij = 1

2(ui;j +uj;i)+ 1
2(ui;j ¡uj;i) =

eij + !ij, where !ij is the rotation tensor. Taking the derivatives of Eq. 85 yields the
deformation gradient tensor:

ui;j = ¡bj;i

4¼
+

1

8¼

I

C

·
2jkl blR;ppi +

1

1 ¡ º
2kmn bnR;mij

¸
dlk (89)

From which the following strain tensor is obtained:

eij = ¡bi;j + bj;i

8¼
+

1

8¼

I

C

·
1

2
(2jkl blR;i+ 2ikl blR;j);pp +

2kmn bnR;mij

1 ¡ º

¸
dlk (90)

The derivatives of the solid angle  are given by Eq. 112 in Appendix A, which can now
be used to derive the strain tensor components as line integrals.

eij =
1

8¼

I

C

·
¡1

2
(2jkl biR;l+ 2ikl bjR;l¡ 2ikl blR;j¡ 2jkl blR;i);pp +

2kmn bnR;mij

1 ¡ º

¸
dlk

(91)
Similar to Eq. 88, the fast sum equivalent of Eq. 91 is now given by:

eij =
1

8¼

NloopX

° = 1

NsX

¯ = 1

QmaxX

®= 1

w®

µ
¡1

2
(2jkl biR;l+ 2ikl bjR;l¡ 2ikl blR;j¡ 2jkl blR;i);pp +

2kmn bnR;mij

1 ¡ º

¶
r̂k;u

(92)

To deduce the stress tensor, we use the isotropic stress-strain relations of linear elas-
ticity. First, the dilatation is obtained by letting both i&j = r in Eq. 91 above:
err = ¡ 1

8¼
1¡2º
1¡º

H
C
2kmn bnR;mrrdlk. Using the stress-strain relations: ¾ij = 2¹eij +¸err±ij,

we can readily obtain the stress tensor.

¾ij =
¹bn

4¼

I

C

·
1

2
R;mpp (2jmn dli+ 2imn dlj) +

1

1 ¡ º
2kmn (R;ijm ¡ ±ijR;ppm) dlk

¸
(93)

The computational fast sum for the stress tensor is given below in compact form, while
explicit representation are listed in appendix D.

¾ij =
¹

4¼

NloopX

° = 1

NsX

¯ = 1

QmaxX

®= 1

bnw®

·
1

2
R;mpp (2jmn r̂i;u+ 2imn r̂j;u) +

1

1 ¡ º
2kmn (R;ijm ¡ ±ijR;ppm) r̂k;u

¸

(94)
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6.3 I nter action and Self E ner gies

The mutual interaction between two dislocation loops can be obtained by a volume in-
tegration of the energy density resulting from the stress ¯eld of one loop, acting on the
strain ¯eld of the other, as given below.

EI =

Z

V
¾

(1)
ij e

(2)
ij dV (95)

where ¾
(1)
ij is the elastic stress ¯eld from the ¯rst dislocation loop and e

(2)
ij is the elastic

strain tensor originating from the second one. After a lengthy derivation, deWit [21]
provided a simple double line integral formulation for the interaction energy as:

EI = ¡
¹b

(1)
i b

(2)
j

8¼

I

C ( 1)

I

C ( 2)

·
R;kk

µ
dl

(2)
j dl

(1)
i +

2º

1 ¡ º
dl

(2)
i dl

(1)
j

¶
+

2

1 ¡ º
(R;ij ¡ ±ijR;ll) dl

(2)
k dl

(1)
k

¸

(96)
In Eq.(96), the line integral is carried over the two space curves C(1)&C(2). Thus, the
corresponding fast sum for the interaction energy reads:

EI = ¡
¹b

(1)
i b

(2)
j

8¼

N
( 1)
sX

¯ ( 1) =1

N
( 2)
sX

¯ ( 2) =1

Q
( 1)
maxX

®( 1) =1

Q
( 2)
maxX

®( 2) =1

w® ( 1) w® ( 2) £
·
R;kk

µ
r̂
(2)
j;u r̂

(1)
i;u +

2º

1 ¡ º
r̂
(2)
i;u r̂

(1)
j;u

¶
+

2

1 ¡ º
(R;ij ¡ ±ijR;ll) r̂

(2)
k;ur̂

(1)
k;u

¸
(97)

The self-energy of a single dislocation loop can be calculated as 1
2 the interaction energy

between two identical dislocation loops separated by a distance r0. The contribution to
the self energy from the dislocation core can be estimated from atomistic calculations, and
is usually on the order of 5-10% of the self energy [20]. However, the core contribution
can be incorporated by adjusting the value of r0. In a fairly rough evaluation, we may
take the core energy into account by setting r0 = b

2 . (cf. [21])

7 AP P LI CAT I ON S OF T H E FAST SUM M E T H OD

In this section, we discuss several test cases which both illustrate the utility of the fast
sum method, and validate its accuracy. We will ¯rst present results of computations for
the elastic ¯eld of isolated circular shear and prismatic dislocation loops. Since some
analytical solutions are available for these cases, we will compare the results of the fast
sum method to analytical results. The issues of numerical convergence and accuracy are
also discussed. In the latter part of this section, we present results of calculations of the
elastic ¯eld of typical complex-shape loops, representing familiar Frank-Read dislocation
sources in crystalline materials.

7.1 Str ess Field of Simple Loops

1. Circular Slip Loop
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Figure 12: Normal stress iso-surface, ¾11, in the local loop coordinates, where the 1-axis
is [010]-direction and the 3-axis is the [110]-direction.

We consider here the stress distribution in the vicinity of a shear (slip) loop in a
BCC crystal. The circular loop has a radius of 200 jbj. The loop is oriented for
primary slip (i.e. (110)=1

2f111g). In the ¯gures shown in this section, all distances
are given in units of jbj,while stress values are relative to ¹. In the local coordinates
of the (110)-plane, Fig. (12) shows an iso surface for the normal stress around the
dislocation loop. It is clear that the stress surface has an orientational dependence
on the < 111 >-slip direction. On the glide plane itself, the normal stress vanishes,
while the stress surface is symmetric with respect to the loop center. The shear
stress components ¾12 and ¾23 are displayed in FIGS. 5 and 6. While ¾12 shows
a characteristic "lope" structure of the iso-surface, ¾23 displays a crescent shape,
where the maximum width is for pure edge, while the stress vanishes for the screw
component of the loop.

The convergence and computational speed of the fast sum method is demonstrated
in reference [56]. The dependence of the numerical results on the number of seg-
ments, segment spline type, and quadrature indicate that the method is numerically
convergent, as the number of segments and/or quadrature integration points is in-
creased [56]. The issue of numerical accuracy of the method is addressed next, by
comparison to one of the few available analytical solutions in the literature.

2. Circular Prismatic Loop

Kroupa [20] derived analytical solution for the stress ¯eld of a prismatic circular
dislocation loop in an in¯nite isotropic medium. His explicit out-of-plane normal
stress in the loop plane (i.e., z = 0) ¾z reads:

¾z
¹b

2¼R(1¡º)

=
2

1 ¡ ( x
R)2

E(
x

R
) (0 · x

R
< 1); (98)
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Figure 13: Shear stress iso-surface, ¾12, in the local loop coordinates, where the 1-axis is
[010]-direction and the 3-axis is the [110]-direction.

Figure 14: Shear stress iso-surface , ¾23, in the local loop coordinates, where the 1-axis is
[010]-direction and the 3-axis is the [110]-direction.
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Figure 15: A comparison between numerical (current method) and exact analytical
(Kroupa) solutions for the normal stress component ¾zz of a circular prismatic loop.

¾z
¹b

2¼R(1¡º)

= 2
R

x

"
K(

R

x
) ¡ 1

1 ¡ (R
x )2

E(
R

x
)

#
(
x

R
> 1) (99)

where K and E are the complete elliptic integrals of the ¯rst and second kind,
respectively, x is the distance from loop center, and R the loop radius.

In order to evaluate the accuracy of the present fast sum method, a comparison
between Kroupa's analytical solution for the normal stress component, ¾zz, of a
circular prismatic loop and our numerical calculations is shown in Fig. 7. It can
be seen that the error in the value of the normal stress depends on the number
of segments and on the distance between the ¯eld point and the dislocation core.
The normal stress shows the characteristic asymmetric singularity at the dislocation
line, where the stress ¯eld decays to zero at large distances from the core, while it
remains ¯nite at the loop center. A more quantitative measure of the error is shown
in Fig. 8, where the percent error between the numerical and analytical solutions is
shown as a function of distance along the x-axis on the loop plane. It is seen that
the numerical accuracy is below 4% for only four cubic spline segments, except very
close to the dislocation core. The number of quadrature integration points is kept
at 16 for all cases studied in the ¯gure. The highest error (below 9%) is manifest at
distances less than 1.5 jbj from the dislocation core, when the number of segments is
less than 8. However, the maximum error is less than 0:3% at such close distances,
when the number of segments is increased to 16. It is important to note that such
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Figure 16: Dependence of the error between numerical and analytical (Kroupa) normal
stress results on the distance from loop center, for various number of segments.

high accuracy is needed in calculations of the self-force via the Brown formula [52],
or its variants [74], [48]. When the stress ¯eld is averaged at distances of §² from
the dislocation core, the singularity is removed and a convergent, ¯nite self-force is
obtained. Thus, the accuracy of ¯eld evaluation is apparent.

7.2 I nter action and Self E ner gies

To demonstrate the capability of our fast sum calculation of the interaction energy(EI),
we specify the two dislocations to be pure prismatic coaxial circular loops of equal radius
and of the same Burgers vector. In such case, the exact analytical result is available from
[21] as:

EI

2¼R¹b2
=

·

2¼(1 ¡ º)
(K(·) ¡ E(·)) (100)

in which · =
h

1
1+(d=2R)2

i1=2
and d is the normal distance between the two parallel loop

planes. Fig. 9 shows the results of our calculations, as compared with exact analytical
results. The interaction energy is shown as a function of distance between the two loop
planes. While the number of quadrature integration points in these calculations is kept at
128, the interaction energy is convergent as the number of segments is increased. This is
particularly important at close distances, as can be seen from the ¯gure.

Furthermore, Hirth and Lothe [16] provided an explicit expression for the self-energy
of a circular slip loop as:

Es

2¼R¹b2
=

2 ¡ º

8¼(1 ¡ º)

·
¡ln

µ
tan

½

4R

¶
¡ 2cos

½

2R

¸
(101)
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Figure 17: A comparison between numerical (current method) and analytical (deWit)
results for the interaction energy between two prismatic loops.

where ½ is the dislocation core size and is taken as 1
2jbj , as suggested by deWit [21]. Fig.

10 shows the dependence of the self-energy on the loop radius, computed numerically, and
compared to the analytical solutions [16]. The percent error between the numerical and
analytical results is shown in Fig. 11. It is interesting to note that, even for four cubic
spline segments, the error is rather small ( a few percent), when the loop radius is in the
tens-to-hundreds of jbj. However, it is clearly demonstrated that more spline segments is
necessary for larger size loops, and that the error can generally be brought down below
1%.

7.3 Complex Loop Geometr ies

1. Single Frank-Read Source

In typical Dislocation Dynamics computer simulations, heavy initial dislocation mi-
crostructure is introduced, and its subsequent evolution is followed by solving ap-
propriate equations of motion. Visualization of the stress ¯eld associated with the
evolving microstructure requires additional techniques to mask speci¯c features, oth-
erwise the 3-D computer image is hopelessly complicated to be useful. Nonetheless,
it is instructive to investigate the nature of the elastic ¯eld resulting from reasonably
complex loop con¯gurations. In this section, we present results for two common dislo-
cation problems: an isolated Frank-Read (FR) dislocation loop, and two interacting
such sources in a Molybdenum single crystal. An initial straight edge dislocation
segment, lying on the (1¹11)-plane is subjected to an applied stress. The pinned ends
of the segment are located at x = §100jbj from the plane center of the crystal.
The expansion of the dislocation segment results in the dislocation loop, shown in
Fig. 12, before annihilation of the two opposite screw components takes place. The
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Figure 18: A comparison between numerical (current method) and analytical (Hirth and
Lothe) results for the self energy of a slip loop.

Figure 19: Dependence of the error between numerical and analytical solutions in Fig. 18
above on the loop radius and number of cubic spline segments.
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Figure 20: Normal stress iso-surface (186 MPa), ¾11; for a single Frank-Read source in
Molybdenum

pinned ends of the source are connected to the crystal surface by two rigid threading
dislocations. Fig. 12 shows the normal stress iso-surface of (186 MPa)associated
with the FR loop. The iso-surface shows orientational dependence on the Burgers
vector, as well as symmetry with respect to the (111)-plane. Note the "dimples"
in the stress surface which result from the deviation of the FR loop from perfect
circular symmetry, as investigated in the earlier section.
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Figure 21: Normal stress distribution resulting from the interaction of the single FR source
with the surface of a Molybdenum single crystal

Figure 22: Shear stress distribution resulting from the interaction of a single FR source
with the surface of a Molybdenum single crystal
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2. Interacting FR Dislocation Loops

So far, we have assumed that the crystal is elastically isotropic and of in¯nite dimen-
sions. The solution method relies on the existence of analytic forms for the elastic
Greens functions, and those are not available for ¯nite media. Recently, Cleveringa,
Needleman and Van der Giessen [33] have proposed a superposition method to sat-
isfy the boundary conditions of crystals under external constraints. First, the surface
traction resulting from the interaction of the dislocation loop with the crystal surface
are computed. Once this is achieved, a Finite Element Method (FEM) is used to
calculate the stress ¯eld resulting from the same traction, with a reversed sign (so-
called image traction, in addition to other externally applied forces. The case of a
free crystal is somewhat special, because only image traction boundary conditions
can be imposed at the surface. Thus, and since a full dislocation loop is mechani-
cally balanced, only rigid body displacements need to be carefully eliminated. We
choose here to use the threading dislocation arms, which intersect the surface at
two points, to eliminate rigid body rotation and translation. To show the e®ects of
crystal boundaries, we follow the FEM approach, as suggested by Cleveringa et al.
[33]. Fig. 13 shows the results of FEM calculations for the normal stress component
on the crystal surface, resulting from image traction. It is clear that the FR source is
pulling on the upper surface, and that additional stress concentrations on the x¡ z
surface are associated with the rigid arms of the threading dislocation. The image
shear stress ¾13 is also shown in Fig. 14, where the surface displacements of the
crystal are scaled to show the shape of a free crystal which contains an FR source.
Note the symmetry with respect to the (111)-plane of positive and negative shear,
and the high shear stress around the end points of the threading dislocation.

When FR sources are activated on the same or neighboring slip planes, very complex
patterns can emerge [48]. Interaction of FR sources appears to be one of the main
mechanisms which control complex dislocation patterns. For this reason, we study
the stress ¯eld of two such FR sources, which are both located on the (1¹11)-plane.
The length of each initial straight edge segment is taken as 150jbj. one pinned end of
the ¯rst FR source is located at x = 225jbj, and at x = ¡225jbj for the second source.
The other end is located by rotating the initial segment (i.e. length = 150jbj with
an angle of µ = 220o, and µ = 100o for the ¯rst and second FR source, respectively.

The normal stress ¾33 = ¡130 MPa is shown in Fig. 15, while the shear stress
iso-surface ¾13 = 170 MPa is shown in Fig. 16. The normal stress iso-surface shows
a split about the (111)-plane, but because of the initial lack of symmetry of the
dislocation loop lines, the stress surface is likewise un symmetric. However, Fig. 16
shows an interesting mirror-like symmetry of the stress iso-surface and the original
geometry of the FR-sources. This observation is only seen at high levels of stress,
where there is nearly no overlap between the stress ¯elds of various segments of the
dislocation microstructure. In any event, going beyond the con¯gurations presented
here would introduce additional complexities, which are best utilized in computations
of Peach-Kohler forces on dislocation segments.
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Figure 23: Normal stress iso-surface(-130 MPa), ¾33; for two interacting Frank-Read
sources in Molybdenum

Figure 24: Shear stress iso-surface(170 MPa), ¾13; for two interacting Frank-Read sources
in Molybdenum
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8 COM P UT E R SI M ULAT I ON OF P LAST I C DE FORM A-
T I ON

8.1 I llustr ative E xample: I nitial B ow-out of a P inned Dislocation

To illustrate the computational procedure involved in the present method, we consider
here a very simple example, where the equations of motion can be solved analytically
for one time-step. Our purpose here is to highlight the essential features of the present
computational method. More complex examples, which require extensive computations
will be given in the next section. Assume that we are interested in determining the shape
of a dislocation line, pinned at two ends and under the in°uence of pure shear loading
on its glide plane. The glide mobility is assumed to be isotropic and constant, and the
segments will be taken as linear for illustrative purposes only. The dislocation line is
pinned at points L and R, with only two linear and equal segments connected at point A,
as shown in Fig. 25. We will compute the shape of the line, advancing it from its initial
straight con¯guration to a curved position. Under these simpli¯cations, the variation in
Gibbs free energy, ±G for any one of the two segments is given by:

±G = ¡B

1Z

0

V ±r j ds j= ¡
1Z

0

f t±r j ds j (102)

Now, we expand the virtual displacement and velocity in only two shape functions: C 1 =
u; C 2 = 1 ¡ u. Thus:

±rk = ±qik C i (103)

Vk = qik;t C i (104)

Since we allow the displacement to be only in a direction normal to the dislocation line (y-
direction), we drop the subscript k as well. For arbitrary variations of ±qik, the following
equation is applicable to any of the two segments (LA; AR).

¡
1Z

0

¢t £ (fPK + fS)C i j ds j= ¡B

1Z

0

¢qm C m C i j ds j (105)

Eq. 105 can be explicitly integrated over a short time interval ¢t. The resistivity matrix

elements are de¯ned by: °im ´ B
1R
0
C i C m j ds j, and the force vector elements by: fi ´

1R
0
C i £ (fPK + fS) j ds j. With these de¯nitions, we have the following (2 £ 2) algebraic

system for each of the two elements:

¢qm°im = fi £ ¢t (106)

For any one linear element, the line equation can be determined by:

·
x
y

¸
=

·
u 0
0 (1 ¡ u)

¸ 8
<
:

q1

q2

9
=
; (107)
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Figure 25: Nodal displacements for the ¯rst time-step of an initially straight segment.

And the resistivity matrix can the be simpli¯ed as:

[°mn] =
Bl

6

·
2 1
1 2

¸
(108)

Furthermore, as a result of the shear stress ¿ and the absence of self-forces during the
¯rst time-step only, the distributed applied force vector reads:

ffmg =
¿bl

2

8
<
:

1

1

9
=
; (109)

Since the dislocation line is divided into two equal segments, we can now assemble the
force vector, sti®ness matrix and displacement vector in the global coordinates, and arrive
at following equation for the global nodal displacements ¢Qi:
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9
=
; (110)

An important point to note here is that at the two ¯xed ends, we know the boundary
conditions, but the reaction forces needed to satisfy overall equilibrium are unknown.
These reactions act on the ¯xed obstacles at L&R, and are important in determining the
overall stability of the con¯guration (e.g. if they exceed a critical value, the obstacle is
destroyed, and the line is released). If ¢Q1 = ¢Q3 = 0 at both ¯xed ends, we can easily
solve for the nodal displacement ¢Q2 = 3

2
¿b¢ t

B and for the unknown reaction forces at the
two ends: F1 = F3 = ¡1

8¿bl. If we divide the dislocation line into more equal segments,
the size of the matrix equation expands, but nodal displacements and reaction forces can
be calculated similarly. Results of analytical solutions for successively larger number of
nodes on the dislocation segment are shown in Fig. 25.
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Figure 26: Operation of the Frank-Read source for isotropic dislocation mobility on the
glide plane.

8.2 Dislocation Loop Gener ation

Generation of new dislocation loops is an important process in determining the rate of
hardening in materials under deformation. The basic mechanism involves the propaga-
tion of a dislocation segment from two immobile (¯xed) ends under the action of applied
stress. If the applied stress exceeds the resistance o®ered by the self-force, lattice friction,
and additional forces from nearby dislocations, the segment length will increase. In fcc
metals, the Peierls ( friction) stress is very small, on the order of 10¡5¹, and is thus lower
than typical applied stresses of 10¡3¹. Dislocation mobility is isotropic at all relevant
temperatures because of the low value of Peierls stress in comparison to applied and self
stresses on dislocation segments. Thus, the in°uence of the underlying crystal structure
on dislocation generation is not pronounced. On the other hand, high anisotropic Peierls
stresses in both fcc and diamond cubic (dc) materials (e.g. Si) imposes constraints on the
shapes of generated dislocation loops in these systems, as discussed next.

8.2.1 Isotropic Mobility of Screw and Edge Segments

Fig. 26 shows the results of shape computations for the Frank-Read source in a bcc
crystal at high temperature, where the dislocation segment mobility can be assumed to be
isotropic on the < 110 > glide plane. In this simulation, we use composite quintic spline
segments to construct the loop after each time-step computation of the nodal displacement
and tangent angle. The loop starts from an edge line segment with two ¯xed ends normal
to the < 11¹1 >-direction, for which we assign only three nodes at the ¯rst time-step. The
tangent vectors at the two end nodes are those of circular arcs constructed from three
adjacent nodes. When the loop expands, more nodes are added around the two ¯xed end
nodes (high curvature regions), while the number of nodes is automatically reduced in the
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Figure 27: Details of nodal arrangements before annihilation of opposite-character seg-
ments.

low curvature region of the loop. After each time-step, the minimum distance between
loop segments is calculated. If the minimum distance is detected to be less than 6jbj,
and cos¡1(t1 ² t2) = (1: § 0:05)¼, the two segments are annihilated. Here, t1&t2 are
the tangent vectors for segments 1 and 2, respectively. The value of 6jbj for the critical
annihilation distance in fcc is taken from experimental measurements on Cu [86] and Ni
[87]. Results of calculations are shown in Fig. 26, where nodal positions are indicated on
each loop. Details of node rearrangement before and after an annihilation reaction between
two curved segments on the Frank-Read source are shown in Fig. 27. The in°uence of
the self-force on dislocation motion is signi¯cant, especially during short-range interaction
of dislocation segments. In Fig.28, the angular distribution of the self-force on the glide
dislocation loop, immediately after its formation by annihilation of opposite segments on
the original dislocation line is shown. It is clear that the distribution of the self-force is
negative everywhere on the loop, except for the small range of angles surrounding the
newly formed dislocation segment. In this region, the self-force is positive, and thus it will
assist the applied stress in expanding this curved region faster than others on subsequent
time-steps. The action of applied and self-forces tend to even out curvature variations on
the entire loop, once the short-range reaction is completed. The self-force is seen to be
higher for the screw segments at µ = 90o&270o, as compared to segments with a pure edge
character.

Fig. 29 illustrates the operation of a single Frank-Read source on the < 111 >-plane
in an fcc metal, where discrete barriers to dislocation motion are successively overcome by
the expanding loop. The computational protocol detects the existence of random barriers,
such as other dislocations piercing the plane or defect clusters, and the loop is divided into
two segments anchored at each barrier as a new node. The barrier strength is determined
by a critical angle between the tangent to the dislocation and the normal to the node
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Figure 28: Angular variation of the self force (units of ¾
¹a) in copper for the Frank-Read

source after segment annihilation. The angle µ is de¯ned in the insert. All distances on
the ¯gure are in units of the lattice constant.
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at the bottom of the barrier. This critical angle has been determined to be » 70o for
dislocation intersections in Cu by MD simulations [88].

8.2.2 BCC metals at low temperature

In bcc metals, the primary slip system is f110g < 111 >, although slip on secondary
f112g&f123g planes are possible [46]. Slip trace analysis at low temperature [89], [90]
indicates that the main slip planes are f110g, and that dislocations are either of the screw
or edge type. At temperatures below Ta » 0:15Tm, dislocations in bcc metals tend to move
as straight lines, indicating that the mobility of the edge component is extremely high [83].
The mobility of screw segments is controlled by double kink nucleation below the athermal
temperature, Ta. Peierls lattice friction stress on screw components is very high, and the
corresponding mobility is low. As the temperature increases, the in°uence of lattice friction
on screw component mobility is reduced, and the mobility of screw and edge dislocations
become comparable. It is expected, therefore, that dislocations become very straight at
low temperatures, and that signi¯cant curvatures develop at higher temperatures. To
adequately represent this physical picture, we use composite cubic spline curves joined
with linear segments when necessary, and still maintain C2 continuity at all nodes. In this
case, the tangent directions of each curved segment are pre-determined by crystallography
(i.e. < 111 >-directions for screw components), and only the magnitude of the tangent
vector needs to be calculated from the condition of continuity. Additionally, nodes on
expanding loops in this case are not re-distributed, but are selected to ensure construction
of polygonal loop shapes, as is experimentally observed at low-temperature [90]. The
construction procedure of polygonal loop geometry is described as follows.

First, straight linear segments are assigned parallel to speci¯c crystallographic direc-
tions (i.e. < 111 >) for screw components. The displacement is computed for the entire
linear segment in the normal edge direction. Then, two adjacent nodes at each corner
of a the resulting rectangle are assigned, such that the distance of each node from the
corner is proportional to the magnitude of the displacement, which is determined by the
anisotropic mobility. Finally, after nodes are generated, the tangent direction of each
node is aligned with the side of the polygon or is assigned a prescribed angle with the
polygonal direction as an additional degree of freedom. For example, if the temperature is
increased in bcc crystals, slight curvatures can be expected, and the tangent magnitudes
can be solved for by applying the condition of C2 continuity (Eq. 57). It is noted that
at very low-temperatures in bcc metals, the mobility of edge components (kinks) is much
higher than that of screw segments, and thus dislocation lines will be predominantly of
the screw type. These features of adaptive shape computations are illustrated in Fig. 30
for low-temperature and Fig. 31 for higher temperatures.

8.2.3 Dislocation Sources in Si

Motion of dislocations on the glide plane of dc crystals, such as Si, occurs by breaking and
re-construction of strong covalent bonds. Thus, the resistance of the lattice to dislocation
motion is signi¯cant up to very high temperatures (e.g 1200 K in Si). The dislocation
must overcome a large energy barrier in the direction of maximum bond strength (i.e. the
three < 110 > close-packed directions on the f111g-family of slip planes), and a smaller
one in directions §60o to those primary ones. Dislocation segment mobility in Si is rather
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Figure 29: Interaction between a Frank-Read source and discrete barriers in fcc metals.

Figure 30: Double-ended Frank-Read source in bcc metals. The straight segments are
either screw or edge, while the curved corners are of mixed type.
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Figure 31: Dislocation loop generation by the Frank-Read mechanism for anisotropic
mobility of screw and edge components.

Figure 32: Dislocation generation in covalently-bonded silicon. The directions of the
hexagon sides are along < 111 >-orientations for screw segments, and §60o for mixed
ones.
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Figure 33: Double-ended Frank-Read source in silicon made visible by copper decoration.
Taken from the work of W. C. Dash [92]

low, which leads to a time-step on the order of 0:01s, similar to the situation in bcc metals
[91].

When general cubic spline segments are used, we must solve for tangent vectors at
each node, in addition to nodal displacements in order to generate the dislocation loop
geometry at successive time-steps. However, for special polygonal loop geometries, ad-
ditional constraints are needed to maintain accurate loop pro¯les. For this purpose, we
use two types of segments: linear ones for the sides, and curved segments for polygonal
corners. The curvature of all nodes is thus constrained to be zero, which guarantees the
alignment of polygonal sides to crystallographic directions, as can be seen in Fig. 32. The
procedure outlined above produces hexagonal loops with rounded corners, in agreement
with the experimental observations on dislocation sources in Si by Dash [92], as can be
seen in Figs. 33 and 34.

8.3 Dislocation Loop I nter actions

In this section, we illustrate the application of the present parametric method and its asso-
ciated computational protocols to several problems involving the interaction of dislocation
loops. In Fig. 35, two initial screw segments of equal length are assumed to be collinear,
and of the same initial length on the [110]-slip plane of a bcc crystal at high temperature,
and a high shear stress is applied on the slip plane. Bowing of the two segments is tracked
with nodal displacements and tangent vector direction, and the loops are reconstructed by
quintic spline segments after each time-step. The process is repeated till any two curved
segments on the same loop, or on the two di®erent loops, approach each other. The an-
nihilation criterion is applied, leading to the loop pro¯les shown in Fig. 35. The applied
stress is higher than the maximum value of the self energy after the two loops join one
another, because the nodal curvatures are much smaller than corresponding values near
the ¯xed ends of the each loop. Hence, further nodal displacements are not in°uenced as
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Figure 34: Single-ended source of the Frank-Read type in silicon, made visible by copper
decoration. Notice the cusps in some of the dislocations. Trails due to defects left behind
on moving, are visible behind the cusps. Taken from the work of W. C. Dash [92]

Figure 35: Coplanar dislocation loop interaction
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Figure 36: Formation of a dislocation junction in bcc metals

Figure 37: Computer simulation of forest hardening in Cu.
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Figure 38: 3-d computer simulation of the initial dislocation microstructure in bcc vana-
dium. the dislocation density is 109cm¡2.

much with nodal curvatures, once the two loops join together as a single loop. Another
illustration of loop-loop interaction is shown in Fig. 36, where two glide loops on di®erent
f111g-planes interact and form a sessile junction at the intersection between the two glide
planes. In this case, the Burgers vector of the resulting junction does not lie on any of the
two slip planes.

Fig. 37 shows the results of computer simulations for the interaction between a slip
dislocation on the < 111 >-glide plane in copper, after it is emitted from two ¯xed ends
of a Frank-Read source with small defect clusters (Stacking Fault Tetrahedra (SFT)) in
irradiated copper single crystals. The dislocation lines represent successive advancement
stages under an applied shear stress. The corresponding values of the critical applied
shear stress are: 93, 123, 154, and 185 MPa, respectively. A random distribution of SFT
is introduced on the glide plane at an average spacing of 20nm. The dislocation line seeks
the nearest SFT and bends around it to a critical angle of » 80o before the obstacle is
overcome. This critical angle is higher than the value attributed to dislocation-dislocation
intersection in Cu, because the SFT is considered a weak obstacle.

8.4 Dislocation M icr ostr uctur e E volution

Computer simulations of dislocation microstructure evolution in bcc metals have been
initiated, with the dislocation microstructure represented as dislocation loops inside a
three-dimensional cube of 3 micron side-dimensions. Dislocations at low temperature in
bcc metals tend to be straight, and mostly screw , and they lie along < 111 >-directions.
The initial microstructure of a dislocation distribution in a vanadium crystal is shown in
Fig. 38, while a TEM slice is shown in Fig. 39. the dislocation density is 109cm¡2. As
deformation continues, the dislocation density increases, and strain hardening commences.
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Figure 39: Computer-generated TEM -picture of the dislocation structure of Fig. 38.

On-going research is aimed at determination of the stress-strain constitutive relationship
from the microstructure shown in Fis. 38, and 39.

9 CON CLUSI ON S

The fast sum method, which is based on a combination of dislocation loop geometry param-
eterization, and numerical quadrature integrations along parameterized curves is shown
to be computationally feasible and highly accurate. All calculations involve simple alge-
braic operations, which can be systematically carried out by straight-forward computer
programming. Although we used FORTRAN-90 to implement the results of calculations,
even spreadsheets on personal computers can be e®ectively utilized. The method is as
e±cient as analytical solutions, especially because of the index structure associated with
tensor notation (i.e. the use of DO loops). However, because analytical solutions are
available only for a limited number of special cases, the present approach can be used
for calculations involving complex loop geometries. The present method is primarily in-
tended for applications in Dislocation Dynamics computer simulations, where the need
for accuracy is critical in close-range dislocation encounters. Moreover, one may consider
the present method as an extension of the FEM technique in continuum mechanics. A
variety of parameterized elements can thus be chosen ( in much the same way as in the
FEM approach) to handle special dislocation deformation problems. The method may also
be exploited in crack problems, where dislocation distributions can be used to represent
complex crack surfaces.

To handle the e®ects of free crystal surfaces on the redistribution of the elastic ¯eld
inside the crystal, and hence on computed Peach-Kohler forces, the superposition method
of Cleveringa et. al. is extended to 3-D applications. While only 2-D problems have

54



been solved so far by their method, we show that 3-D problems can also be successfully
implemented. However, the simple problem shown here required almost 10,000 elements,
with an associated large number of degrees of freedom. Other methods (e.g. the Boundary
Integral (BI) method) may be more appropriate for 3-D computer simulations, since the
stress ¯eld should be updated very frequently during Dislocation Dynamics computer
simulations

The present method is in the spirit of the Finite Element Method in structural me-
chanics, where the dislocation line is segmented and described by known shape functions
in a linear combination of unknown generalized coordinates, such as position, tangent and
normal vectors. Physical arguments are used to ascribe constraints on these generalized
coordinates, and thus reduce the number of equations of motion. The method is illustrated
in a number of applications on dislocation loop generation and interactions in bcc, fc and
dc materials. Many applications of the present method are feasible, especially in areas
where continuum descriptions of plastic deformation fall short. One such application is
the simulation of the onset of plastic instabilities and the formation of dislocation channels
in irradiated materials [57], [94]. It is concluded that the present method o®ers a number
of potential advantages:

1. A natural description of dislocation loop geometry that is not determined by an
underlying computational mesh, and which is able to conform to physical constraints
imposed by the crystal structure .

2. Avoidance of numerical divergence problems for very short straight segments, and
the loss of accuracy on long segments.

3. High resolution of short-range reactions in between curved dislocation segments.

4. Flexibility in mixing segment types during the same computation, thus leading to a
reduction in the overall computational burden.

5. Compatibility with the standard Finite Element Method, which may lead to direct
coupling with the computational methods of continuum mechanics.

While continuum approaches to constitutive models are limited to the underlying ex-
perimental data-base, the present method o®ers a new direction for modeling microstruc-
ture evolution from fundamental principles. The limitation to the method presented here
is mainly computational, and much e®ort is needed to overcome several di±culties. First,
the length and time scales represented by the present method are still short of many ex-
perimental observations, and methods of rigorous extensions are still needed. Second, the
boundary conditions of real crystals are more complicated, especially when external and
internal surfaces are to be accounted for. Thus, the present approach does not take into
account large lattice rotations, and ¯nite deformation of the underlying crystal, which
may be important for explanation of certain scale e®ects on plastic deformation. And
¯nally, a much expanded e®ort is needed to bridge the gap between atomistic calculations
of dislocation properties on the one hand, and continuum mechanics formulations on the
other. Nevertheless, with all of these limitations, the approach presented here is worth
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pursuing, because it opens up new possibilities for linking the fundamental nature of the
microstructure with realistic material deformation conditions. It can thus provide an ad-
ditional tool to both theoretical and experimental investigations of plasticity and failure
of materials.

Acknowledgments
The author would like to acknowledge the ¯nancial support of the US Department

of Energy /O±ce of Fusion Energy through grant number DE-FG03-98ER54500, and
Lawrence Livermore National Laboratory through grant numbers B339029, MI-98-031 &
MI-99-017, with UCLA. This review is based upon several papers and reports co-authored
with a number of students and research associates, to whom the author is deeply grateful.
The valuable assistance of Drs. L. Sun, S. Tong and S. Sharafat, and of M. Bacaloni, A.
Chen, and R. Sadek is appreciated.

56



Figure 40: Representation of the solid angle, , at a ¯eld point (Q) away from the dislo-
cation loop line containing the set of points (P)

APPEND ICES

A Di®er ential Geometr y of the Solid Angle

As shown in Fig. 40, the solid angle di®erential d is the ratio of the projected area
element dS to the square of R. Thus:

 =
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where e = R=R = set feig is a unit vector along R = set fXig, and R;ppi = ¡2Xi=R3.
The solid angle can be computed as a line integral, by virtue of Stokes theorem. A vector
potential A (R) is introduced by deWit to satisfy the di®erential equation: 2pik Ak;p(R) =
XiR

¡3. The solution is given by [54]: Ak(R) =2ijk Xisj=[R(R + R ² s)], where s is an
arbitrary unit vector. This results in non-uniqueness of the displacement ¯eld, although
it can be arbitrarily symmetrized [73]. The solid angle is then given as a line integral:
(R) =

H
C Ak(R)d`k. Taking the derivatives of  in Eq. 111, and applying Eq. 86, we

obtain:
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Successive derivatives of the vector R are given by the following set of equations:
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= ¡±jkXi + ±ikXj + ±ijXk

R3
+

3XiXjXk

R5

= (3eiejek ¡ [±ijek + ±jkei + ±kiej ]) =R2 (113)

The third rank tensor Rijk has only 10 non-vanishing terms, and these are given below
for convenience.
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B T he Displacement Field and Gr een's Functions

De¯ne Greens function: Uij(R), as the displacement component Ui(r) at position (R) due
to point force in the Rj-direction at the origin. It can be obtained by considering the
equation of translational equilibrium, that is:

Cijkluk;lj + fi = 0 (115)

If the point force is in the m-direction, it can be represented by:

fi = ±im±(r) (116)

Where the Dirac-delta function is ±(r) = ±(r1)±(r2)±(r3), with the property:

Z

V

±(r ¡ r̂)f(r̂) dV = f(r)

Translational equilibrium is satis¯ed by:

CijklUk;lj + ±im±(r) = 0 (117)

Given a point force distribution fm(r), the corresponding displacement vector distribution
is obtained as:

ui(r) =

Z

allspace

Ukm(r ¡ r̂)fm(r̂) dV̂ (118)

However, for a ¯nite region of space, we use the divergence theorem for any rank tensor
T is expressed as:

Z

V

r ² T dV =

Z

S

T² dS =

Z

V

T;idV =

Z

S

TdSi
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Now consider the following equation:
Z

V̂

Cijkl

h
ui(r̂)Ukm;l̂ĵ ¡ Uim(r¡ r̂)uk;l̂ĵ(r̂)

i
dV̂ =

=

Z

Ŝ

Cijkl

h
ui(̂r)Ukm;l̂ ¡ Uimuk;l̂(r̂)

i
dSĵ

=

Z

V̂

[¡ui(̂r)±ij±(r¡ r̂) + Uimfi] dV̂

=

Z

Ŝ

h
ui(r̂)CijklUkm;l̂ ¡ Uim¾ij(r̂)

i
dSĵ (119)

Re-arranging terms, we can easily determine the displacement vector anywhere, given that
a distributed force system is speci¯ed in the volume, and that stress and displacement
conditions are prescribed at the boundary. Hence, we have:

um (r) =

Z

V̂

Uim (r¡ r̂) fi (̂r) dV̂ ¡
Z

Ŝ

ui (r̂) CijklUkm;l̂ (r¡ r̂) dŜj +

Z

Ŝ

Uim (r ¡ r̂)¾ij (r̂) dŜj

(120)
The second and third terms in Eq.120 account for displacement and traction boundary
conditions on the surface Ŝ, respectively. The speci¯c case of a dislocation loop is char-
acterized by the absence of body forces within the volume (i.e. fi = 0), zero tract ions on
the boundary (i.e. ¾ij = 0) on Ŝ, and a rigid displacement vector bi across the surface Ŝ.
The displacement equation is ¯nally given by:

um (r) = ¡bi

Z

Ŝ

CijklUkm;l̂ (r ¡ r̂) dŜj = bi

Z

Ŝ

CijklUkm;l (r ¡ r̂) dŜj (121)

To complete determination of the displacement ¯eld, we need to evaluate Green's functions
of isotropic elasticity, as given below. We use the method of Fourier transform, de¯ned
as:

~Ukm (k) =

Z

V

Ukm (r) e¡ik¢rdV

with its inverse:

Ukm (r) =
1

(2¼)3

Z

Vk

~Ukm (k) eik¢rdVk

and the associated di®erentiation rules:

kl
~Ukm =

Z

V

Ukm;l(r)e
¡ik¢rdV (122)

¡klkj
~Ukm =

Z

V

Ukm;lj(r)e
¡ik¢rdV (123)

We start now from the equilibrium equation, and take its Fourier transform:

CijklUkm;lj = ¡±im±(r)

¡Cijklklkj
~Ukm(k) = ¡±im (124)
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For an isotropic elastic solid, we have:

¹ (±ik±jl + ±il±jk) klkj
~Ukm(k) + ¸±ij±klklkj

~Ukm(k) = ±im

¹±ik±jlklkj
~Ukm(k) + ¹±il±jkklkj

~Ukm(k) + ¸±ij±klklkj
~Ukm(k) = ±im (125)

Using the substitution property of the delta function, we obtain:

¹±ik±jlklkj
~Ukm(k) = ¹klkl

~Uim(k)

¹±il±jkklkj
~Ukm(k) = ¹kikj

~Ujm(k) = ¹kikk
~Ukm(k) (126)

Now, exchange j ! k:

¸±ij±klklkj
~Ukm(k) = ¸klki

~Ulm(k) = ¸kikk
~Ukmk) (127)

And exchange l ! k:
(¹ + ¸)kkki

~Ukm + ¹k2 ~Uim = ±im (128)

Then, multiply by ki and sum over i:

(¹ + ¸)kkkiki
~Ukm + ¹k2ki

~Uim = ±imki

(¹ + ¸)kkk
2 ~Ukm + ¹k2ki

~Uim = km (129)

Exchange i Ã k, and re-arrange:

(¹ + ¸)kkk
2 ~Ukm + ¹k2kk

~Ukm = km

(2¹ + ¸)kkk
2 ~Ukm = km or;

kk
~Ukm =

km

(2¹ + ¸)k2
(130)

This result can now be substituted back into Eq. 128 above. The elastic Green's functions
are readily obtained in Fourier space as:

µ
¹ + ¸

2¹ + ¸

¶
kikm

k2
+ ¹k2 ~Uim = ±im

~Uim(k) =
1

¹

·
±kim

k2
¡

µ
¹ + ¸

2¹ + ¸

¶
kkkm

k4

¸
(131)

To obtain the elastic Green's functions in Cartesian space, we use the following properties
of the inverse Fourier transform:

1

¼2

Z

Vk

eik¢r

k4
dVk = ¡r (132)

And its second derivative:
1

¼2

Z

Vk

kmkmeik¢r

k4
dVk = r;km (133)
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While for k = m = p, we have:

1

¼2

Z

Vk

eik¢r

k2
dVk = r;pp (134)

Finally, we can now use Eqs. 133 and 134, and take the inverse Fourier transform of Eq.
131 to obtain the explicit form of the isotropic elastic Green's functions:

Ukm (r) =
1

8¼¹

·
±kmr;pp ¡

µ
¸ + ¹

¸ + 2¹

¶
r;km

¸
(135)

Similarly, the Green's functions Ukm(r ¡ r̂) = Ukm(R), and their derivative with respect
to l are given by:

Ukm (R) =
1

8¼¹

·
±kmR;pp ¡

µ
¸ + ¹

¸ + 2¹

¶
R;km

¸

Ukm;l (R) =
1

8¼¹

·
±kmR;ppl ¡

µ
¸ + ¹

¸ + 2¹

¶
R;kml

¸
(136)

C B ur ger s E quation

Burgers equation is a fundamental line integral, which will also be utilized in determination
of all elastic ¯eld variables by the computational fast sum method. Our purpose here is to
derive the displacement vector of a dislocation loop as a line integral. Let's now substitute
Eq. 136 for Green's function derivatives, and Eq. 81 for the isotropic values of the elastic
constants into the surface integral in Eq. 84 to obtain:

um(r) =
1

8¼¹

Z

Ŝ

[¸bi±ij±kl + ¹ (bi±ik±jl + bi±il±jk)]

·
±kmR;ppl ¡

µ
¸ + ¹

¸ + 2¹

¶
R;kml

¸
dŜj

(137)
recall the substitution property of the Kronecker delta function: bi±ij = bj, bi±ik = bk,
bi±il = bl, Eq. 88 takes the form:

um(r) =
1

8¼¹

Z

Ŝ

f¸bj±kl±kmR;ppl + ¹(bk±jl±kmR;ppl + bl±jk±kmR;ppl) ¡

(
¸ + ¹

¸ + 2¹
)[¸bj±klR;kml + ¹(bk±jlR;kml + bl±jkR;kml)]gdŜj (138)

We will now utilize the following tensor properties:

bj±kl±kmR;ppl = bjR;ppm

bj±klR;kml = bjR;llm

bk±jl±kmR;ppl + bl±jk±kmR;ppl = bmR;ppj + bl±jmR;ppl

bk±jlR;kml + bl±jkR;kml = bkR;kmj + blR;jml (139)

um(r) =
1

8¼¹

Z

Ŝ

f¸bjR;ppm + ¹(bmR;ppj + bl±jmR;ppl) ¡

(
¸ + ¹

¸ + 2¹
)[¸bjR;llm + ¹(bkR;kmj + blR;jml)]gdŜj (140)
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For any rank tensor, recall Stokes theorem:
R
S

(r£ T)²dS =
H
C

T²d`. Since: r£T =2ijk

Tabc¢¢¢;iek, we have:

Z

S

(r£ T) ² dS =

Z

S

2ijk Tabc¢¢¢;iekdSr er =

Z

S

2ijk Tabc¢¢¢;i±krdSr =

Z

S

2ijk Tabc¢¢¢;idSk

Thus, Stokes theorem can be used to convert a surface integral into a line integral as:
Z

S

2ijk Tabc¢¢¢;idSk =

I

C

Tabc¢¢¢dlj (141)

Multiplying both sides by 2klm, and utilizing the tensor property:2ijk2klm= ±il±jm¡±im±jl,
we have:

Z

S

(±il±jm ¡ ±im±jl) Tabc¢¢¢;jdSi =

I

C

2lmj Tabc¢¢¢dlj

Z

S

(Tabc¢¢¢;mdSl ¡ Tabc¢¢¢;ldSm) =

I

C

2klm Tabc¢¢¢dlk (142)

Or, expressed in the hat coordinates, we have:
Z

Ŝ

³
Tabc¢¢¢;mdŜl ¡ Tabc¢¢¢;ldŜm

´
=

I

C

2klm Tabc¢¢¢dl̂k (143)

Rewriting Eq. 137, the expression can be manipulated and rearranged in the following
form:

um(r) =
1

8¼

Z

Ŝ

bmR;ppjdŜj +
1

8¼

Z

Ŝ

(blR;ppldŜm ¡ bjR;ppmdŜj)

+
1

4¼
(

¸ + ¹

¸ + 2¹
)

Z

Ŝ

(bjR;ppmdŜj ¡ bkR;kmjdŜj) (144)

Applying Eq. 143 to the third order tensor R;ijk, we obtain the following:

Z

S

[blR;ppldSm ¡ bjR;ppmdSj] =

I

C

2klm blR;ppdlk

Z

S

[bjR;ppmdSj ¡ bnR;m in dSi] =

I

C

2kin bnR;midlk (145)

Finally, when we substitute from Eqns. 111 and 145 into Eq. 144, we obtain the line
integral form of Burgers equation, given by Eq. 85.

D Str ess tensor components

For one loop, explicit fast sum forms of the 3-dimensional stress tensor components are
given below. The inner sum is extended over the number of quadrature points assigned
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in the interval ¡1 · ûl0. Qmax is typically 8-16 for accurate results, although cases
with Qmax up to 300 have been tested. The outer sum is over the number of loop seg-
ments, which is typically in the range 10-30. For an arbitrary number of loops of de¯ned
parametric geometry, a third sum over the loop number must additionally be included.

¾11 =
¹

8¼

NloopX

° = 1

NsX

¯ = 1

QmaxX

®= 1

w®

8
>>><
>>>:

h
b2

³
¡2R;113 + 2º

1¡º (R;223 +R;333)
´

+ b3

³
2R;112 ¡ 2º

1¡º (R;222 +R;332)
´i

r̂1;u+
h
¡b1

2
1¡º (R;223 +R;333) + b3

2
1¡º (R;221 +R;331)

i
r̂2;u+

h
+b1

2
1¡º (R;222 +R;332) ¡ b2

2
1¡º (R;221 +R;331)

i
r̂3;u

9
>>>=
>>>;

®
(146)

¾12 =
¹

8¼

NloopX

° = 1

NsX

¯ = 1

QmaxX

®= 1

w®

8
>><
>>:

h
b1 (R;113 +R;223 +R;333) ¡ b2

³
2

1¡º R;123

´
+ b3

³
1+ º
1¡º R;221 ¡R;111 ¡R;331

´i
r̂1;u+

h
b1

³
2

1¡º R;123

´
¡ b2 (R;113 +R;223 +R;333) + b3

³
¡ 1+ º

1¡º R;112 +R;222 +R;332

´i
r̂2;u+

2
1¡º (¡b1R;221 +b2R;112) r̂3;u

9
>>=
>>;

®
(147)

¾13 =
¹

8¼

NloopX

° = 1

NsX

¯ = 1

QmaxX

®= 1

w®

8
>><
>>:

h
¡b1 (R;112 +R;222 +R;332) + b2

³
R;111 +R;221 ¡ 1+ º

1¡º R;331

´
+ b3

³
2

1¡º R;123

´i
r̂1;u+

2
1¡º (b1R;331 ¡b3R;113) r̂2;u+h
¡b1

³
2

1¡º R;123

´
¡ b2

³
¡ 1+ v

1¡º R;113 +R;223 +R;333

´
+ b3 (R;112 +R;222 +R;332)

i
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9
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>>;

®
(148)

¾22 =
¹

8¼

NloopX

° = 1

NsX

¯ = 1

QmaxX

®= 1

w®

8
>>><
>>>:

h
b2

2
1¡º (R;113 +R;333) ¡ b3

2
1¡º (R;112 +R;332)

i
r̂1;u+

h
b1

h
¡ 2º

1¡º (R;113 +R;333) + 2R;223

i
+ b3

h
2º

1¡º (R;111 +R;331) ¡ 2R;221

ii
r̂2;u+

h
b1

2
1¡º (R;112 +R;332) ¡ b2

2
1¡º (R;111 +R;331)

i
r̂3;u

9
>>>=
>>>;

®
(149)

¾23 =
¹

8¼

NloopX

° = 1

NsX

¯ = 1

QmaxX

®= 1

w®

8
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>>>:

h
¡b2

2
1¡º R;332 +b3

2
1¡º R;223

i
r̂1;u+

h
b1

³
¡R;112 ¡R;222 + 1+ º

1¡º R;332

´
+ b2 (R;111 +R;221 +R;331) ¡ b3

³
2

1¡º R;123

´i
r̂2;u+

h
b1

³
R;113 +R;333 ¡ 1+ º

1¡º R;223

´
+ b2

³
2

1¡º R;123

´
¡ b3 (R;111 +R;221 +R;331)

i
r̂3;u

9
>>>=
>>>;

®
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¾33 =
¹

8¼

NloopX

° = 1

NsX

¯ = 1

QmaxX

®= 1

w®

8
>>><
>>>:

h
+b2

2
1¡º (R;113 +R;223) ¡ b3

2
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i
r̂1;u+

h
¡b1

2
1¡º (R;113 +R;223) + b3

2
1¡º (R;111 +R;221)

i
r̂2;u+

h
+b1

h
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